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1. Summary

2. Objective: The main intensive care unit (ICU) goal is to avoid or reverse the organ

3. failure process by adopting a timely intervention. Within this context, early identi-

4. fication of organ impairment is a key issue. The sequential organ failure assessment

5. (SOFA) is an expert-driven score that is widely used in European ICUs to quantify

6. organ disorder. This work proposes a complementary data-driven approach based

7. on adverse events, defined from commonly monitored biometrics. The aim is to

8. study the impact of these events when predicting the risk of ICU organ failure.

9. Materials and Methods: A large database was considered, with a total of 25215

10. daily records taken from 4425 patients and forty two European ICUs. The input

11. variables include the case mix (i.e. age, diagnosis, admission type and admission

12. from) and adverse events defined from four bedside physiologic variables (i.e. sys-

13. tolic blood pressure, heart rate, pulse oximeter oxygen saturation and urine output).

14. The output target is the organ status (i.e. normal, dysfunction or failure) of six organ

15. systems (respiratory, coagulation, hepatic, cardiovascular, neurological and renal),

16. as measured by the SOFA score. Two data mining (DM) methods were compared:

17. multinomial logistic regression (MLR) and artificial neural networks (ANNs). These

18. methods were tested in the R statistical environment, using twenty runs of a 5-fold

19. cross-validation scheme. The area under the receiver operator characteristic (ROC)

20. curve and Brier score were used as the discrimination and calibration measures.

21. Results: The best performance was obtained by the ANNs, outperforming the MLR

22. in both discrimination and calibration criteria. The ANNs obtained an average (over

23. all organs) area under the ROC curve of 64%, 69% and 74% and Brier scores of 0.18,

24. 0.16 and 0.09 for the dysfunction, normal and failure organ conditions respectively.

25. In particular, very good results were achieved when predicting renal failure (ROC
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26. curve area of 76% and Brier Score of 0.06).

27. Conclusion: Adverse events, taken from bedside monitored data, are important

28. intermediate outcomes, contributing to a timely recognition of organ dysfunction

29. and failure during ICU length of stay. The obtained results show that is possible to

30. use DM methods to get knowledge from easy obtainable data, thus opening room

31. for the development of intelligent clinical alarm monitoring.

32. Keywords: Adverse event; Artificial neural networks; Critical care; Data mining;

33. Multinomial logistic regression; Organ failure assessment.
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1 Introduction

1. Since the early 1980s clinical scores have been developed to access severity of illness

2. and organ dysfunction in the intensive care unit (ICU) setting [1]. Indeed, in the

3. context of intensive medicine, severity scores are instruments that aim primarily at

4. stratifying patients based on risk adjustment of the clinical condition. Furthermore,

5. these tools have been used to improve the quality of intensive care and guide local

6. planning of resources.

7. The majority of these scores use are static, since they use data collected only

8. on the first ICU day, such as as the acute physiology and chronic health evaluation

9. system (APACHE) [2], the simplified acute physiology score (SAPS) [3] or mortality

10. probability model (MPM) [4]. Yet, these static scores fail to recognize several factors

11. that can influence the patient outcome after the first 24 hours (e.g. the therapeutics

12. strategy and the patients’ response).

13. More recently, dynamic (or repetitive) scores have been designed, where the

14. data and scores are updated on a daily basis. The most used scores include [5]:

15. the sequential organ failure assessment (SOFA), multiple organs dysfunction score

16. (MODS) and logistic organ dysfunction (LOD). Our focus is on the SOFA score

17. which was first proposed to evaluate morbidity (degree of organ failure) [6] and

18. latter it has been shown to be related with mortality risk [7, 8].

19. The SOFA scores six organ systems (respiratory, coagulation, hepatic, cardio-

20. vascular, neurological and renal) on a scale ranging from 0 to 4, according to the

21. degree of failure. This is an expert-driven score, in the sense that it was developed

22. by a panel of experts who choose a set of variables and rules based on their personal

23. opinions [5]. The SOFA is widely used in European ICUs, nevertheless there are

24. some issues not yet solved. Firstly, for some of the variables (e.g. platelets and
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25. bilirubin), the SOFA uses the worst value obtained in the last 24 hours and it is

26. not clear how many daily times they should be measured. Also, the SOFA is a

27. classification system that does not provide a risk (i.e. probability) of the outcome

28. of interest (i.e. organ failure).

29. On the other hand, bedside monitoring of physiologic variables is universal and

30. routinely registered during patient ICU stay. Indeed, ICU physicians tend to analyze

31. these monitoring data in an empirical fashion in order to trigger an action given a

32. specific condition. The relationships within these data are complex, nonlinear and

33. not fully understood. For instance, if a severe arterial hypotension (i.e. low blood

34. pressure) arises then renal or cardiovascular failure may succeed. Yet, it is not

35. clear what should be the duration and/or severity of the hypotension to trigger the

36. latter outcomes. Thus, monitoring analysis is not standardized and mainly relies on

37. the physicians knowledge and experience to interpret them. The SOFA score uses

38. both physiological parameters (e.g. hypotension) and laboratory data (e.g platelets).

39. However, the latter ones usually depend on previous physiological impairments. For

40. example, a severe and long hypotension associated with hypoxemia can lead to

41. hepatic failure (i.e. bilirubin increase). Therefore, using only biometric data should

42. potentially allow a more adequate evaluation and early therapeutic intervention.

43. Yet, as more and more biometrics are continuously monitored (e.g. mechanical

44. ventilator, cardiovascular device), the amount of data available increases exponen-

45. tially, generating alarms that need to be interpreted. In previous work [9], we have

46. shown that out of range measurements (or adverse events) of four biometrics (i.e.

