6 research outputs found

    Context guided belief propagation for remote sensing image classification.

    Get PDF
    We propose a context guided belief propagation (BP) algorithm to perform high spatial resolution multispectral imagery (HSRMI) classification efficiently utilizing superpixel representation. One important characteristic of HSRMI is that different land cover objects possess a similar spectral property. This property is exploited to speed up the standard BP (SBP) in the classification process. Specifically, we leverage this property of HSRMI as context information to guide messages passing in SBP. Furthermore, the spectral and structural features extracted at the superpixel level are fed into a Markov random field framework to address the challenge of low interclass variation in HSRMI classification by minimizing the discrete energy through context guided BP (CBP). Experiments show that the proposed CBP is significantly faster than the SBP while retaining similar performance as compared with SBP. Compared to the baseline methods, higher classification accuracy is achieved by the proposed CBP when the context information is used with both spectral and structural features

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore