304 research outputs found

    An Universal Image Attractiveness Ranking Framework

    Full text link
    We propose a new framework to rank image attractiveness using a novel pairwise deep network trained with a large set of side-by-side multi-labeled image pairs from a web image index. The judges only provide relative ranking between two images without the need to directly assign an absolute score, or rate any predefined image attribute, thus making the rating more intuitive and accurate. We investigate a deep attractiveness rank net (DARN), a combination of deep convolutional neural network and rank net, to directly learn an attractiveness score mean and variance for each image and the underlying criteria the judges use to label each pair. The extension of this model (DARN-V2) is able to adapt to individual judge's personal preference. We also show the attractiveness of search results are significantly improved by using this attractiveness information in a real commercial search engine. We evaluate our model against other state-of-the-art models on our side-by-side web test data and another public aesthetic data set. With much less judgments (1M vs 50M), our model outperforms on side-by-side labeled data, and is comparable on data labeled by absolute score.Comment: Accepted by 2019 Winter Conference on Application of Computer Vision (WACV

    Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information

    Full text link
    Applying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by frame people detectors during runtime classification, without requiring any additional manually labeled ground truth apart from the offline training of the detection model. Such adaptation make use of multiple detectors mutual information, i.e., similarities and dissimilarities of detectors estimated and agreed by pair-wise correlating their outputs. Globally, the proposed adaptation discriminates between relevant instants in a video sequence, i.e., identifies the representative frames for an adaptation of the system. Locally, the proposed adaptation identifies the best configuration (i.e., detection threshold) of each detector under analysis, maximizing the mutual information to obtain the detection threshold of each detector. The proposed coarse-to-fine approach does not require training the detectors for each new scenario and uses standard people detector outputs, i.e., bounding boxes. The experimental results demonstrate that the proposed approach outperforms state-of-the-art detectors whose optimal threshold configurations are previously determined and fixed from offline training dataThis work has been partially supported by the Spanish government under the project TEC2014-53176-R (HAVideo

    SIMBA: scalable inversion in optical tomography using deep denoising priors

    Full text link
    Two features desired in a three-dimensional (3D) optical tomographic image reconstruction algorithm are the ability to reduce imaging artifacts and to do fast processing of large data volumes. Traditional iterative inversion algorithms are impractical in this context due to their heavy computational and memory requirements. We propose and experimentally validate a novel scalable iterative mini-batch algorithm (SIMBA) for fast and high-quality optical tomographic imaging. SIMBA enables highquality imaging by combining two complementary information sources: the physics of the imaging system characterized by its forward model and the imaging prior characterized by a denoising deep neural net. SIMBA easily scales to very large 3D tomographic datasets by processing only a small subset of measurements at each iteration. We establish the theoretical fixedpoint convergence of SIMBA under nonexpansive denoisers for convex data-fidelity terms. We validate SIMBA on both simulated and experimentally collected intensity diffraction tomography (IDT) datasets. Our results show that SIMBA can significantly reduce the computational burden of 3D image formation without sacrificing the imaging quality.https://arxiv.org/abs/1911.13241First author draf

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    corecore