2,495 research outputs found

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    A new bandwidth selection criterion for using SVDD to analyze hyperspectral data

    Full text link
    This paper presents a method for hyperspectral image classification that uses support vector data description (SVDD) with the Gaussian kernel function. SVDD has been a popular machine learning technique for single-class classification, but selecting the proper Gaussian kernel bandwidth to achieve the best classification performance is always a challenging problem. This paper proposes a new automatic, unsupervised Gaussian kernel bandwidth selection approach which is used with a multiclass SVDD classification scheme. The performance of the multiclass SVDD classification scheme is evaluated on three frequently used hyperspectral data sets, and preliminary results show that the proposed method can achieve better performance than published results on these data sets

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Advanced imaging and data mining technologies for medical and food safety applications

    Get PDF
    As one of the most fast-developing research areas, biological imaging and image analysis receive more and more attentions, and have been already widely applied in many scientific fields including medical diagnosis and food safety inspection. To further investigate such a very interesting area, this research is mainly focused on advanced imaging and pattern recognition technologies in both medical and food safety applications, which include 1) noise reduction of ultra-low-dose multi-slice helical CT imaging for early lung cancer screening, and 2) automated discrimination between walnut shell and meat under hyperspectral florescence imaging. In the medical imaging and diagnosis area, because X-ray computed tomography (CT) has been applied to screen large populations for early lung cancer detection during the last decade, more and more attentions have been paid to studying low-dose, even ultra-low-dose X-ray CTs. However, reducing CT radiation exposure inevitably increases the noise level in the sinogram, thereby degrading the quality of reconstructed CT images. Thus, how to reduce the noise levels in the low-dose CT images becomes a meaningful topic. In this research, a nonparametric smoothing method with block based thin plate smoothing splines and the roughness penalty was introduced to restore the ultra-low-dose helical CT raw data, which was acquired under 120 kVp / 10 mAs protocol. The objective thorax image quality evaluation was first conducted to assess the image quality and noise level of proposed method. A web-based subjective evaluation system was also built for the total of 23 radiologists to compare proposed approach with traditional sinogram restoration method. Both objective and subjective evaluation studies showed the effectiveness of proposed thin-plate based nonparametric regression method in sinogram restoration of multi-slice helical ultra-low-dose CT. In food quality inspection area, automated discrimination between walnut shell and meat has become an imperative task in the walnut postharvest processing industry in the U.S. This research developed two hyperspectral fluorescence imaging based approaches, which were capable of differentiating walnut small shell fragments from meat. Firstly, a principal component analysis (PCA) and Gaussian mixture model (PCA-GMM)-based Bayesian classification method was introduced. PCA was used to extract features, and then the optimal number of components in PCA was selected by a cross-validation technique. The PCA-GMM-based Bayesian classifier was further applied to differentiate the walnut shell and meat according to the class-conditional probability and the prior estimated by the Gaussian mixture model. The experimental results showed the effectiveness of this PCA-GMM approach, and an overall 98.2% recognition rate was achieved. Secondly, Gaussian-kernel based Support Vector Machine (SVM) was presented for the walnut shell and meat discrimination in the hyperspectral florescence imagery. SVM was applied to seek an optimal low to high dimensional mapping such that the nonlinear separable input data in the original input data space became separable on the mapped high dimensional space, and hence fulfilled the classification between walnut shell and meat. An overall recognition rate of 98.7% was achieved by this method. Although the hyperspectral fluorescence imaging is capable of differentiating between walnut shell and meat, one persistent problem is how to deal with huge amount of data acquired by the hyperspectral imaging system, and hence improve the efficiency of application system. To solve this problem, an Independent Component Analysis with k-Nearest Neighbor Classifier (ICA-kNN) approach was presented in this research to reduce the data redundancy while not sacrifice the classification performance too much. An overall 90.6% detection rate was achieved given 10 optimal wavelengths, which constituted only 13% of the total acquired hyperspectral image data. In order to further evaluate the proposed method, the classification results of the ICA-kNN approach were also compared to the kNN classifier method alone. The experimental results showed that the ICA-kNN method with fewer wavelengths had the same performance as the kNN classifier alone using information from all 79 wavelengths. This demonstrated the effectiveness of the proposed ICA-kNN method for the hyperspectral band selection in the walnut shell and meat classification
    corecore