2 research outputs found

    Hyperspectral data classification improved by minimum spanning forests

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Remote sensing technology has applications in various knowledge domains, such as agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral exploration. The increasing advances in image acquisition techniques have allowed the generation of large volumes of data at high spectral resolution with several spectral bands representing images collected simultaneously. We propose and evaluate a supervised classification method composed of three stages. Initially, hyperspectral values and entropy information are employed by support vector machines to produce an initial classification. Then, the K-nearest neighbor technique searches for pixels with high probability of being correctly classified. Finally, minimum spanning forests are applied to these pixels to reclassify the image taking spatial restrictions into consideration. Experiments on several hyperspectral images are conducted to show the effectiveness of the proposed method. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)Remote sensing technology has applications in various knowledge domains, such as agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral exploration. The increasing advances in image acquisition techniques have all102117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)2011/22749-8307113/2012-

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore