10 research outputs found

    The epidemiology ontology: an ontology for the semantic annotation of epidemiological resources

    Get PDF
    BACKGROUND: Epidemiology is a data-intensive and multi-disciplinary subject, where data integration, curation and sharing are becoming increasingly relevant, given its global context and time constraints. The semantic annotation of epidemiology resources is a cornerstone to effectively support such activities. Although several ontologies cover some of the subdomains of epidemiology, we identified a lack of semantic resources for epidemiology-specific terms. This paper addresses this need by proposing the Epidemiology Ontology (EPO) and by describing its integration with other related ontologies into a semantic enabled platform for sharing epidemiology resources. RESULTS: The EPO follows the OBO Foundry guidelines and uses the Basic Formal Ontology (BFO) as an upper ontology. The first version of EPO models several epidemiology and demography parameters as well as transmission of infection processes, participants and related procedures. It currently has nearly 200 classes and is designed to support the semantic annotation of epidemiology resources and data integration, as well as information retrieval and knowledge discovery activities. CONCLUSIONS: EPO is under active development and is freely available at https://code.google.com/p/epidemiology-ontology/. We believe that the annotation of epidemiology resources with EPO will help researchers to gain a better understanding of global epidemiological events by enhancing data integration and sharing

    The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis

    Get PDF
    Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. Terms in OBCS, including ‘data collection’, ‘data transformation in statistics’, ‘data visualization’, ‘statistical data analysis’, and ‘drawing a conclusion based on data’, cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. By representing statistics-related terms and their relations in a rigorous fashion, OBCS facilitates standard data analysis and integration, and supports reproducible biological and clinical research

    The epidemiology ontology: an ontology for the semantic annotation of epidemiological resources

    Full text link

    Ontological representation, integration, and analysis of LINCS cell line cells and their cellular responses

    Full text link
    Abstract Background Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. Results CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. Conclusions CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.https://deepblue.lib.umich.edu/bitstream/2027.42/140390/1/12859_2017_Article_1981.pd

    Ontology-based representation and analysis of host-Brucella interactions

    Full text link
    Abstract Background Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Results Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host-Brucella interactions and implemented in IDOBRU. Current IDOBRU includes 3611 ontology terms. SPARQL queries identified many results that are critical to the host-Brucella interactions. For example, out of 269 protein virulence factors related to macrophage-Brucella interactions, 81 are critical to Brucella intracellular replication inside macrophages. A SPARQL query also identified 11 biological processes important for Brucella virulence. Conclusions To systematically represent and analyze fundamental host-pathogen interaction mechanisms, we provided for the first time comprehensive ontological modeling of host-pathogen interactions using Brucella as the pathogen model. The methods and ontology representations used in our study are generic and can be broadened to study the interactions between hosts and other pathogens.http://deepblue.lib.umich.edu/bitstream/2027.42/113668/1/13326_2015_Article_36.pd

    First steps of asthma management with a personalized ontology model

    Get PDF
    Asthma is a chronic respiratory disease characterized by severe inflammation of the bronchial mucosa. Allergic asthma is the most common form of this health issue. Asthma is classified into allergic and non-allergic asthma, and it can be triggered by several factors such as indoor and outdoor allergens, air pollution, weather conditions, tobacco smoke, and food allergens, as well as other factors. Asthma symptoms differ in their frequency and severity since each patient reacts differently to these triggers. Formal knowledge is selected as one of the most promising solutions to deal with these challenges. This paper presents a new personalized approach to manage asthma. An ontology-driven model supported by Semantic Web Rule Language (SWRL) medical rules is proposed to provide personalized care for an asthma patient by identifying the risk factors and the development of possible exacerbations

    Open biomedical pluralism : formalising knowledge about breast cancer phenotypes

    Get PDF
    We demonstrate a heterogeneity of representation types for breast cancer phenotypes and stress that the characterisation of a tumour phenotype often includes parameters that go beyond the representation of a corresponding empirically observed tumour, thus reflecting significant functional features of the phenotypes as well as epistemic interests that drive the modes of representation. Accordingly, the represented features of cancer phenotypes function as epistemic vehicles aiding various classifications, explanations, and predictions. In order to clarify how the plurality of epistemic motivations can be integrated on a formal level, we give a distinction between six categories of human agents as individuals and groups focused around particular epistemic interests. We analyse the corresponding impact of these groups and individuals on representation types, mapping and reasoning scenarios. Respecting the plurality of representations, related formalisms, expressivities and aims, as they are found across diverse scientific communities, we argue for a pluralistic ontology integration. Moreover, we discuss and illustrate to what extent such a pluralistic integration is supported by the distributed ontology language DOL, a meta-language for heterogeneous ontology representation that is currently under standardisation as ISO WD 17347 within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. We particularly illustrate how DOL supports representations of parthood on various levels of logical expressivity, mapping of terms, merging of ontologies, as well as non-monotonic extensions based on circumscription allowing a transparent formal modelling of the normal/abnormal distinction in phenotypes
    corecore