5 research outputs found

    Novel approaches to the monitoring of computer networks

    Get PDF
    Traditional network monitoring techniques suffer from a number of limitations. They are usually designed to solve the most general case, and as a result often fall short of expectation. This project sets out to provide the network administrator with a set of alternative tools to solve specific, but common, problems. It uses the network at Rhodes University as a case study and addresses a number of issues that arise on this network. Four problematic areas are identified within this network: the automatic determination of network topology and layout, the tracking of network growth, the determination of the physical and logical locations of hosts on the network, and the need for intelligent fault reporting systems. These areas are chosen because other network monitoring techniques have failed to adequately address these problems, and because they present problems that are common across a large number of networks. Each area is examined separately and a solution is sought for each of the problems identified. As a result, a set of tools is developed to solve these problems using a number of novel network monitoring techniques. These tools are designed to be as portable as possible so as not to limit their use to the case study network. Their use within Rhodes, as well as their applicability to other situations is discussed. In all cases, any limitations and shortfalls in the approaches that were employed are examined

    Standards as interdependent artifacts : the case of the Internet

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2008.Includes bibliographical references.This thesis has explored a new idea: viewing standards as interdependent artifacts and studying them with network analysis tools. Using the set of Internet standards as an example, the research of this thesis includes the citation network, the author affiliation network, and the co-author network of the Internet standards over the period of 1989 to 2004. The major network analysis tools used include cohesive subgroup decomposition (the algorithm by Newman and Girvan is used), regular equivalence class decomposition (the REGE algorithm and the method developed in this thesis is used), nodal prestige and acquaintance (both calculated from Kleinberg's technique), and some social network analysis tools. Qualitative analyses of the historical and technical context of the standards as well as statistical analyses of various kinds are also used in this research. A major finding of this thesis is that for the understanding of the Internet, it is beneficial to consider its standards as interdependent artifacts. Because the basic mission of the Internet (i.e. to be an interoperable system that enables various services and applications) is enabled, not by one or a few, but by a great number of standards developed upon each other, to study the standards only as stand-alone specifications cannot really produce meaningful understandings about a workable system. Therefore, the general approaches and methodologies introduced in this thesis which we label a systems approach is a necessary addition to the existing approaches. A key finding of this thesis is that the citation network of the Internet standards can be decomposed into functionally coherent subgroups by using the Newman-Girvan algorithm.(cont.) This result shows that the (normative) citations among the standards can meaningfully be used to help us better manage and monitor the standards system. The results in this thesis indicate that organizing the developing efforts of the Internet standards into (now) 121 Working Groups was done in a manner reasonably consistent with achieving a modular (and thus more evolvable) standards system. A second decomposition of the standards network was achieved by employing the REGE algorithm together with a new method developed in this thesis (see the Appendix) for identifying regular equivalence classes. Five meaningful subgroups of the Internet standards were identified, and each of them occupies a specific position and plays a specific role in the network. The five positions are reflected in the names we have assigned to them: the Foundations, the Established, the Transients, the Newcomers, and the Stand-alones. The life cycle among these positions was uncovered and is one of the insights that the systems approach on this standard system gives relative to the evolution of the overall standards system. Another insight concerning evolution of the standard system is the development of a predictive model for promotion of standards to a new status (i.e. Proposed, Draft and Internet Standards as the three ascending statuses). This model also has practical potential to managers of standards setting organizations and to firms (and individuals) interested in efficiently participating in standards setting processes. The model prediction is based on assessing the implicit social influence of the standards (based upon the social network metric, betweenness centrality, of the standards' authors) and the apparent importance of the standard to the network (based upon calculating the standard's prestige from the citation network).(cont.) A deeper understanding of the factors that go into this model was also developed through the analysis of the factors that can predict increased prestige over time for a standard. The overall systems approach and the tools developed and demonstrated in this thesis for the study of the Internet standards can be applied to other standards systems. Application (and extension) to the World Wide Web, electric power system, mobile communication, and others would we believe lead to important improvements in our practical and scholarly understanding of these systems.by Mo-Han Hsieh.Ph.D