47. systolic blood pressure, heart rate, pulse oximeter oxygen saturation and urine out-

48. put) have an impact on the mortality outcome of ICU patients. Since multiple organ

49. failure is a major cause for ICU mortality [8], it is rational to access the impact of
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50. the adverse events on organ system function at an early stage.

51. One of the most promising recent developments in intensive care consists in the

52. use of artificial intelligence/data mining techniques [1, 10]. The fast growing amount

53. of data collected had led to vast and complex databases that exceeded the human

54. capability for comprehension without using computational resources. The goal of

55. data mining (DM) is to discover interesting knowledge from the raw data by using

56. automatic discovery tools [11].

57. There are several DM techniques, each one with its own purposes and advan-

58. tages. The majority of the severity scores use statistical methods such as the logistic

59. regression (LR), which is easy to interpret. Yet, such classical statistics may not be

60. suitable for the complex nonlinear relationships often found in biomedical data [1].

61. Artificial neural networks (ANNs) are connectionist models inspired by the behavior

62. of the human brain [12]. In ICUs, ANNs are gaining an increase of acceptance due

63. to advantages of nonlinear learning and high flexibility. Indeed, ANNs have been

64. applied to predict mortality and length of stay [1, 10].

65. Motivated by the results obtained in [13], a novel approach is presented in this

66. work, where the main goal is to explore the impact of the adverse events, during

67. the last 24h, on the current day organ risk condition (i.e. normal, dysfunction or

68. failure). As a secondary goal, two DM techniques (i.e. LR and ANNs) are evaluated

69. and compared. The proposed approach will be tested on a large database, which

70. includes daily records of 4425 patients taken from forty two European ICUs.

71. The paper is organized as follows. Section 2 presents the ICU clinical data, DM

72. models, feature selection approach and computational environment. Next, the re-

73. sults are analyzed (Section 3) and discussed (Section 4). Finally, closing conclusions

74. are drawn (Section 5).
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2 Materials and methods

2.1 Intensive care data

1. The database used in the present study was constructed by the authors from the

2. EURICUS II study. The EURICUS II project was conducted from November/98 to

3. August/99 and encompassed forty two ICUs from nine European Union countries

4. (see [14] for more details).

5. In each participating ICU, monitoring data was collected and registered manu-

6. ally. According to the universal monitoring practice, in every hour, all ICU patient

7. biometrics were recorded in a standardized sheet form by the nursing staff. Also,

8. the adverse events were assigned in a specific sheet at a hourly basis. The regis-

9. tered data was submitted to a double check, using both local (i.e. ICU) and central

10. levels (i.e. Health Services Research Unit of the Groningen University Hospital, the

11. Netherlands). The latter unit was used to gather the full database.

12. Two main criteria were used for the event definition. First, its occurrence and

13. duration should be registered by physiological changes (e.g. shock and not pneu-

14. monia). Second, the related physiological variables should be routinely registered

15. at regular intervals. Four biometrics filled these requirements: the systolic blood

16. pressure (BP), the heart rate (HR), the pulse oximeter oxygen saturation (SpO2)

17. and the hourly urine output (UR). The normal ranges for these parameters (see

18. Table 1) were set by a panel of seven experts. An alarm is triggered if there is an

19. out of range value during a given time, defining an event. It should be noted that

20. the minimum time period was set to 10min to minimize the number of false alarms

21. triggered by technical problems (e.g. disconnected sensor). For each biometric, the

22. daily number of events were stored. When a longer event occurs or a more extreme
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23. physiologic measurement is found, it is called a critical event. For this last case, the

24. database includes daily entries with the number of critical events and its duration.

25. Table 2 shows a synopsis of the ICU variables considered. The first four attributes

26. (the case mix) are static, being collected during the patient’s admission. The next

27. twelve variables are related to the adverse events.

28. At a daily basis, the SOFA score was computed for six organ systems (respiratory,

29. coagulation, hepatic, cardiovascular, neurological and renal) by collecting the raw

30. data presented in Table 3 during the last 24h. The SOFA values range from 0 to 4,

31. with the following interpretation: 0 – normal; 1 or 2 – dysfunction; 3 or 4 – failure.

32. *** insert Table 1 around here ***

33. *** insert Table 2 around here ***

34. The exclusion criteria fulfilled the SAPSII definitions [3], i.e. with age lower than

35. eighteen years old, burned or with recent coronary bypass surgery. Also, the last day

36. of stay data entries were discarded, since the SOFA score is only defined for a 24h

37. time frame and several of these patients were discharged earlier. The final database

38. contains a total of 25215 daily records taken from 4425 critically ill patients.

39. Figure 1 plots the histograms of the SOFA values for each organ (computed over

40. the whole database). The figure shows the prevalence of each condition, denoting

41. skewed distributions, i.e. the number of normal conditions is higher than the failure

42. ones. During the preprocessing stage, each SOFA variable was transformed into a

43. three-class output, one for each organ condition: normal, dysfunction and failure.

44. *** insert Table 3 around here ***

45. *** insert Figure 1 around here ***

46. For demonstrative purposes, Figure 2 presents the boxplots of the time of critical

47. events associated to each renal status. In the boxplots, it is difficult to find a clear
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48. pattern that relates adverse events to the organ condition, suggesting that this is a

49. non trivial task.

*** insert Figure 2 around here ***

2.2 Data mining methods

1. Data mining (DM) is an emerging area that lies at the intersection of statistics,

2. artificial intelligence and data management. DM tasks can be classified into two

3. categories [11]: descriptive, where the intention is to characterize the properties of

4. the data; and predictive, to forecast the unknown value of an output target given

5. known values of other variables (the inputs). Predictive tasks can be further divided

6. into classification, when the output domain is discrete, and regression, when the

7. dependent variable is continuous.

