13 research outputs found

    Sparsity and morphological diversity for hyperspectral data analysis

    Get PDF
    Recently morphological diversity and sparsity have emerged as new and effective sources of diversity for Blind Source Separation. Based on these new concepts, novelmethods such as Generalized Morphological Component Analysis have been put forward. The latter takes advantage of the very sparse representation of structured data in large overcomplete dictionaries, to separate sources based on their morphology. Building on GMCA, the purpose of this contribution is to describe a new algorithm for hyperspectral data processing. Large-scale hyperspectral data refers to collected data that exhibit sparse spectral signatures in addition to sparse spatial morphologies, in specified dictionaries of spectral and spatial waveforms. Numerical experiments are reported which demonstrate the validity of the proposed extension for solving source separation problems involving hyperspectral data

    Sparsity and morphological diversity for multivalued data analysis

    Get PDF
    International audienceThe recent development of multi-channel sensors has motivated interest in devising new methods for the coherent processing of multivariate data. An extensive work has already been dedicated to multivariate data processing ranging from blind source separation (BSS) to multi/hyper-spectral data restoration. Previous work1 has emphasized on the fundamental role played by sparsity and morphological diversity to enhance multichannel signal processing. GMCA is a recent algorithm for multichannel data analysis which was used successfully in a variety of applications including multichannel sparse decomposition, blind source separation (BSS), color image restoration and inpainting. Inspired by GMCA, a recently introduced algorithm coined HypGMCA is described for BSS applications in hyperspectral data processing. It assumes the collected data is a linear instantaneous mixture of components exhibiting sparse spectral signatures as well as sparse spatial morphologies, each in specified dictionaries of spectral and spatial waveforms. We report on numerical experiments with synthetic data and application to real observations which demonstrate the validity of the proposed method

    Sparsity constraints for hyperspectral data analysis: linear mixture model and beyond

    Get PDF
    The recent development of multi-channel sensors has motivated interest in devising new methods for the coherent processing of multivariate data. An extensive work has already been dedicated to multivariate data processing ranging from blind source separation (BSS) to multi/hyper-spectral data restoration. Previous work has emphasized on the fundamental role played by sparsity and morphological diversity to enhance multichannel signal processing. GMCA is a recent algorithm for multichannel data analysis which was used successfully in a variety of applications including multichannel sparse decomposition, blind source separation (BSS), color image restoration and inpainting. Inspired by GMCA, a recently introduced algorithm coined HypGMCA is described for BSS applications in hyperspectral data processing. It assumes the collected data is a linear instantaneous mixture of components exhibiting sparse spectral signatures as well as sparse spatial morphologies, each in specified dictionaries of spectral and spatial waveforms. We report on numerical experiments with synthetic data and application to real observations which demonstrate the validity of the proposed method

    Image Decomposition and Separation Using Sparse Representations: An Overview

    Get PDF
    This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by reviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck , proposed a novel decomposition method—morphological component analysis (MCA)—based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called morphological components, that are morphologically distinct, e.g., sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will provide an overview the generalized MCA introduced by the authors in and as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Sparsity and morphological diversity for hyperspectral data analysis

    Get PDF
    International audienceRecently morphological diversity and sparsity have emerged as new and effective sources of diversity for Blind Source Separation. Based on these new concepts, novelmethods such as Generalized Morphological Component Analysis have been put forward. The latter takes advantage of the very sparse representation of structured data in large overcomplete dictionaries, to separate sources based on their morphology. Building on GMCA, the purpose of this contribution is to describe a new algorithm for hyperspectral data processing. Large-scale hyperspectral data refers to collected data that exhibit sparse spectral signatures in addition to sparse spatial morphologies, in specified dictionaries of spectral and spatial waveforms. Numerical experiments are reported which demonstrate the validity of the proposed extension for solving source separation problems involving hyperspectral data

    Image decomposition and separation using sparse representations: an overview

    Get PDF
    International audienceThis paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by overviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck et al. [1], [2] proposed a novel decomposition method - Morphological Component Analysis (MCA) - based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called Morphological Components, that are morphologically distinct, e.g. sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will overview the Generalized MCA (GMCA) introduced by the authors in [3], [4] as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Sparsity constraints for hyperspectral data analysis: linear mixture model and beyond

    Full text link

    Cover

    Full text link

    Separation of MECG and FECG using CCA-EMD Process

    Get PDF
    Under-determined blind source separation aims to separate N non-stationary sources from M (
    corecore