61,228 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    On-body antenna wit parasitic elements

    Get PDF
    An antenna with multi-elements that act together to form an array is required to increase the gain. One example is the well-known Yagi-Uda antenna. Such an antenna is widely used for television communication in which it operates at high frequency (HF), very high frequency (VHF) and ultra high frequency (UHF). It consists of a driven element and a number of parasitic radiators in which currents are induced by mutual coupling. Some applications consider the mutual coupling effect undesirable because it degrades the performance. However, in the parasiticaray it is central to the operation. The parasite elements are useful to increase the gain, create a directional beam and enhance the bandwidth impedance of the antenna
    corecore