    SIP based IP-telephony network security analysis

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2004 - Høgskolen i Agder, GrimstadThis thesis evaluates the SIP Protocol implementation used in the Voice over IP (VoIP) solution at the fibre/DSL network of Èlla Kommunikasjon AS. The evaluation focuses on security in the telephony service, and is performed from the perspective of an attacker trying to find weaknesses in the network. For each type of attempt by the malicious attacker, we examined the security level and possible solutions to flaws in the system. The conclusion of this analysis is that the VoIP service is exploitable, and that serious improvements are needed to achieve a satisfying level of security for the system

    Study of the operation of a network implemented in the ipv6 protocol

    Get PDF
    Internet se ha convertido en un recurso crítico para el funcionamiento de más y más instituciones de diversa naturaleza. Lejos están ya los días en que sólo las empresas relacionadas directamente con las tecnologías de la información eran las únicas para las cuales el acceso a Internet resultaba imprescindible para su operación. Hoy en día instituciones de toda naturaleza y tamaño requieren conectividad global ya sea para proveer servicios a través de Internet, para relacionarse con sus proveedores e incluso para el funcionamiento cotidiano de las operaciones internas. Esto implica que una interrupción en el acceso a Internet supone un alto costo, por lo que existe una fuerte demanda de mecanismos que brinden un alto nivel de tolerancia a fallos en la conexión a Internet. El Protocolo de Internet define como se comunican los dispositivos a través de las redes. La versión 4 de IP (IPv4), que actualmente es predominante, contiene aproximadamente cuatro mil millones de direcciones IP, las cuales no son suficientes para una duración ilimitada. Dicho agotamiento del espacio fue realidad en el 2011. Esto está afectando el negocio de los ISPs existentes, llegando en cierto punto, a la creación de nuevas ISPs. Como una de las consecuencias, puede tener un impacto más profundo en las regiones en desarrollo (África, Asia y América latina/el Caribe) donde no está todavía tan extensa la penetración de Internet. El crecimiento extraordinario de las nuevas tecnologías y, en especial, la implementación del Protocolo IP en su versión 6 (IPv6) abre un enorme abanico de posibilidades, actividades y nuevas formas de comunicarse, trabajar, comprar, relacionarse con otras personas y, en definitiva, desempeñar las tareas cotidianas de nuestra vida. El propósito de este estudio es aportar una serie de conocimientos básicos de carácter técnico, necesarios para conocer IPv6, su funcionamiento y el estado actual de su implementación a nivel mundial para, posteriormente, entrar a conocer los posibles problemas y soluciones, en una red nativa en la Universidad de Pamplona.INTRODUCCION 9 1. PLANTEAMIENTO DEL PROBLEMA 13 1.1. PLANTEAMIENTO 13 1.2. JUSTIFICACIÓN 15 1.3. HIPÓTESIS 16 1.4. OBJETIVOS 16 1.4.1 Objetivo principal 16 1.4.2 Objetivos específicos 17 1.5. METODO 18 2. REVISIÓN DE LITERATURA 19 2.1 Estado del arte TCP/IP. 20 2.1.1 Fuentes Primarias – Trabajos Relacionados. 23 2.1.1.1 Internacional. 23 2.1.1.2 Nacional. 27 2.2 Estado del arte IPv4. 30 2.2.1 Fuentes Primarias – Trabajos Relacionados. 30 2.2.1.1 Internacional. 30 2.2.1.2 Nacional. 34 2.3 Estado del arte IPv6. 35 2.3.1 Fuentes Primarias – Trabajos Relacionados. 