4 research outputs found

    Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    Get PDF
    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters

    Geometric Modeling and Recognition of Elongated Regions in Images.

    Get PDF
    The goal of this research is the recovery of elongated shapes from patterns of local features extracted from images. A generic geometric model-based approach is developed based on general concepts of 2-d form and structure. This is an intermediate-level analysis that is computed from groupings and decompositions of related low-level features. Axial representations are used to describe the shapes of image objects having the property of elongatedness. Curve-fitting is shown to compute axial sequences of the points in an elongated cluster. Script-clustering is performed about a parametric smooth curve to extract elongated partitions of the data incorporating constraints of point connectivity, curve alignment, and strip boundedness. A thresholded version of the Gabriel Graph (GG) is shown to offer most of the information needed from the Minimum Spanning Tree (MST) and Delauney Triangulation (DT), while being easily computable from finite neighborhood operations. An iterative curve-fitting method, that is placed in the general framework of Random Sample Consensus (RANSAC) model-fitting, is used to extract maximal partitions. The method is developed for general parametric curve-fitting over discrete point patterns. A complete structural analysis is presented for the recovery of elongated regions from multispectral classification. A region analysis is shown to be superior to an edge-based analysis in the early stages of recognition. First, the curve-fitting method is used to recover the linear components of complex object regions. The rough locations to start and end a region delineation are then detected by decomposing extracted linear shape clusters with a circular operator. Experimental results are shown for a variety of images, with the main result being an analysis of a high-resolution aerial image of a suburban road network. Analyses of printed circuit board patterns and a LANDSAT river image are also given. The generality of the curve-fitting approach is shown by these results and by its possible applications to other described image analysis problems

    Image categorisation using parallel network constructs: an emulation of early human colour processing and context evaluation

    Get PDF
    PhD ThesisTraditional geometric scene analysis cannot attempt to address the understanding of human vision. Instead it adopts an algorithmic approach, concentrating on geometric model fitting. Human vision, however, is both quick and accurate but very little is known about how the recognition of objects is performed with such speed and efficiency. It is thought that there must be some process both for coding and storage which can account for these characteristics. In this thesis a more strict emulation of human vision, based on work derived from medical psychology and other fields, is proposed. Human beings must store perceptual information from which to make comparisons, derive structures and classify objects. It is widely thought by cognitive psychologists that some form of symbolic representation is inherent in this storage. Here a mathematical syntax is defined to perform this kind of symbolic description. The symbolic structures must be capable of manipulation and a set of operators is defined for this purpose. The early visual cortex and geniculate body are both inherently parallel in operation and simple in structure. A broadly connectionist emulation of this kind of structure is described, using independent computing elements, which can perform segmentation, re-colouring and generation of the base elements of the description syntax. Primal colour information is then collected by a second network which forms the visual topology, colouring and position information of areas in the image as well as a full description of the scene in terms of a more complex symbolic set. The idea of different visual contexts is introduced and a model is proposed for the accumulation of context rules. This model is then applied to a database of natural images.EPSRC CASE award: Neural Computer Sciences,Southampton
    corecore