8. The multinomial logistic regression (MLR) is the extension of the common lo-

9. gistic method to multi-class tasks. Let cj ∈ C be the condition j and C the set of

10. all possible classes, then the respective estimated probability (p̂j) is given by [15]:

p̂j = exp(ηjx)∑#C

k=1
exp(ηkx)

ηj(x) =
∑I

i=1 βj,ixi

(1)

11. where βj,0, . . . , βj,I denotes the parameters of the model, and x1, . . . , xI the depen-

12. dent variables. This model requires that ηk(x) ≡ 0 for one ck ∈ C (the baseline

13. group) and this assures that
∑#C

j=1 p̂j = 1. It should be noted that the selection of

14. the baseline class (ck) does not affect the MLR performance.

15. The multilayer perceptron is a popular artificial neural network (ANN), where

16. processing neurons are grouped into layers and connected by weighted links [12].

17. The ANN is activated by feeding the input layer with the input variables and then
9



18. propagating the activations in a feedforward fashion, via the weighted connections,

19. through the entire network.

20. A fully connected network, with one hidden layer of H nodes, will be adopted in

21. this work. For multi-class data, the ANN outputs can be interpreted as probabilities

22. if the logistic function is applied to the hidden neurons and the linear function is

23. used at the #C output nodes. Then, the final ANN probability estimate for the

24. class j is given by [15]:

p̂j = exp(yj)∑#C

k=1
exp(yk)

(softmax function)

yi = wi,0 +
∑I+H

m=I+1 f(
∑I

n=1 xnwm,n + wm,0)wi,n

(2)

25. where yi is the output of the network for the node i; f = 1
1+exp(−x) is the logistic

26. function; I represents the number of input neurons; wd,s the weight of the connection

27. between nodes s and d; and wd,0 is a constant called bias. The first equation, known

28. as the softmax function, warranties that p̂j ∈ [0, 1] and
∑#C

j=1 p̂j = 1. The simplest

29. ANN (with H = 0) is equivalent to the MLR model and more complex discrimination

30. functions can be learned with a higher number of hidden neurons (Figure 3). Yet, a

31. high value of H will induce generalization loss (i.e. overfitting).

32. The logistic model is easier to interpret than ANNs. Nevertheless, it is possible

33. to gather knowledge about what the ANN has learned by measuring the relative

34. importance of the inputs (Section 2.3) and extracting rules. The latter issue is still

35. an active research domain [16]. In this work, the pedagogical technique presented in

36. [9] will be adopted, where the direct relationships between the inputs and outputs

37. of the ANN are extracted by using a decision tree [17].

*** insert Figure 3 around here ***
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2.3 Sensitivity analysis and feature selection

1. The sensitivity analysis [18] is a simple procedure that analyses the model responses

2. when the inputs are changed. Although originally proposed for ANNs, this sensitiv-

3. ity method can also be applied to other DM models, such as logistic regression or

4. support vector machines [19]. Let p̂i
cj

denote the probability of condition cj when all

5. input variables are hold at their average values. The exception is the attribute xa,

6. which varies through its range with i ∈ {1, . . . , L} levels. In this work, we will adopt

7. the average gradient (Ga) as the sensitivity measure. For a multi-class domain, it is

8. given by:

Ga =
∑#C

j=1

∑L−1

i=1
|p̂i+1

cj
−p̂i

cj
|

#C(L−1)

Ra = Va/
∑A

k=1 Gk

(3)

9. where A denotes the number of input attributes and Ra the relative importance of at-

10. tribute a (in %). In the experiments, L will be set to the number of discrete values for

11. the nominal attributes and 6 for the continuous inputs (xa ∈ {−1.0,−0.6, . . . , 1.0}).

12. Feature selection methods [20] are useful to discard irrelevant inputs, leading to

13. simpler models that are easier to interpret and often presenting higher predictive

14. accuracies. A covariance analysis was applied to the attributes of Table 2, revealing

15. weak relationships except for the variables related to the same biometric (e.g. the

16. correlation between NCRBP and TCRBP is 0.7). This suggests that the number

17. of irrelevant features is low, although the covariance procedure is only capable of

18. measuring linear dependences. Therefore, a backward variable selection method will

19. be applied to both the MLR and ANN models.

20. The backward search will be guided by the sensitivity measure [18], allowing

21. a reduction of the computational effort by a factor of A when compared to the
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22. standard backward selection algorithm [20]. All inputs are used at the beginning

23. and the data is randomly split into training (66.6%) and validation (33.3%) sets. In

24. each iteration, the former set is used to fit the model and get the importance values

25. (Ra), while the validation data is used to access the generalization error. Then, the

26. least relevant feature (i.e. with the lowest Ra) is discarded. The process is repeated

27. until there is no error improvement during E iterations (in this work set to E = 3)

28. or after A cycles. Finally, the lowest validation error is the criterion for selecting

29. the best set of variables.

2.4 Evaluation

1. The receiver operating characteristic (ROC) curve shows the performance of a two

2. class classifier across the range of possible threshold (D) values, plotting one minus

3. the specificity (x-axis) versus the sensitivity (y-axis) [21]. The overall accuracy is

4. given by the area under the curve (AUC =
∫ 1
0 ROCdD), measuring the degree of

5. discrimination that can be obtained from a given model. In intensive care, the

6. AUC is the most popular metric for prognostic scores [10], where the ideal method

7. should present an AUC of 1.0, while an AUC of 0.5 denotes a random classifier. In

8. the medical literature, values of AUC above 0.7 are considered acceptable [1, 10].

