13,149 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Video analysis based vehicle detection and tracking using an MCMC sampling framework

    Full text link
    This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences

    Semantic Visual Localization

    Full text link
    Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes

    Point Pair Feature based Object Detection for Random Bin Picking

    Full text link
    Point pair features are a popular representation for free form 3D object detection and pose estimation. In this paper, their performance in an industrial random bin picking context is investigated. A new method to generate representative synthetic datasets is proposed. This allows to investigate the influence of a high degree of clutter and the presence of self similar features, which are typical to our application. We provide an overview of solutions proposed in literature and discuss their strengths and weaknesses. A simple heuristic method to drastically reduce the computational complexity is introduced, which results in improved robustness, speed and accuracy compared to the naive approach

    Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd

    Full text link
    Object detection and 6D pose estimation in the crowd (scenes with multiple object instances, severe foreground occlusions and background distractors), has become an important problem in many rapidly evolving technological areas such as robotics and augmented reality. Single shot-based 6D pose estimators with manually designed features are still unable to tackle the above challenges, motivating the research towards unsupervised feature learning and next-best-view estimation. In this work, we present a complete framework for both single shot-based 6D object pose estimation and next-best-view prediction based on Hough Forests, the state of the art object pose estimator that performs classification and regression jointly. Rather than using manually designed features we a) propose an unsupervised feature learnt from depth-invariant patches using a Sparse Autoencoder and b) offer an extensive evaluation of various state of the art features. Furthermore, taking advantage of the clustering performed in the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty in other views, formulating the problem of selecting the next-best-view. To further improve pose estimation, we propose an improved joint registration and hypotheses verification module as a final refinement step to reject false detections. We provide two additional challenging datasets inspired from realistic scenarios to extensively evaluate the state of the art and our framework. One is related to domestic environments and the other depicts a bin-picking scenario mostly found in industrial settings. We show that our framework significantly outperforms state of the art both on public and on our datasets.Comment: CVPR 2016 accepted paper, project page: http://www.iis.ee.ic.ac.uk/rkouskou/6D_NBV.htm
    corecore