104 research outputs found

    Attention-Inspired Artificial Neural Networks for Speech Processing: A Systematic Review

    Get PDF
    Artificial Neural Networks (ANNs) were created inspired by the neural networks in the human brain and have been widely applied in speech processing. The application areas of ANN include: Speech recognition, speech emotion recognition, language identification, speech enhancement, and speech separation, amongst others. Likewise, given that speech processing performed by humans involves complex cognitive processes known as auditory attention, there has been a growing amount of papers proposing ANNs supported by deep learning algorithms in conjunction with some mechanism to achieve symmetry with the human attention process. However, while these ANN approaches include attention, there is no categorization of attention integrated into the deep learning algorithms and their relation with human auditory attention. Therefore, we consider it necessary to have a review of the different ANN approaches inspired in attention to show both academic and industry experts the available models for a wide variety of applications. Based on the PRISMA methodology, we present a systematic review of the literature published since 2000, in which deep learning algorithms are applied to diverse problems related to speech processing. In this paper 133 research works are selected and the following aspects are described: (i) Most relevant features, (ii) ways in which attention has been implemented, (iii) their hypothetical relationship with human attention, and (iv) the evaluation metrics used. Additionally, the four publications most related with human attention were analyzed and their strengths and weaknesses were determined

    Audio-visual fine-tuning of audio-only ASR models

    Full text link
    Audio-visual automatic speech recognition (AV-ASR) models are very effective at reducing word error rates on noisy speech, but require large amounts of transcribed AV training data. Recently, audio-visual self-supervised learning (SSL) approaches have been developed to reduce this dependence on transcribed AV data, but these methods are quite complex and computationally expensive. In this work, we propose replacing these expensive AV-SSL methods with a simple and fast \textit{audio-only} SSL method, and then performing AV supervised fine-tuning. We show that this approach is competitive with state-of-the-art (SOTA) AV-SSL methods on the LRS3-TED benchmark task (within 0.5% absolute WER), while being dramatically simpler and more efficient (12-30x faster to pre-train). Furthermore, we show we can extend this approach to convert a SOTA audio-only ASR model into an AV model. By doing so, we match SOTA AV-SSL results, even though no AV data was used during pre-training

    Make More of Your Data: Minimal Effort Data Augmentation for Automatic Speech Recognition and Translation

    Full text link
    Data augmentation is a technique to generate new training data based on existing data. We evaluate the simple and cost-effective method of concatenating the original data examples to build new training instances. Continued training with such augmented data is able to improve off-the-shelf Transformer and Conformer models that were optimized on the original data only. We demonstrate considerable improvements on the LibriSpeech-960h test sets (WER 2.83 and 6.87 for test-clean and test-other), which carry over to models combined with shallow fusion (WER 2.55 and 6.27). Our method of continued training also leads to improvements of up to 0.9 WER on the ASR part of CoVoST-2 for four non English languages, and we observe that the gains are highly dependent on the size of the original training data. We compare different concatenation strategies and found that our method does not need speaker information to achieve its improvements. Finally, we demonstrate on two datasets that our methods also works for speech translation tasks

    TASE: Task-Aware Speech Enhancement for Wake-Up Word Detection in Voice Assistants

    Get PDF
    Wake-up word spotting in noisy environments is a critical task for an excellent user experience with voice assistants. Unwanted activation of the device is often due to the presence of noises coming from background conversations, TVs, or other domestic appliances. In this work, we propose the use of a speech enhancement convolutional autoencoder, coupled with on-device keyword spotting, aimed at improving the trigger word detection in noisy environments. The end-to-end system learns by optimizing a linear combination of losses: a reconstruction-based loss, both at the log-mel spectrogram and at the waveform level, as well as a specific task loss that accounts for the cross-entropy error reported along the keyword spotting detection. We experiment with several neural network classifiers and report that deeply coupling the speech enhancement together with a wake-up word detector, e.g., by jointly training them, significantly improves the performance in the noisiest conditions. Additionally, we introduce a new publicly available speech database recorded for the Telefónica's voice assistant, Aura. The OK Aura Wake-up Word Dataset incorporates rich metadata, such as speaker demographics or room conditions, and comprises hard negative examples that were studiously selected to present different levels of phonetic similarity with respect to the trigger words 'OK Aura'. Keywords: speech enhancement; wake-up word; keyword spotting; deep learning; convolutional neural networ
    corecore