9. Multi-class problems can be handled by producing one ROC for each class [21]. The

10. ROC graph for the class reference ci is generated by considering the positive (ci)

11. and negative (C \ ci) labels. The global AUC can then be computed by summing

12. the AUCs weighted by the prevalence of ci in the data, using [22]:

AUCGlobal =
∑

ci∈C AUC(ci) · prev(ci)

prev(ci) = #ci/N

(4)

13. where AUC(ci) denotes the AUC for class reference ci, #ci the number of patients
12



14. with condition ci and N the total number of patients.

15. Another important criterion is the calibration, which measures how close the

16. predictions (p̂) are to the true probabilities (p) of an event. In this work, calibration

17. will be assessed using the widely used Brier score (∈ [0, 1]), which is defined for a

18. two-class scenario as [23]:

Brier(cj) =
1
N

N∑
i=1

(pi
j − p̂i

j)
2 (5)

19. where pi
j and p̂i

j denote the actual cj outcome (0 or 1) for the patient i and respective

20. probability estimation. Inspired in the multi-class AUC metric, the global Brier score

21. is defined as:

BrierGlobal =
∑
ci∈C

Brier(ci) · prev(ci) (6)

22. The lower the value, the better is the calibration, with the perfect model presenting

23. a Brier score of 0.

24. Calibration can also be visualized with the regression error characteristic (REC)

25. curve [24], which is used to compare regression models and it plots the error tolerance

26. (x-axis), given in terms of the absolute deviation, versus the percentage of points

27. predicted within the tolerance (y-axis). Similarly to the ROC concept, the ideal

28. regressor should present a REC area of 1.0.

29. The K−fold cross-validation [25] is a commonly used method to estimate gener-

30. alization performances. In each run, the data is divided into K partitions of equal

31. size. Sequentially, one different subset is tested and the remaining data is used for

32. fitting the model. Under this scheme, all data is used for testing, although K differ-

33. ent models are fitted. This work will use 20 runs of a 5-fold, in a total of 20×5=100

34. experiments for each tested configuration. Statistical significance for the AUC and
13



35. Brier values will be given by using a Mann-Whitney non-parametric test at the 95%

36. confidence level. According to [26], this test is equivalent to the test proposed by

37. DeLong et al. [27] to compare ROC areas.

2.5 Computational environment

1. All experiments were conducted using the RMiner [28], an open source library

2. for the R statistical environment [29] that facilitates the use of DM techniques in

3. classification and regression tasks. In particular, the RMiner uses the multinomial

4. and nnet functions of the nnet package to implement the MLR and ANN models

5. [15]. Also, the efficient Algorithms 1 and 2 presented in [21] are used to compute

6. the ROC curves and AUC values.

7. In this work, we will adopt the default suggestions of the nnet developers [15]

8. to adjust the DM techniques. The nominal inputs were encoded into 1-of-(#C − 1)

9. binary variables. As an example, admtype from Table 2 is transformed with:

10. 1 → (0 0); 2 → (1 0); and 3 → (0 1). For the ANNs, the continuous inputs

11. were scaled into a zero mean and one standard deviation range. Both the MLR and

12. ANN models were trained using 100 iterations (known as epochs) of the efficient

13. BFGS algorithm [30], from the family of quasi-Newton methods. Within a given

14. epoch, the whole training dataset is presented to the ANN, in order to compute an

15. error function that is used to adjust the neural weights. For multi-class data, the

16. algorithm is set to maximize the likelihood, which is equivalent to minimizing the

17. cost error function (ξ) given by:

ξ =
N∑

i=1

#C∑
j=1

[pi
jln

pi
j

p̂i
j

+ (1− pi
j)ln

1− pi
j

1− p̂i
j

] (7)

18. In contrast with the MLR, the adopted ANN model requires the definition of one
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19. hyperparameter, the number of hidden nodes (H). To set this value, the RMiner

20. provides a grid search facility, where H ∈ {HL,HL + g,HL + 2g, . . . ,HU}, HL and

21. HU denote the lower and upper bounds; and g is a constant value. To prevent the

22. overfitting phenomenon and also to reduce the search time, we will adopt a small

23. range (i.e. H ∈ {2, 4, 6, 8, 10}). Also, and due to computational limitations, H will

24. be fixed to the median of the grid range during the feature selection phase [19].

25. Then, the grid search is applied, using a random 2
3/1

3 data split for the training and

26. validation sets. The best H will be the one that provides the lowest validation error.

27. After selecting the best attributes and H value (in case of ANN), the final model is

28. retrained with all available data.

3 Results

3.1 Predictive performance

1. A total of 6 (organs) × 2 (methods) = 12 different configurations were tested. The

2. median number of the selected hidden nodes was 8 for all organs except the neuro-

3. logical, where the median was 10. For tested configurations, the feature selection

4. algorithm only discarded an average of 2 attributes. In general, the few removed

5. variables are related to the adverse events. Nevertheless, all four biometrics are

6. used in all models (e.g. NCRUR may be deleted but TCRUR is not). These results

7. confirm the covariance analysis performed on Section 2.3.

8. *** insert Table 4 around here ***

9. The discrimination results evaluated over the test sets are summarized in Table

10. 4. The best results are obtained by the ANNs, which outperform the MLR with

11. an average (last row) margin of 2.2, 1.8 and 2.8 percentage points for the normal,

15



12. dysfunction and failure status respectively. The AUC differences (ANN vs MLR)

13. are significant (p-value< 0.05) in all cases. When analyzing the organ condition

14. discrimination, the dysfunction condition is more difficult to predict. In effect, none

15. of the presented models has acceptable values (AUC higher than 70%). The normal

16. status shows a higher discrimination, with 1 MLR and 3 ANN acceptable models.