35 2.3.1.1 Internacional. 35 2.3.1.2 Nacional. 44 2.4. RFC (Request For Comments) 46 2.4.1 RFC generales 46 2.4.2 RFC Calidad de servicio QoS 53 2.4.3 RFCs Relacionados con calidad de servicio QoS 55 2.4.4 RFC 3775 61 RESULTADOS 63 3. SERVICIOS: LABORATORIOS DE LOS PROTOCOLOS TCP (PROTOCOLO DE CONTROL DE TRANSMISIÓN) E IP (PROTOCOLO DE INTERNET) 63 3.1. SOFTWARE: SISTEMAS OPERATIVOS, APLICACIONES 63 3.1.1 Acceso al servidor Web con direcciones Locales de Sitio 64 3.1.2 Prueba de la comunicación entre dos equipos con IPv6 65 3.1.3 Prueba del servidor Apache httpd-2.2.3 66 3.1.4 Pruebas del servidor DNS 66 3.1.4.1 Comando netstat 67 3.1.4.2 Comando nslookup 67 3.1.5 Prueba de eficiencia de un servidor DNS con direcciones IPv4 e IPv6 68 3.1.6 Pruebas de sockets con direcciones IPv4 e IPv6 70 3.1.7 Criterios de Asignación de Direcciones IPv6 71 3.2. Laboratorio Nº 1: Instalar la Versión 6 de IP en Windows XP 72 3.3. Laboratorio Nº 2: Prueba de la Conectividad entre Hosts Locales del Vínculo 75 3.4. Laboratorio Nº 3: Comunicación a un Servidor Web con Direcciones IPv6 Locales del Sitio 77 3.5. Laboratorio Nº 4: Comunicación Remota con SSH (Protocolo de Intérprete Seguro) entre dos Host con Direcciones IPV6 Locales del Sitio 79 3.6. Laboratorio Nº 5: Configuración de un Servidor DNS (Servicio de Nombres de Dominio) con Direcciones IPV6 Locales Del Sitio 85 3.7. Laboratorio Nº 6: Realización de Sockets bajo JAVA con Direcciones IPV6 Locales del sitio 96 4. IPSec 104 4.1. Descripción del Protocolo IPSec 104 4.1.1 Asociación de Seguridad SA (Security Association) 105 4.1.2 Modos de Operación en IPSEC 106 4.2. Métodos de Seguridad en IPSEC 107 4.3. PRUEBAS REALIZADAS CONFIGURACIÓN No1 108 4.3.1 Configuración General 108 4.3.2 Configuración de IPv6 en un Equipo Red Hat Linux 9 108 4.3.2.1 Configuración IPv6 109 4.3.3 Configuración y Prueba de IPSec para IPv6 113 4.3.3.1 Instalación de Frees/wan 113 4.4. PRUEBAS REALIZADAS CONFIGURACIÓN No2 118 4.4.1 Implementación y medición del tráfico de datos de IPSec en IPv6 118 4.4.2 Dispositivos empleados para la configuración de IPSec en IPv6 119 4.4.3 Tráfico de datos de IPSec en IPv6 120 4.4.3.1 Diseño de la red 120 4.4.3.2 Configuración de la red 120 4.4.3.3 Utilizar IPSec entre dos hosts del vínculo local (FE80) y local de sitio (FC80) 121 4.4.3.4 Cómo configurar las políticas de seguridad IPSec y las asociaciones de seguridad para IPv6 127 4.4.3.5 Captura y análisis de tráfico 127 4.4.3.6 Captura y análisis de tráfico 140 4.4.3.7 Análisis comparativo del tráfico de datos sin IPSEC habilitado 153 4.4.3.8 Análisis comparativo del tráfico de datos con IPSEC habilitado 154 5. QoS 155 5.1 INTRODUCCIÓN 155 5.2 ANTECEDENTES DE DESARROLLO QoS 156 5.2.1 Nacional 156 5.2.2 Internacional 157 5.3. CONCEPTOS GENERALES 158 5.3.1 ICMPv6 159 5.3.3 Calidad de servicio 160 5.3.3.1 Componentes de la calidad de servicio 160 5.3.3.2 Campos de la cabecera IPv6 162 5.3.3.3 Herramienta Oreneta: captura, filtra y representa los flujos en tiempo real 163 5.3.3.3.1 Sincronización de las sondas 163 5.3.3.3.2 Captura pasiva 164 5.3.3.3.3 Filtrado 164 5.3.3.3.4 Representación de los flujos 164 5.4. PRUEBAS DE CALIDAD DE SERVICIO QoS SOBRE UNA RED IPv6 164 5.4.1 Configuración de la red 165 5.4.1.1 Topología 165 5.4.1.2 Configuración de IPv6 165 5.4.1.3 Asignación de direcciones IPv6 167 5.4.1.4 Configuración del router 168 5.4.2 Configuración de Calidad de Servicio 170 5.4.3 Captura y análisis