7 research outputs found

    SOS Is Not Obviously Automatizable, Even Approximately

    Get PDF
    Suppose we want to minimize a polynomial p(x) = p(x_1,...,x_n), subject to some polynomial constraints q_1(x),...,q_m(x) >_ 0, using the Sum-of-Squares (SOS) SDP hierarachy. Assume we are in the "explicitly bounded" ("Archimedean") case where the constraints include x_i^2 <_ 1 for all 1 <_ i <_ n. It is often stated that the degree-d version of the SOS hierarchy can be solved, to high accuracy, in time n^O(d). Indeed, I myself have stated this in several previous works. The point of this note is to state (or remind the reader) that this is not obviously true. The difficulty comes not from the "r" in the Ellipsoid Algorithm, but from the "R"; a priori, we only know an exponential upper bound on the number of bits needed to write down the SOS solution. An explicit example is given of a degree-2 SOS program illustrating the difficulty

    Robustly Learning Mixtures of kk Arbitrary Gaussians

    Full text link
    We give a polynomial-time algorithm for the problem of robustly estimating a mixture of kk arbitrary Gaussians in Rd\mathbb{R}^d, for any fixed kk, in the presence of a constant fraction of arbitrary corruptions. This resolves the main open problem in several previous works on algorithmic robust statistics, which addressed the special cases of robustly estimating (a) a single Gaussian, (b) a mixture of TV-distance separated Gaussians, and (c) a uniform mixture of two Gaussians. Our main tools are an efficient \emph{partial clustering} algorithm that relies on the sum-of-squares method, and a novel \emph{tensor decomposition} algorithm that allows errors in both Frobenius norm and low-rank terms.Comment: This version extends the previous one to yield 1) robust proper learning algorithm with poly(eps) error and 2) an information theoretic argument proving that the same algorithms in fact also yield parameter recovery guarantees. The updates are included in Sections 7,8, and 9 and the main result from the previous version (Thm 1.4) is presented and proved in Section

    Hypercontractive inequalities via SOS, and the Frankl–Rödl graph

    No full text
    corecore