17. Finally, the failure condition presents the most accurate predictions. The MLR

18. models are acceptable for the coagulation, hepatic, neurological and renal systems,

19. while the ANNs obtain good performances for all organs except respiratory. In

20. particular, the hepatic, neurological and renal AUCs are above 75%. When weighted

21. by the condition prevalence, the global AUC reveals three acceptable models (ANN

22. for the cardiovascular, neurological and renal systems). All ROC curves are plotted

23. in Figure 4. In the graphs, the ANN curves are above the MLR ones, confirming

24. the superiority of the discrimination power of the ANNs.

25. The calibration results are presented in Table 5. The global Brier scores are

26. particularly good for both DM methods on three organs (coagulation, hepatic and

27. renal). Nonetheless, the ANN outperforms the logistic model in all cases except

28. the hepatic dysfunction and coagulation failure conditions (the differences are sig-

29. nificant, with p-value< 0.05). Regarding the organ status, the best calibration is

30. obtained for the failure state (average Brier score for all organs of 0.093), followed

31. by the dysfunction (0.156) and normal (0.181) conditions. These results are com-

32. plemented by a REC analysis (Figure 5). High quality curves (REC close to 1) were

33. achieved for the prediction of the coagulation, hepatic and renal failures, precisely

34. where lowest Brier scores were obtained. Although MLR and ANN curves are close,

35. latter ones present a higher area. Also, more patient conditions are correctly pre-

36. dicted for low admitted errors. For instance, if a 0.1 tolerance is accepted (e.g. a

16



37. 0.9 output is interpreted as positive), then 27.7% of the coagulation failure (posi-

38. tive or negative) examples are correctly estimated for the ANN method. This value

39. decreases to 18% for the MLR.

3.2 Descriptive knowledge

1. This section will provide explanatory knowledge that can be useful for the intensive

2. care domain. The goal is not to infer about the predictive capabilities of each model,

3. as measured in the Section 3.1, but to give a simple description that summarizes the

4. DM models. Thus, the whole dataset will be used in the descriptive experiments.

5. Tables 6 and 7 present the relevance (in percentage) of each input variable for

6. the two DM methods. For both MLR and ANN, the four biometrics are important

7. for all organs, although the relative impact may differ. For the logistic model,

8. the adverse events overall influence ranges from 52.5% (cardiovascular) to 69.8%

9. (hepatic), while the interval varies from 38.6% (coagulation) to 50.3% (respiration)

10. for the ANN. Regarding the MLR model, the most important biometrics are on

11. average the oxygen saturation and heart rate. The oxygen alarms are also the most

12. relevant for the ANNs, followed by the blood pressure.

13. For demonstrative purposes, more detail will be given to the renal models,

14. which obtained satisfactory discrimination and calibration values. Table 8 shows

15. the βi, j MLR coefficients (the model was fitted with all available data). The R en-

16. vironment automatically selected the dysfunction class as the baseline group, thus

17. p̂dysfunction = 1− (p̂failure + p̂normal) and no coefficients are used by this condition.

18. These coefficients should not be read separately, since organ function condition re-

19. sults from the impact of complex interactions between all physiological metrics. For

20. instance, regarding the urine output, while the values suggest that renal failure is

17



21. negatively influenced by the number of events (NUR), it is also positively influenced

22. by long lasting critical events (TCRUR).

23. In this example, the feature selection algorithm discarded one variable (NCRUR)

24. for the MLR, while the final neural model did not include 3 attributes (NCRSpO2,

25. TCRBP, TCRHR). The latter contains 19 input, 8 hidden and 3 output neurons,

26. with a total of 187 weights. Instead of presenting all these weights, and to simplify

27. the analysis, a decision tree will be used to describe the ANN behavior [9]. The

28. tree was fit using the default values of the rpart R library [15] and a training set

29. composed by the ANN inputs and outputs. The latter ones were preprocessed into

30. the condition related to the highest ANN probability. The obtained model (Figure

31. 6) managed to mimic the ANN behavior with a low classification error (3.4%) and it

32. includes the two most relevant biometrics from Table 7 (UR ad HR). As an example,

33. the next two rules for renal failure prediction can be extracted from the tree:

IF TCRUR ≥ 13.8 AND NUR ≥ 15 THEN failure

IF TCRUR < 13.8 AND admfrom /∈ {5, 6}

AND NCRHR = 0 AND SAPSII ≥ 93 THEN failure

(8)

4 Discussion

1. The assessment of the degree of organ failure is crucial in intensive care units (ICUs),

2. since one of the main ICU tasks is to avoid or reverse organ failure process by an

3. early identification of patients at risk and adopting the respective therapy. Indeed,

4. several expert-driven scores have been developed to quantify organ disorder, such as

5. the sequential organ failure assessment (SOFA), which is widely used in Europe.

6. This study proposes a novel data-driven bedside monitoring approach, where

7. the major goal is to study the impact of adverse events to daily predict the organ
18



8. condition risk of six systems (i.e. respiratory, coagulation, hepatic, cardiovascular,

9. neurological and renal). The assumption behind our approach is to use only data

10. collected in the last 24 hours of the ICU length of stay. A large database was

11. considered using bedside monitoring data. The input variables included the case

12. mix (i.e. admission type/origin, SAPSII index and the age) and adverse events.

13. The latter were measured as the out of range values of four commonly monitored

14. physiological variables (e.g. heart rate).

