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10.1 INTRODUCTION 

 
An antenna with multi-elements that act together to form an array 
is required to increase the gain. One example is the well-known 
Yagi-Uda antenna. Such an antenna is widely used for television 
communication in which it operates at high frequency (HF), very 
high frequency (VHF) and ultra high frequency (UHF). It consists 
of a driven element and a number of parasitic radiators in which 
currents are induced by mutual coupling. Some applications 
consider the mutual coupling effect undesirable because it 
degrades the performance. However, in the parasitic array it is 
central to the operation. The parasite elements are useful to 
increase the gain, create a directional beam and enhance the 
bandwidth impedance of the antenna.  

Switched beam arrays can give higher gain than single 
elements and can be used to improve the performance of small 
communications base stations and terminals. In addition, Body 
Area Network (BAN) using communication channels between two 
body mounted antennas, can also benefit. The path gain of the 
antennas for two body channels has been established and the 
optimum antenna type was found to be a monopole antenna for 
these channels. 

In these on-body or other terminal and base station 
applications, beam switching can be used to increase gain and 
hence reduce link loss and battery consumption, or to reduce 
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interference or multipath. The disk-loaded monopole antenna has 
the advantages that the height of the monopole antenna can be 
reduced significantly whilst still giving approximately the same 
performance.  

Parasite elements can be either reflectors or directors. 
Normally there is one reflector and many directors. The reflector 
acts as an inductive element that causes the antenna to radiate more 
power away from it. Generally the height of reflector is 5% longer 
than the driven element. In contrast, directors are capacitive 
elements, which direct the power radiated by the antenna in their 
direction. They are normally 5% shorter than the driven element. 
The directors support induced currents that create a wave travelling 
along the array. 

An alternative approach based on the basic principle of a 
Yagi-Uda array that uses one driven element encircled by a 
number of parasite elements can be also applied to monopole 
antenna arrays, dipole antenna array and microstrip patch antenna 
arrays. By placing the parasite elements, the input impedance and 
the radiation characteristics of the antenna have been modified due 
to the mutual coupling between the driven and parasite elements. 
For instance, in the monopole and patch array, the parasitic 
element becomes a reflector when shorted to the ground plane, and 
when not shorted, acts as a director. In other word, the termination 
impedances of parasite elements are switchable to change the 
currents flowing. This is different to the conventional Yagi, in 
which the reflector and directors are determined by their length. 
This configuration is therefore useful for switched beam control 
because the actions of the changes in currents of each parasites and 
their combined effect on the driven element can give rise to change 
in radiation pattern. 

Examples of coaxial-fed monopole antenna arrays, based 
on the Yagi concept, that have been published recently are the 
switched parasitic monopole antenna arrays, electrically steerable 
passive array radiators (ESPAR) and dielectric embedded ESPAR 
antenna arrays for wireless communications. It is clear that the 
beam of the antenna can be switched by isolating one of the 
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parasitic elements from the ground plane whilst, the other elements 
are shorted to the ground. Meanwhile, by changing the control 
voltage to the parasite elements, it is possible to form the main 
beam radiation in the direction of the director.  

 
 
 
10.2 COAXIAL-FED MONOPOLE ARRAY ANTENNA 

DESIGN 
 

Figure 10.1 shows the switched top loaded monopole array, 
designed for this project, consisting of five elements on a small 
thin circular ground plane, fed by a coaxial cable. The antenna is 
designed for the 2.45GHz ISM band. Switching is simulated by 
open circuiting one of the elements. From the figure, it can be seen 
that the driven element (1) is located at the centre of the ground 
plane and encircled by four equidistant disk-loaded parasitic 
elements (2-5). The disks all have the same height, which will 
enable printed circuit production to be used to reduce production 
cost.  

The driven and parasitic elements consist of a disk above a 
cylindrical rod monopole. The rods in the driven element and 
parasites are of different diameter. The disks used for parasitic 
elements are also made about 5% smaller in radius compared to the 
driven disk. The antenna parameters that have been studied were 
the driven disk radius, Rd and parasite disk radius, Rp (from 13mm 
to 15mm), the ground plane radius, Rg (from 30mm to 50mm), the 
height of elements, h (from 9mm to 14mm), the driven cylindrical 
rod radius, Rcd (from 2.5mm to 5mm) and the parasite cylindrical 
rod radius, Rcp (from 1mm to 3mm). The aims of the optimized 
antenna dimensions were to obtain good matching at the feeding 
point and the gain improvement. The final dimensions are given in 
Table 10.1. 
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Figure 10.1 Disk-loaded monopole array antenna (No. 1 = driven 

element, No. 2-No. 5 = parasite elements) 
 
 

Table 10.1 Dimensions of a disk-loaded monopole array antenna 
Components Unit (mm) 

Ground plane radius, Rg 50.00 
Driven disk radius, Rd 15.00 
Parasite disk radius, Rp 14.25 
Height of elements, h 11.00 

Driven cylindrical rod radius, Rcd 5.00 
Parasite cylindrical rod radius, Rcp 2.53 
Disk and ground plane thickness, t 0.55 

 
The antenna matching is mainly controlled by the diameter 

of the driven element rod. The gain of the antenna is related to the 
dimensions of the parasitic elements including disk size, rod radius 
and their distance to the driven element. The distance between the 
centre of the driven element to the centre of the parasites has been 
chosen to be about λ/4 (31mm) which is in line with traditional 
Yagi antenna spacing. 

