35 research outputs found

    Multiplexing scheme updates for QUIC

    Get PDF
    RFC 7983 defines a scheme for a Real-time Transport Protocol (RTP) receiver to demultiplex Datagram Transport Layer Security (DTLS), Session Traversal Utilities for NAT (STUN), Secure Real-time Transport Protocol (SRTP) / Secure Real-time Transport Control Protocol (SRTCP), ZRTP, and Traversal Using Relays around NAT (TURN) channel packets arriving on a single port. This document updates RFC 7983 and RFC 5764 to also allow QUIC packets to be multiplexed on a single receiving socket

    REsource LOcation And Discovery (RELOAD) Base Protocol

    Full text link

    RFC 9303 Locator/ID Separation Protocol Security (LISP-SEC)

    Get PDF
    IETFThis memo specifies Locator/ID Separation Protocol Security (LISP-SEC), a set of security mechanisms that provides origin authentication, integrity, and anti-replay protection to the LISP's Endpoint-ID-to-Routing-Locator (EID-to-RLOC) mapping data conveyed via the mapping lookup process. LISP-SEC also enables verification of authorization on EID-Prefix claims in Map-Reply messages

    Diameter Base Protocol

    Full text link

    Transport Layer Security (TLS) Renegotiation Indication Extension

    Full text link

    A payload-based mutual authentication scheme for Internet of Things

    Full text link
    The Internet of Things (IoT) is a vision that broadens the scope of the Internet by incorporating physical objects to identify themselves to the participating entities. This innovative concept enables a physical object to represent itself in the digital world. There have been a lot of speculations and future forecasts about these physical objects connected with the Internet, however, most of them lack secure features and are vulnerable to a wide range of attacks. Miniature sensor nodes, embedded in these physical objects, limit the support for computationally complex and resource-consuming secured algorithms. In this paper, we propose a lightweight mutual authentication scheme for the real-world physical objects of an IoT environment. It is a payload-based encryption scheme which uses a simple four-way handshake mechanism to verify the identities of the participating objects. The real-world objects communicate with each other using the client–server interaction model. Our proposed scheme uses the lightweight features of Constrained Application Protocol (CoAP) to enable the clients to observe resources residing on the server, in an energy-efficient manner. We use Advanced Encryption Standard (AES), with a key length of bits, to establish a secured session for resource observation. We evaluate our scheme for a real-world scenario using NetDuino Plus 2 boards. Our scheme is computationally efficient, incurs less connection overhead and at the same time, provides a robust defence against various attacks such as, resource exhaustion, Denial-of-Service, replay and physical tampering

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF
    corecore