15. The second goal was also to compare two data mining (DM) techniques, namely

16. multinomial logistic regression (MLR) and artificial neural networks (ANNs). The

17. experiments were conducted in the R statistical tool [29] using discrimination and

18. calibration criteria. As argued in [31], it is difficult to compare DM methods in

19. a fair way, with data analysts tending to favor models that they know better. To

20. reduce the bias towards a given model, we adopted the default suggestions of the

21. nnet package [15] for the R environment. The only exception is the number of

22. hidden neurons, which was set using a simple grid search procedure. The default

23. settings are more likely to be used by common (non expert) users, thus this seems

24. a reasonable assumption for the comparison.

25. The results show that the ANNs are the best learning models, outperforming

26. the MLR for both criteria. The average (over all organs) obtained ANN ROC area

27. is 64%, 69% and 74% for the dysfunction, normal and failure conditions, while the

28. respective Brier scores were 0.18, 0.16 and 0.09. In particular, good ANN discrimi-

29. nation results (ROC area higher than 75%) were achieved for three systems (hepatic,

30. neurological and renal). Also, high calibrated models (Brier score below 0.1) were

31. attained for the coagulation, hepatic and renal organs. These results can be ex-

32. plained by the fact that the SOFA score is more reliable and robust when classifying

19



33. the clinical condition of these organs. For instance, the renal function condition is

34. classified using well defined and objective intervals, rather than respiratory that can

35. be influenced by an inadequate FIO2 setting.

36. The risk estimates for the normal and dysfunction conditions provided less accu-

37. racies. This may be explained by several factors. Normality is at one the extremes,

38. with the dysfunction being an in-between state. Hence, in principle the normal con-

39. dition should be easier to predict. However, as shown in Figure 2 there are several

40. outliers (e.g. rare or extreme events) in the data. Since ICU patients are critically

41. ill, the normal function label describes a clinical condition where the severity is not

42. enough to define a failure or dysfunction but does not exclude a disease process.

43. Furthermore, organ failure development is a continuous process where the borders

44. for each stage are necessarily fuzzy and not well known.

45. Regarding the interpretability issue, the MLR is easier to understand than the

46. neural model. Yet, under the adopted experimental settings, the latter presented

47. the best results and it is possible to extract knowledge from trained ANNs, given in

48. terms of input variable importance or human friendly rules (Section 3.2).

49. The major outcome of this work is that we show that adverse events, taken

50. from bedside monitored data, have a relevant impact on the degree of organ failure.

51. Although this finding was expected, our main contribution is to quantify such impact

52. (i.e. discrimination, calibration and input relevance), allowing to get knowledge from

53. easy obtainable data. Rather than an empirical subjective analysis (e.g. performed

54. by the individual physician), the obtained results strength the pursuit of a systematic

55. intelligent data-driven approach to monitor ICU patients.
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4.1 Related work

1. In the past, the majority of studies using data mining (DM) methods in ICU envi-

2. ronments were focused in mortality assessment [10], while the application of DM to

3. organ failure is rather scarce. Matis et al. [32] used 15 variables (e.g. age, bilirubin,

4. creatinine) to train an ANN in order to predict liver failure after transplantation.

5. The obtained accuracy ranged from 70% (using data prior to the operation) to 88%

6. (5 days after the transplantation). An ANN was also successfully used to access the

7. cardiac failure of 58 patients, using 20 variables (e.g. heart rate, blood pressure)

8. [33]. In previous work [13], ANNs have outperformed decision trees for organ fail-

9. ure prediction, obtaining an overall classification accuracy of 70%. More recently, a

10. kernel logistic regression was used by Pearcea et al. [34] in order to predict acute

11. pancreatitis. The model included 8 variables (e.g. age, respiratory rate, creatinine)

12. and outperformed a daily updated APACHE II prognostic model.

13. This work is quite distinct from the previous studies, since we use adverse events

14. based on daily bedside monitored data. Moreover, we model the degree of organ

15. failure of six organ systems. This study largely extends our previous work [13] by

16. predicting three conditions (i.e. normal, dysfunction and failure), testing also a

17. logistic model in the experiments and evaluating the results under calibration and

18. discrimination analysis.

19. Regarding the use of daily SOFA scores by artificial intelligence techniques, most

20. of the literature is also focused on mortality prediction. For instance, Kayaalp et. al

21. [35] adapted bayesian networks under a time series approach, where 23 variables (e.g.

22. urine output, bilirubin, SOFA scores for five organ systems) were used to predict ICU

23. mortality. In previous work [9], we tested the use of ANN and adverse alarms of four

24. biometrics, outperforming the SAPSII logistic model for mortality assessment. Toma
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25. et. al [23] followed a distinct dynamic approach, where organ failure scores were

26. used to discover patterns of sequences (called episodes). Several logistic regression

27. models, built for each of the first five days, were tested for mortality prognosis and

28. the best results were attained by the models that included the episodes.

29. In contrast with the above studies, this work models the degree of organ impair-

30. ment. Since multiple organ failure is the main cause of ICU mortality, there is a

31. need to identify the degree of ICU patient illness in a continuous form, in order to

32. apply a timely intervention. In fact, this was the rationale behind the SOFA score

33. development [7]. Our study follows a similar and complementary approach, adding

34. a risk estimate (i.e. probability) of the organ condition to bedside alarms. The

35. proposed work could be applied using precise, low cost and real-time variables, by

36. using a real-time computerized data acquisition system from bedside monitors and

37. applying quality procedures (e.g. data validated by the ICU staff) [36]. Moreover,

38. such system could give more updated predictions (e.g. every 6 or 12h).

4.2 Future work

1. To our knowledge this is the first attempt to related adverse events with organ

2. failure and further exploratory research is needed. For instance, outlier detection

3. techniques [37] could be used to discard rare or extreme cases. This is expected to

4. improve the results, specially for the normal and dysfunction conditions. Moreover,

5. while the adverse events have an impact on organ failure (Section 3.2) there are

6. complex dependencies between the biometrics. Therefore, a temporal analysis, such

7. as presented in [23, 35]. where the evolution of each organ during the patient length

8. of stay is modeled, is a very promising direction. In effect, some of the limitations of

9. this work, namely the manual collection of the data and the lack of temporal sequence
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10. analysis, could be answered by testing our approach in a real environment, using real-

11. time data. In effect, we intend to explore all these possibilities in the INTCare pilot

12. project [36], where a friendly decision support system is currently being developed

13. at the ICU of the Hospital Geral de Santo António, Oporto, Portugal.

5 Conclusion

1. A data-driven analysis was performed on a large ICU database, with an emphasis

2. on the use of daily adverse events, taken from four commonly monitored biomet-

3. rics. Two data mining methods, artificial neural networks and multinomial logistic

4. regression, were tested to predict the degree of failure regarding six organ systems.

5. The former method provided better discrimination and calibration results, with av-

6. erage ROC curve areas of 74%, 64% and 69% and Brier scores of 0.09, 0.18 and

7. 0.16 for the failure, dysfunction and normal conditions respectively. The obtained

8. results show that adverse events are important intermediate outcomes, reflecting

9. the patient condition and ICU way of work. Hence, this work contributes to an

10. improvement of the process of critical ill patient care, by means of generating more

11. intelligent bedside intensive care alarms.
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[36] P. Gago, M.F. Santos, Á. Silva, P. Cortez, J. Neves, and L. Gomes. INTCare: A

Knowledge Discovery based Intelligent Decision Support System for Intensive

Care Medicine. Journal of Decision Systems, 14(3):241–259, 2005.

[37] V. Hodge and J. Austin. A Survey of Outlier Detection Methodologies. Artificial

Intelligence Review, 22(2):85–126, 2004.

29



Table 1: The protocol for the out of range physiologic measurements

BP SpO2 HR UR

Normal Range 90− 180mmHg ≥ 90% 60− 120bpm ≥ 30ml/h

Eventa ≥ 10min. ≥ 10min. ≥ 10min. ≥ 1h

Eventb ≥ 10min. in 30min. ≥ 10min. in 30min. ≥ 10min. in 30min. –

Critical Eventa ≥ 1h ≥ 1h ≥ 1h ≥ 2h

Critical Eventb ≥ 1h in 2h ≥ 1h in 2h ≥ 1h in 2h –

Critical Eventc < 60mmHg < 80% < 30bpm ∨ > 180bpm ≤ 10ml/h

BP - blood pressure, HR - heart rate, SpO2 - pulse oximeter oxygen saturation, UR

- urine output.

a Defined when continuously out of range.

b Defined when intermittently out of range.

c Defined anytime.
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Table 2: The intensive care variables

Attribute Description Min Max Meana

admtype admission type Categoricalb

admfrom admission origin Categoricalc

SAPS II SAPS II score 0 118 40.9±16.4

age age of the patient 18 100 62.5±18.2

NBP daily number of blood pressure events 0 24 0.8±1.9

NHR daily number of heart rate events 0 24 0.6±2.3

NSpO2 daily number of oxygen events 0 24 0.4±1.8

NUR daily number of urine events 0 24 1.0±3.0

NCRBP daily number of critical blood pressure events 0 10 0.3±0.7

NCRHR daily number of critical heart rate events 0 10 0.2±0.6

NCRSpO2 daily number of critical oxygen events 0 6 0.1±0.4

NCRUR daily number of critical urine events 0 7 0.4±0.8

TCRBP time of critical blood pressure events (% of 24h) 0 24.7 0.8±2.7

TCRHR time of critical heart rate events (% of 24h) 0 24.7 1.0±3.4

TCRSpO2 time of critical oxygen events (% of 24h) 0 24.7 0.4±2.1

TCRUR time of critical urine events (% of 24h) 0 24.7 1.6±4.5

a mean and sample standard deviation.

b 1 - unscheduled surgery, 2 - scheduled surgery, 3 - medical.

c 1 - operating theatre, 2 - recovery room, 3 - emergency room, 4 - general ward,

5 - other ICU, 6 - other hospital, 7 - other sources.
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Table 3: The SOFA variables and scoring rules (adapted from [7])

Organ/ SOFA Score

Variable 0 1 2 3 4

respiratory

PaO2/FIO2 (mmHg) >400 ≤400 ≤ 300 ≤ 200a ≤ 100a

coagulation

platelets×103/mm3 >150 ≤150 ≤ 100 ≤ 50 ≤ 20

hepatic

bilirubin (µmol/l) >20 <32 < 101 < 204 > 204

cardiovascular

hypotensionb None MAP< 70 dop.≤5 or dop.<5 or dop.>15 or

mmHg dobutamine epi.≤0.1 or epi. > 0.1 or

(any dose) norepi.≤0.1 norepi.>0.1

neurological

Glasgow coma score 15 13-14 10-12 6-9 <6

renal

creatinine (µmol/l) <110 ≥110 ≥ 171 ≥ 300 ≥ 440

or urine output <500mL/day <200ml/day

PaO2 - arterial oxygen tension, FIO2 - fractional inspired oxygen.

