17,095 research outputs found

    Discrete-time Temporal Network Embedding via Implicit Hierarchical Learning in Hyperbolic Space

    Full text link
    Representation learning over temporal networks has drawn considerable attention in recent years. Efforts are mainly focused on modeling structural dependencies and temporal evolving regularities in Euclidean space which, however, underestimates the inherent complex and hierarchical properties in many real-world temporal networks, leading to sub-optimal embeddings. To explore these properties of a complex temporal network, we propose a hyperbolic temporal graph network (HTGN) that fully takes advantage of the exponential capacity and hierarchical awareness of hyperbolic geometry. More specially, HTGN maps the temporal graph into hyperbolic space, and incorporates hyperbolic graph neural network and hyperbolic gated recurrent neural network, to capture the evolving behaviors and implicitly preserve hierarchical information simultaneously. Furthermore, in the hyperbolic space, we propose two important modules that enable HTGN to successfully model temporal networks: (1) hyperbolic temporal contextual self-attention (HTA) module to attend to historical states and (2) hyperbolic temporal consistency (HTC) module to ensure stability and generalization. Experimental results on multiple real-world datasets demonstrate the superiority of HTGN for temporal graph embedding, as it consistently outperforms competing methods by significant margins in various temporal link prediction tasks. Specifically, HTGN achieves AUC improvement up to 9.98% for link prediction and 11.4% for new link prediction. Moreover, the ablation study further validates the representational ability of hyperbolic geometry and the effectiveness of the proposed HTA and HTC modules.Comment: KDD202

    Dynamic Hyperbolic Attention Network for Fine Hand-object Reconstruction

    Full text link
    Reconstructing both objects and hands in 3D from a single RGB image is complex. Existing methods rely on manually defined hand-object constraints in Euclidean space, leading to suboptimal feature learning. Compared with Euclidean space, hyperbolic space better preserves the geometric properties of meshes thanks to its exponentially-growing space distance, which amplifies the differences between the features based on similarity. In this work, we propose the first precise hand-object reconstruction method in hyperbolic space, namely Dynamic Hyperbolic Attention Network (DHANet), which leverages intrinsic properties of hyperbolic space to learn representative features. Our method that projects mesh and image features into a unified hyperbolic space includes two modules, ie. dynamic hyperbolic graph convolution and image-attention hyperbolic graph convolution. With these two modules, our method learns mesh features with rich geometry-image multi-modal information and models better hand-object interaction. Our method provides a promising alternative for fine hand-object reconstruction in hyperbolic space. Extensive experiments on three public datasets demonstrate that our method outperforms most state-of-the-art methods.Comment: Accpeted by ICCV 202

    Matching Biomedical Ontologies via a Hybrid Graph Attention Network

    Get PDF
    Biomedical ontologies have been used extensively to formally define and organize biomedical terminologies, and these ontologies are typically manually created by biomedical experts. With more biomedical ontologies being built independently, matching them to address the problem of heterogeneity and interoperability has become a critical challenge in many biomedical applications. Existing matching methods have mostly focused on capturing features of terminological, structural, and contextual semantics in ontologies. However, these feature engineering-based techniques are not only labor-intensive but also ignore the hidden semantic relations in ontologies. In this study, we propose an alternative biomedical ontology-matching framework BioHAN via a hybrid graph attention network, and that consists of three techniques. First, we propose an effective ontology-enriching method that refines and enriches the ontologies through axioms and external resources. Subsequently, we use hyperbolic graph attention layers to encode hierarchical concepts in a unified hyperbolic space. Finally, we aggregate the features of both the direct and distant neighbors with a graph attention network. Experimental results on real-world biomedical ontologies demonstrate that BioHAN is competitive with the state-of-the-art ontology matching methods

    CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a Context Synergized Hyperbolic Network

    Full text link
    The tremendous growth of social media users interacting in online conversations has also led to significant growth in hate speech. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a user- and conversational-context synergized network for detecting implicit hate speech in online conversation trees. CoSyn first models the user's personal historical and social context using a novel hyperbolic Fourier attention mechanism and hyperbolic graph convolution network. Next, we jointly model the user's personal context and the conversational context using a novel context interaction mechanism in the hyperbolic space that clearly captures the interplay between the two and makes independent assessments on the amounts of information to be retrieved from both contexts. CoSyn performs all operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn both qualitatively and quantitatively on an open-source hate speech dataset with Twitter conversations and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 8.15% - 19.50%.Comment: Under review at IJCAI 202

    \{kappa}HGCN: Tree-likeness Modeling via Continuous and Discrete Curvature Learning

    Full text link
    The prevalence of tree-like structures, encompassing hierarchical structures and power law distributions, exists extensively in real-world applications, including recommendation systems, ecosystems, financial networks, social networks, etc. Recently, the exploitation of hyperbolic space for tree-likeness modeling has garnered considerable attention owing to its exponential growth volume. Compared to the flat Euclidean space, the curved hyperbolic space provides a more amenable and embeddable room, especially for datasets exhibiting implicit tree-like architectures. However, the intricate nature of real-world tree-like data presents a considerable challenge, as it frequently displays a heterogeneous composition of tree-like, flat, and circular regions. The direct embedding of such heterogeneous structures into a homogeneous embedding space (i.e., hyperbolic space) inevitably leads to heavy distortions. To mitigate the aforementioned shortage, this study endeavors to explore the curvature between discrete structure and continuous learning space, aiming at encoding the message conveyed by the network topology in the learning process, thereby improving tree-likeness modeling. To the end, a curvature-aware hyperbolic graph convolutional neural network, \{kappa}HGCN, is proposed, which utilizes the curvature to guide message passing and improve long-range propagation. Extensive experiments on node classification and link prediction tasks verify the superiority of the proposal as it consistently outperforms various competitive models by a large margin.Comment: KDD 202
    • …
    corecore