5 research outputs found

    Design and analysis of sequential and parallel single-source shortest-paths algorithms

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra\u27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    LEDA-SM: External Memory Algorithms and Data Structures in theory and practice

    Get PDF
    Data to be processed has dramatically increased during the last years. Nowadays, external memory (mostly hard disks) has to be used to store this massive data. Algorithms and data structures that work on external memory have different properties and specialties that distinguish them from algorithms and data structures, developed for the RAM model. In this thesis, we first explain the functionality of external memory,which is realized by disk drives. We then introduce the most important theoretical I/O models. In the main part, we present the C++ class library LEDA-SM. Library LEDA-SM is an extension of the LEDA library towards external memory computation and consists of a collection of algorithms and data structures that are designed to work efficiently in external memory. In the last two chapters, we present new external memory data structures for external memory priority queues and new external memory construction algorithms for suffix arrays. These new proposals are theoretically analyzed and experimentally tested. All proposals are implemented using the LEDA-SM library. Their efficiency is evaluated by performing a large number of experiments.Die zu verarbeitenden Datenmengen sind in den letzten Jahren dramatisch gestiegen, so daß Externspeicher (in Form von Festplatten) eingesetzt wird, um die Datenmengen zu speichern. Algorithmen und Datenstrukturen, die den Externspeicher benutzen, haben andere algorithmische Anforderungen als eine Vielzahl der bekannten Algorithmen und Datenstrukturen, die fĂŒr das RAM-Modell entwickelt wurden. Wir geben in dieser Arbeit erst einen Einblick in die Funktionsweise von Externspeicher anhand von Festplatten und erklĂ€ren die wichtigsten theoretischen Modelle, die zur Analyse von Algorithmen benutzt werden. Weiterhin stellen wir eine neu entwickelte C++ Klassenbibliothek namens LEDA-SM vor. LEDA-SM bietet eine Sammlung von speziellen Externspeicher Algorithmen und Datenstrukturen. Im zweiten Teil entwickeln wir neue Externspeicher-PrioritĂ€tswarteschlangen und neue Externspeicher- Konstruktionsalgorithmen fĂŒr Suffix Arrays. Unsere neuen Verfahren werden theoretisch analysiert, mit Hilfe von LEDA-SM implementiert und anschließend experimentell getestet

    -

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra's SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    I/O-Optimal Computation of Segment Intersections

    No full text
    We investigate the I/O-complexity of computing the trapezoidal decomposition defined by a set of N line segments in the plane. We present a randomized algorithm which solves optimally this problem requiring O( N B log M=B N B + K B ) expected I/O operations, where K is the number of pairwise intersections, M is the size of available internal memory and B is the size of the block transfer. The proposed algorithm requires an optimal expected number of internal operations. As a by-product, the algorithm also solves the segment intersections problem requiring the same number of I/Os and internal operations
    corecore