MAP - mean arterial pressure, dop. - dopamine, epi. - epinephrine,

norepi. - norepinephrine.

a – with respiratory support.

b – agents administered for at least 1 hour (doses in µg/kg per min).
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Table 4: The discrimination power (mean AUC value of the 20 runs, in percentage)

for each organ, condition and method (values of AUC>70% are in bold)

Normal Dysfunction Failure Global

Organ MLR ANN MLR ANN MLR ANN MLR ANN

respiratory 67.2 69.5 59.2 61.0 65.6 68.9 63.6 66.0

coagulation 63.6 65.5 60.1 62.0 72.6 73.9 63.3 65.1

hepatic 64.7 66.7 62.5 64.2 72.6 76.0 64.6 66.6

cardiovascular 67.9 71.2 63.8 65.6 67.3 71.0 67.1 70.2

neurological 70.0 72.1 58.8 61.2 74.7 76.7 68.8 70.9

renal 69.4 70.7 66.0 66.8 73.5 76.1 69.1 70.4

Average 67.1 69.3 61.7 63.5 71.0 73.8 66.1 68.2



Table 5: The calibration values (mean Brier score of the 20 runs) for each organ,

condition and method (values in bold denote statistical significance when compared

with MLR)

Normal Dysfunction Failure Global

Organ MLR ANN MLR ANN MLR ANN MLR ANN

respiratory 0.213 0.204 0.233 0.230 0.171 0.166 0.211 0.205

coagulation 0.173 0.171 0.155 0.154 0.038 0.038 0.134 0.133

hepatic 0.132 0.130 0.116 0.116 0.026 0.025 0.101 0.100

cardiovascular 0.205 0.197 0.132 0.130 0.138 0.133 0.160 0.155

neurological 0.208 0.202 0.153 0.151 0.136 0.132 0.169 0.165

renal 0.182 0.179 0.155 0.155 0.065 0.063 0.144 0.142

Average 0.185 0.181 0.157 0.156 0.096 0.093 0.153 0.150
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Table 6: The relative importance of the input variables for the multinomial logistic

regression (Ra values, in percentage).

Organ admtype admfrom SAPS II age BP? HR? SpO2
? UR?

respiratory 17.7 4.6 14.1 6.3 12.5 6.8 34.4 3.6

coagulation 16.5 9.3 12.5 6.1 15.0 9.1 20.9 10.6

hepatic 8.0 11.6 5.9 4.7 8.2 37.4 10.1 14.1

cardiovascular 2.3 16.0 22.6 6.6 11.2 19.9 8.3 13.1

neurological 4.1 14.9 22.7 4.8 10.5 20.5 19.0 3.5

renal 5.9 4.3 16.6 10.1 20.7 17.0 11.9 13.5

Average 9.1 10.1 15.7 6.5 13.0 18.5 17.4 9.7

? – All attributes related to the variable where summed (number of events, critical

events and the time).
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Table 7: The relative importance of the input variables for the artificial neural

networks (Ra values, in percentage).

Organ admtype admfrom SAPS II age BP? HR? SpO2
? UR?

respiratory 16.8 7.8 15.1 10.0 19.9 8.1 17.1 5.2

coagulation 30.9 10.8 12.7 7.0 7.5 2.6 18.1 10.4

hepatic 23.1 7.8 12.1 10.8 9.1 5.1 17.0 15.0

cardiovascular 14.1 17.3 16.5 12.8 9.8 9.6 13.4 6.5

neurological 31.2 10.2 15.6 7.5 17.3 3.5 10.4 4.3

renal 2.3 13.6 26.6 9.9 5.1 6.4 19.8 16.3

Average 19.7 11.3 16.4 9.7 11.4 5.9 16.0 9.6

? – All attributes related to the variable where summed (number of events, critical

events and the time).
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Table 8: The multinomial logistic coefficients for the renal system.

Condition βi, j coefficients

failure

−0.32− 0.50admtype2 + 0.10admtype3 + 0.14admfrom2 + 0.11admfrom3

+0.13admfrom4 + 0.51admfrom5 + 0.03admfrom6 − 0.04admfrom7

+0.01SAPSII − 0.02age− 0.05NBP − 0.05NCRBP − 0.01NHR

−0.17NCRHR− 0.03NSpO2 + 0.09NCRSpO2 − 0.03NUR

+0.03TCRBP − 0.03TCRHR− 0.06TCRSpO2 + 0.12TCRUR

normal

3.56− 0.20admtype2 − 0.05admtype3 − 0.11admfrom2 + 0.15admfrom3

+0.15admfrom4 − 0.05admfrom5 + 0.18admfrom6 + 0.55admfrom7

−0.03SAPSII − 0.02age− 0.04NBP − 0.13NCRBP − 0.01NHR

−0.12NCRHR + 0.04NSpO2 − 0.15NCRSpO2 + 0.06NUR

+0.01TCRBP − 0.02TCRHR− 0.01TCRSpO2 − 0.07TCRUR

Binary variables are denoted by Vi, denoting the i-th categorical value of variable V .
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List of figure captions:

Figure 1. The organ condition prevalence during the ICU length of stay (x-axis

denotes the daily SOFA value and the y-axis the frequency of the x value within the

whole dataset).

Figure 2. Boxplots of the time of critical events for each renal condition. Each box

is delimited by first (bottom) and third (top) quartiles. Mean values are represented

by black diamonds and outliers by open circles. The latter were defined if outside

1.5× the interquartile range of the box.

Figure 3. Example of a multinomial logistic regression (left) and artificil neural

network with 2 hidden nodes (right).

Figure 4. The receiver operating characteristic curves for each organ and condi-

tion (artificial neural network – solid line, multinomial logistic regression – dashed,

random – gray line).

Figure 5. The regression error curves for each organ and condition (artificial neural

network – solid line, multinomial logistic regression – dashed).

Figure 6. The extracted rules given in terms of a decision tree for the renal system.
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Normal Dysfunction Failure
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