4,070 research outputs found

    Hypotension Risk Prediction via Sequential Contrast Patterns of ICU Blood Pressure

    Full text link
    © 2013 IEEE. Acute hypotension is a significant risk factor for in-hospital mortality at intensive care units. Prolonged hypotension can cause tissue hypoperfusion, leading to cellular dysfunction and severe injuries to multiple organs. Prompt medical interventions are thus extremely important for dealing with acute hypotensive episodes (AHE). Population level prognostic scoring systems for risk stratification of patients are suboptimal in such scenarios. However, the design of an efficient risk prediction system can significantly help in the identification of critical care patients, who are at risk of developing an AHE within a future time span. Toward this objective, a pattern mining algorithm is employed to extract informative sequential contrast patterns from hemodynamic data, for the prediction of hypotensive episodes. The hypotensive and normotensive patient groups are extracted from the MIMIC-II critical care research database, following an appropriate clinical inclusion criteria. The proposed method consists of a data preprocessing step to convert the blood pressure time series into symbolic sequences, using a symbolic aggregate approximation algorithm. Then, distinguishing subsequences are identified using the sequential contrast mining algorithm. These subsequences are used to predict the occurrence of an AHE in a future time window separated by a user-defined gap interval. Results indicate that the method performs well in terms of the prediction performance as well as in the generation of sequential patterns of clinical significance. Hence, the novelty of sequential patterns is in their usefulness as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients

    Multivariate sequential contrast pattern mining and prediction models for critical care clinical informatics

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Data mining and knowledge discovery involves efficient search and discovery of patterns in data that are able to describe the underlying complex structure and properties of the corresponding system. To be of practical use, the discovered patterns need to be novel, informative and interpretable. Large-scale unstructured biomedical databases such as electronic health records (EHRs) tend to exacerbate the problem of discovering interesting and useful patterns. Typically, patients in intensive care units (ICUs) require constant monitoring of vital signs. To this purpose, significant quantities of patient data, coupled with waveform signals are gathered from biosensors and clinical information systems. Subsequently, clinicians face an enormous challenge in the assimilation and interpretation of large volumes of unstructured, multidimensional, noisy and dynamically fluctuating patient data. The availability of de-identified ICU datasets like the MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) databases provide an opportunity to advance medical care, by benchmarking algorithms that capture subtle patterns associated with specific medical conditions. Such patterns are able to provide fresh insights into disease dynamics over long time scales. In this research, we focus on the extraction of computational physiological markers, in the form of relevant medical episodes, event sequences and distinguishing sequential patterns. These interesting patterns known as sequential contrast patterns are combined with patient clinical features to develop powerful clinical prediction models. Later, the clinical models are used to predict critical ICU events, pertaining to numerous forms of hemodynamic instabilities causing acute hypotension, multiple organ failures, and septic shock events. In the process, we employ novel sequential pattern mining methodologies for the structured analysis of large-scale ICU datasets. The reported algorithms use a discretised representation such as symbolic aggregate approximation for the analysis of physiological time series data. Thus, symbolic sequences are used to abstract physiological signals, facilitating the development of efficient sequential contrast mining algorithms to extract high risk patterns and then risk stratify patient populations, based on specific clinical inclusion criteria. Chapter 2 thoroughly reviews the pattern mining research literature relating to frequent sequential patterns, emerging and contrast patterns, and temporal patterns along with their applications in clinical informatics. In Chapter 3, we incorporate a contrast pattern mining algorithm to extract informative sequential contrast patterns from hemodynamic data, for the prediction of critical care events like Acute Hypotension Episodes (AHEs). The proposed technique extracts a set of distinguishing sequential patterns to predict the occurrence of an AHE in a future time window, following the passage of a user-defined gap interval. The method demonstrates that sequential contrast patterns are useful as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients. Chapter 4 reports a generic two stage sequential patterns based classification framework, which is used to classify critical patient events including hypotension and patient mortality, using contrast patterns. Here, extracted sequential patterns undergo transformation to construct binary valued and frequency based feature vectors for developing critical care classification models. Chapter 5 proposes a novel machine learning approach using sequential contrast patterns for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong competitive accuracy in the predictions, especially when the interactions between the multiple physiological variables are accounted for using multivariate coupled sequential models. The novelty of the approach stems from the integration of sequence-based physiological pattern markers with the sequential CHMM to learn dynamic physiological behavior as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients. All of the described methods have been tested and bench-marked using numerous real world critical care datasets from the MIMIC-II database. The results from these experiments show that multivariate sequential contrast patterns based coupled models are highly effective and are able to improve the state-of-the-art in the design of patient risk prediction systems in critical care settings

    Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns

    Full text link
    © 2016 Background and objective Critical care patient events like sepsis or septic shock in intensive care units (ICUs) are dangerous complications which can cause multiple organ failures and eventual death. Preventive prediction of such events will allow clinicians to stage effective interventions for averting these critical complications. Methods It is widely understood that physiological conditions of patients on variables such as blood pressure and heart rate are suggestive to gradual changes over a certain period of time, prior to the occurrence of a septic shock. This work investigates the performance of a novel machine learning approach for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via coupled hidden Markov models (CHMM). In particular, the patterns are extracted from three non-invasive waveform measurements: the mean arterial pressure levels, the heart rates and respiratory rates of septic shock patients from a large clinical ICU dataset called MIMIC-II. Evaluation and results For baseline estimations, SVM and HMM models on the continuous time series data for the given patients, using MAP (mean arterial pressure), HR (heart rate), and RR (respiratory rate) are employed. Single channel patterns based HMM (SCP-HMM) and multi-channel patterns based coupled HMM (MCP-HMM) are compared against baseline models using 5-fold cross validation accuracies over multiple rounds. Particularly, the results of MCP-HMM are statistically significant having a p-value of 0.0014, in comparison to baseline models. Our experiments demonstrate a strong competitive accuracy in the prediction of septic shock, especially when the interactions between the multiple variables are coupled by the learning model. Conclusions It can be concluded that the novelty of the approach, stems from the integration of sequence-based physiological pattern markers with the sequential CHMM model to learn dynamic physiological behavior, as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients

    Rating organ failure via adverse events using data mining in the intensive care unit

    Get PDF
    The main intensive care unit (ICU) goal is to avoid or reverse the organ failure process by adopting a timely intervention. Within this context, early identification of organ impairment is a key issue. The sequential organ failure assessment (SOFA) is an expert-driven score that is widely used in European ICUs to quantify organ disorder. This work proposes a complementary data-driven approach based on adverse events, defined from commonly monitored biometrics. The aim is to 8. study the impact of these events when predicting the risk of ICU organ failure.FRICEBIOMED - projecto BMH4-CT96-0817, EURICUS IIFundação para a Ciência ea Tecnologia (FCT) - projecto PTDC/EIA/72819/2006

    Aspects of risk factors, pathophysiology and outcomes in trauma

    Get PDF
    Trauma is a global health concern. Many trauma patients succumb on the scene or in the immediate phase after trauma. Patients surviving the initial phase may die at a later stage or suffer debilitating consequences in the post-resuscitation phase of trauma care in intensive care units. This thesis is focused on factors associated with outcomes and complications after trauma, as well as early recognition of these complications. Trauma patients using β-adrenergic receptor antagonists (β-blockers) at the time of injury had more comorbidities and an increased mortality compared to non-users. However, when adjusting for relevant confounders no association between pre-traumatic β-blockade and mortality survival was seen. Previous research suggesting a protective effect of β-blockers in trauma could therefore not be supported. We investigated thioredoxin (TRX), a potent endogenous antioxidant, and its associations with post-injury sepsis. TRX was elevated after an inflicted femur fracture and subsequent hemorrhage in an animal trauma model. Plasma-levels of thioredoxin was also evaluated in 83 severely injured trauma patients and were significantly higher when compared to healthy controls. This biomarker was associated with injury severity, shock on arrival and massive transfusion. Further, an association between TRX and post-injury sepsis was shown after adjustments for confounders. The new sepsis definition, sepsis-3, was evaluated and compared with the previous definition, sepsis-2, in 722 severely injured trauma patients. Fewer patients were diagnosed with sepsis when using the new sepsis-3 definition as compared with the old sepsis-2 definition. No association was seen between sepsis, regardless of definition used and overall mortality. However, after censoring patients dying on the first day, before being at risk for sepsis, sepsis-3 was associated with 30-day mortality, whereas sepsis-2 was not. The new definition was feasible and had a stronger association with mortality. Risk factors for post-injury sepsis as defined by the new sepsis-3 criteria included: age, spineand chest-injuries, shock on arrival and blood transfusion. Moreover, there was an association between blood alcohol at admission and later development of sepsis previously not described. Patients who developed post-injury sepsis had a complicated clinical course with an increased need for vasopressor treatment, mechanical ventilation and had more days with organ dysfunction. A significant association between post-injury sepsis and mortality was shown, but only after early censoring for trauma-related deaths. Using a technique for longitudinal clustering, we identified five distinct trajectories of organ dysfunction after trauma. Each one with different baseline characteristics, evolution of organ dysfunction and outcomes. These trajectories had unequal times until stabilization, indicating that some trajectories are easier to identify in an early stage. The study underlines the heterogenous course after trauma and suggests that there exist subsets of traumatically injured patients that might benefit from targeted measures

    The Surviving Sepsis Campaign: research priorities for the administration, epidemiology, scoring and identification of sepsis

    Get PDF
    Epidemiologia; Disfunció d'òrgans; SèpsiaEpidemiology; Organ dysfunction; SepsisEpidemiología; Disfunción de órganos; SepsisObjective To identify priorities for administrative, epidemiologic and diagnostic research in sepsis. Design As a follow-up to a previous consensus statement about sepsis research, members of the Surviving Sepsis Campaign Research Committee, representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine addressed six questions regarding care delivery, epidemiology, organ dysfunction, screening, identification of septic shock, and information that can predict outcomes in sepsis. Methods Six questions from the Scoring/Identification and Administration sections of the original Research Priorities publication were explored in greater detail to better examine the knowledge gaps and rationales for questions that were previously identified through a consensus process. Results The document provides a framework for priorities in research to address the following questions: (1) What is the optimal model of delivering sepsis care?; (2) What is the epidemiology of sepsis susceptibility and response to treatment?; (3) What information identifies organ dysfunction?; (4) How can we screen for sepsis in various settings?; (5) How do we identify septic shock?; and (6) What in-hospital clinical information is associated with important outcomes in patients with sepsis? Conclusions There is substantial knowledge of sepsis epidemiology and ways to identify and treat sepsis patients, but many gaps remain. Areas of uncertainty identified in this manuscript can help prioritize initiatives to improve an understanding of individual patient and demographic heterogeneity with sepsis and septic shock, biomarkers and accurate patient identification, organ dysfunction, and ways to improve sepsis care.The authors volunteered their time to producing this manuscript and no funding was used to produce it
    corecore