There are two variations of the array that have been made 
as shown in Figure 10.2. The reason behind this is to investigate  
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thickness 

Coaxial cable & 
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(b) 
Figure 10.2 Photographs of the antenna with one of the parasite element 

is lifted 1.5mm using insulator while the remaining are shorted to 
ground: Frequency 2.45GHz; (a) Antenna with same configuration as in 

Figure 2, and (b) Antenna with the opposite configuration 
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Figure 10.3 The technique of shorted and insulated element 
 
the beam switching when changing the parasite state. Figure 10.2 
(a) shows three of the parasites are screwed to the ground plane as 
in Figure 10.3 (a). These act as reflectors, while the remaining 
parasite (director) is elevated by about 1.5mm and is bolted to the 
ground plane using a plastic screw and insulator, Figure 10.3 (b). 
In Figure 10.2 (b), the director is in the opposite location to the 
antenna in Figure 10.2 (a). 
 
 
 
10.3 RESULTS 
 
Figure 10.4 shows the simulated and measured results for the input 
return loss, S11, for the antenna shown in Figure 10.2 (a). From the 
figure, it can be observed that good agreement between the 
simulated and measured results has been achieved. However, it can 
be observed that the measured result produced more impedance 
bandwidth than the simulated result. This may be due to 
imperfection occurred during the antenna construction process 
which may modify the impedance of the antenna. Nevertheless, the 
fractional bandwidth for reflection coefficient below –10dB is 
about 24% (from about 2.2GHz to 2.8GHz) and covers the 
2.45GHz ISM band. 

Figure 10.5 illustrates the normalized antenna radiation 
patterns for both E and H planes for the antenna in Figure 10.2 (a). 
It can be seen that for the H-plane pattern, the beam has been 
steered to direction A, that is φ = 45°, which is in the direction of  
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Figure 10.4 Input return loss against frequency for the antenna in 

Figure 10.2 (a) 
 
 

the open circuited element, as expected. However as shown in 
Figure 10.5 (a) the beam has also been tilted upwards to θ = 50° 
above the plane in the open circuited element direction. It also can 
be noticed that a peak also exists at θ = 315° in the direction of the 
short circuited element opposite the open circuited element in the 
parasitic ring. This is clearly seen in the both simulated and 
measured results. 

The predicted gains at angle θ = 50° and θ = 315° are 
4.40dBi and 4.38dBi respectively. The antenna gives 5.10dBi of 
measured gain which is more than three times greater than the 
1.50dBi of the single disk-loaded antenna. In addition, this antenna 
is more compact and can be made with printed circuit construction, 
which is particularly useful for the on-body communications 
applications, where the extra gain over a single disk monopole can 
be used to extend the battery life of portable body mounted 
equipment or to overcome multipath fading.  
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(a) Normalized E-plane pattern 

at φ = 45° 
(b) Normalized H-plane pattern 
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Figure 10.5 The radiation patterns of the antenna in Figure 10.2 (a).  
(A and B respectively in both plots are same direction). Frequency = 

2.45GHz 
 
The antenna beam radiation can be switched to other 

directions by changing the position of the open circuiting element. 
To prove this, the antenna configuration as shown in Figure 10.2 
(b) was measured and simulated. Figure 10.6 shows the patterns of 
the antenna. It can be seen that, the antenna pattern has been 
altered, with a peak in the φ = 225° and θ = 315° direction. Again, 
the two peaks exist at θ = 315° and θ = 50° in the φ = 45° plane, 
and elevated above the ground plane. Simulations show that the 
main beam is tilted in elevation due to the finite ground plane. The 
researchers have demonstrated that the antenna pattern can be 
brought down to the horizontal plane by utilising the ground 
skirting attached to the ground plane. The results for the two 
antennas clearly demonstrate the potential of this array for a 
switched beam application. 
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(a) Normalized E-plane pattern at φ 

= 45° 
(b) Normalized H-plane pattern 
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Figure 10.6  Radiation patterns for the antenna in Figure 10.2 (b). 

Frequency = 2.45GHz 
 
 
 
10.4 CONCLUSION 
 
A switched disk-loaded monopole antenna array with parasitic 
elements for BAN application has been proposed. The array was 
fed by a coaxial cable and had a 100mm diameter ground plane 
and 11mm height. It produces good input return loss and covers the 
frequency range from 2.2GHz to 2.8GHz for S11 below –10dB. 
The antenna peak radiation was in the direction of the open 
circuited element and was elevated above the ground plane at 
about 50°. The antenna had a measured gain of 5.10dBi, which is 
more than three times the gain of a single top disk-loaded antenna. 
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