3 research outputs found

    Internet routing paths stability model and relation to forwarding paths

    Get PDF
    Analysis of real datasets to characterize the local stability properties of the Internet routing paths suggests that extending the route selection criteria to account for such property would not increase the routing path length. Nevertheless, even if selecting a more stable routing path could be considered as valuable from a routing perspective, it does not necessarily imply that the associated forwarding path would be more stable. Hence, if the dynamics of the Internet routing and forwarding system show different properties, then one can not straightforwardly derive the one from the other. If this assumption is verified, then the relationship between the stability of the forwarding path (followed by the traffic) and the corresponding routing path as selected by the path-vector routing algorithm requires further characterization. For this purpose, we locally relate, i.e., at the router level, the stability properties of routing path with the corresponding forwarding path. The proposed stability model and measurement results verify this assumption and show that, although the main cause of instability results from the forwarding plane, a second order effect relates forwarding and routing path instability events. This observation provides the first indication that differential stability can safely be taken into account as part of the route selection process

    Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing

    Get PDF
    Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework

    Exploiting tactics, techniques, and procedures for malware detection

    Get PDF
    There has been a meteoric rise in the use of malware to perpetrate cybercrime and more generally, serve the interests of malicious actors. As a result, malware has evolved both in terms of its sheer variety and sophistication. There is hence a need for developing effective malware detection systems to counter this surge. Typically, most such systems nowadays are purely data-driven - they utilise Machine Learning (ML) based approaches which rely on large volumes of data, to spot patterns, detect anomalies, and thus detect malware. In this thesis, we propose a methodology for malware detection on networks that combines human domain knowledge with conventional malware detection approaches to more effectively identify, reason about, and be resilient to malware. Specifically, we use domain knowledge in the form of the Tactics, Techniques, and Procedures (TTPs) described in the MITRE ATT\&CK ontology of adversarial behaviour to build Network Intrusion Detection Systems (NIDS). Through the course of our research, we design and evaluate the first such NIDS that can effectively exploit TTPs for the purpose of malware detection. We then attempt to expand the scope of usability of these TTPs to systems other than our specialised NIDS, and develop a methodology that lets any generic ML-based NIDS exploit these TTPs as model features. We further expand and generalise our approach by modelling it as a multi-label classification problem, which enables us to: (i) detect malware more precisely on the basis of individual TTPs, and (ii) identify the malicious usage of uncommon or rarely-used TTPs. Throughout all our experiments, we rigorously evaluate all our systems on several metrics using large datasets of real-world malware and benign samples. We empirically demonstrate the usefulness of TTPs in the malware detection process, the benefits of a TTP-based approach in reasoning about malware and responding to various challenging conditions, and the overall robustness of our systems to adversarial attack. As a consequence, we establish and improve the state-of-the-art when it comes to detecting network-based malware using TTP-based information. This thesis overall represents a step forward in building automated systems that combine purely-data driven approaches with human expertise in the field of malware analysis
    corecore