19,845 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Digital signal processing: the impact of convergence on education, society and design flow

    Get PDF
    Design and development of real-time, memory and processor hungry digital signal processing systems has for decades been accomplished on general-purpose microprocessors. Increasing needs for high-performance DSP systems made these microprocessors unattractive for such implementations. Various attempts to improve the performance of these systems resulted in the use of dedicated digital signal processing devices like DSP processors and the former heavyweight champion of electronics design – Application Specific Integrated Circuits. The advent of RAM-based Field Programmable Gate Arrays has changed the DSP design flow. Software algorithmic designers can now take their DSP algorithms right from inception to hardware implementation, thanks to the increasing availability of software/hardware design flow or hardware/software co-design. This has led to a demand in the industry for graduates with good skills in both Electrical Engineering and Computer Science. This paper evaluates the impact of technology on DSP-based designs, hardware design languages, and how graduate/undergraduate courses have changed to suit this transition
    • 

    corecore