del control de tráfico de datos 176 6. ANÁLISIS DE MOVILIDAD EN EL PROTOCOLO DE INTERNET VERSIÓN 6 (MIPv6) 183 6.1. INTRODUCCIÓN 183 6.2. ESTADO DEL ARTE 183 6.2.1 Movilidad IPv6 (MIPv6) 183 6.3. MOVILIDAD IPv6 188 6.3.1 Terminología de MIPv6 188 6.3.2 Visión general de MIPv6 189 6.3.2.1 Actualización de uniones y reconocimientos 194 6.3.2.2 Actualizando Enlaces 199 6.3.2.3 Detección de movimiento 200 6.3.2.4 Retorno a Home 204 6.3.2.5 Selección de dirección fuente en nodos móviles 206 6.3.2.6 Detección de cambios en el enlace primario 209 6.3.2.7 Que sucede si el agente primario falla? 209 6.3.2.8 Nodos móviles con más de un agente 210 6.3.2.9 Enlaces virtuales primarios 210 6.4. OPTIMIZACIÓN DE RUTA 211 6.4.1 Enviando paquetes optimizados al nodo correspondiente 213 6.4.2 Reconociendo BU´s enviados a nodos móviles 215 6.4.3 Que sucede si el nodo correspondiente falla 216 6.5. COMUNICACIÓN EJEMPLO 217 6.6. SIMULACIÓN 219 6.6.1 El Simulador: Network Simulator 219 6.6.2 Descripción de la herramienta 220 6.6.2.1 Event Scheduler Object 221 6.6.2.2 Network Component object 222 6.6.2.3 Network Setup Helping Module 223 6.6.2.4 Nam (Network Animator) 224 6.6.2.5 Xgraph 225 6.6.3 Instalación del Network Simulator 225 6.6.4 Escenario propuesto 228 6.6.5. Creando la topología 229 6.6.5.1 Creación de la topología de MIPv6 229 6.6.5.2 Finalizando la simulación 230 6.6.6 Corriendo la simulación 231 6.6.7 Trazas 232 7. DISCUSIÓN 234 8. RECOMENDACIONES/CONCLUSIONES 235 9. REFERENCIAS Y BIBLIOGRAFÍA 237 9.1 PRINCIPALES 237 9.2 SECUNDARIAS 237 9.3 DIRECCIONES URL 238MaestríaThe Internet has become a critical resource for the functioning of more and more institutions of diverse nature. Gone are the days when only companies directly related to information technology were the only ones for which Internet access was essential for their operation. Today, institutions of all kinds and sizes require global connectivity, either to provide services through the Internet, to interact with their suppliers and even for the daily functioning of internal operations. This implies that an interruption in Internet access involves a high cost, so there is a strong demand for mechanisms that provide a high level of fault tolerance in the Internet connection. The Internet Protocol defines how devices communicate over networks. IP version 4 (IPv4), which is currently prevalent, contains approximately four billion IP addresses, which are not sufficient for an unlimited duration. This depletion of space was a reality in 2011. This is affecting the business of existing ISPs, reaching a certain point, to the creation of new ISPs. As one of the consequences, it may have a more profound impact in developing regions (Africa, Asia and Latin America / the Caribbean) where Internet penetration is not yet as extensive. The extraordinary growth of new technologies and, especially, the implementation of the IP Protocol in its version 6 (IPv6) opens a huge range of possibilities, activities and new ways of communicating, working, shopping, interacting with other people and, ultimately , carry out the daily tasks of our life. The purpose of this study is to provide a series of basic knowledge of a technical nature, necessary to know IPv6, its operation and the current state of its implementation worldwide, to later learn about possible problems and solutions in a native network at the University of Pamplona

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore