6,531 research outputs found

    Adaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE

    Get PDF
    ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks such WiMAX and 3GPP LTE and LTE-Advanced provide support for self-optimization, self-configuration and self-healing to minimize human-to-system interaction and hence reap the attendant benefits of automation. One of the most important optimization tasks is load balancing as it affects network operation right from planning through the lifespan of the network. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practically implementable at the current state of technology. Furthermore, most of the techniques proposed employ iterative algorithm, which in itself is not computationally efficient. This paper proposes the use of soft computing, precisely adaptive neuro-fuzzy inference system for dynamic QoS-aware load balancing in 3GPP LTE. Three key performance indicators (i.e. number of satisfied user, virtual load and fairness distribution index) are used to adjust hysteresis task of load balancing

    Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures

    Get PDF
    Data on design and operation of trickle beds at elevated pressures are scarce. In this study the influence of the gas density on the liquid holdup, the pressure drop, and the transition between trickle and pulse flow has been investigated in a tricklebed reactor operating up to 7.5 MPa and with nitrogen or helium as the gas phase. Gas-liquid interfacial areas have been determined up to 5.0 MPa by means of CO2 absorption from CO2/N2 gas mixtures into amine solutions. \ud A comparison of the results from nitrogen as the gas phase to those of helium shows that at equal gas densities the hydrodynamic states are the same. The gas-liquid interfacial area increases when operating at higher gas densities. When the determined dimensionless interfacial areas agl/as are all within the range 0.25-0.8, the trickle-bed reactor is suggested to operate in the trickle-flow regime. The gas density has a strong influence on the liquid holdup. Due to the higher pressure gradients at elevated gas densities, the liquid holdup decreases noticeably. Besides, the boundary between the trickle-flow and pulse-flow regime shifts toward higher liquid throughputs: the region for trickle-flow operationg becomes larger. For the liquid holdup and the pressure gradient in the trickle-flow regime, correlations derived based on dimensionless numbers can be applied to high-prssure trickle beds

    Handover Necessity Estimation for 4G Heterogeneous Networks

    Get PDF
    One of the most challenges of 4G network is to have a unified network of heterogeneous wireless networks. To achieve seamless mobility in such a diverse environment, vertical hand off is still a challenging problem. In many situations handover failures and unnecessary handoffs are triggered causing degradation of services, reduction in throughput and increase the blocking probability and packet loss. In this paper a new vertical handoff decision algorithm handover necessity estimation (HNE), is proposed to minimize the number of handover failure and unnecessary handover in heterogeneous wireless networks. we have proposed a multi criteria vertical handoff decision algorithm based on two parts: traveling time estimation and time threshold calculation. Our proposed methods are compared against two other methods: (a) the fixed RSS threshold based method, in which handovers between the cellular network and the WLAN are initiated when the RSS from the WLAN reaches a fixed threshold, and (b) the hysteresis based method, in which a hysteresis is introduced to prevent the ping-pong effect. Simulation results show that, this method reduced the number of handover failures and unnecessary handovers up to 80% and 70%, respectively

    Hydrodynamics in a pressurized cocurrent gas-liquid trickle-bed reactor

    Get PDF
    The influence of gas density on total external liquid hold-up, pressure drop and gas-liquid interfacial area, under trickle-flow conditions, and the transition to pulse flow have been investigated with nitrogen or helium as the gas phase up to 7.5 MPa. It is concluded that the hydrodynamics depends on the gas density and not on the reactor pressure. At higher gas densities, the operating region for trickle flow becomes larger while the gas-liquid interfacial area increases only slightly. Pressure gradient and liquid hold-up are considerably affected by gas density and correlations have been derived for these parameters
    • …
    corecore