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Biomedical ontologies have been used extensively to formally define and organize
biomedical terminologies, and these ontologies are typically manually created by
biomedical experts. With more biomedical ontologies being built independently,
matching them to address the problem of heterogeneity and interoperability has
become a critical challenge in many biomedical applications. Existing matching
methods have mostly focused on capturing features of terminological, structural, and
contextual semantics in ontologies. However, these feature engineering-based techniques
are not only labor-intensive but also ignore the hidden semantic relations in ontologies. In
this study, we propose an alternative biomedical ontology-matching framework BioHAN
via a hybrid graph attention network, and that consists of three techniques. First, we
propose an effective ontology-enriching method that refines and enriches the ontologies
through axioms and external resources. Subsequently, we use hyperbolic graph attention
layers to encode hierarchical concepts in a unified hyperbolic space. Finally, we aggregate
the features of both the direct and distant neighbors with a graph attention network.
Experimental results on real-world biomedical ontologies demonstrate that BioHAN is
competitive with the state-of-the-art ontology matching methods.
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1 INTRODUCTION

Ontology is an explicit, interoperable, extensible, scalable, and formal definition to describe
knowledge as a set of domain vocabularies that contain concepts, relations between concepts,
and individuals of concepts (Ramis et al., 2014). In past decades, various biomedical ontologies, such
as the National Cancer Institute Thesaurus (NCI) (Golbeck et al., 2003), Foundation Model of
Anatomy (FMA) (Rosse and Mejino, 2003), Systemized Nomenclature of Medicine (SNOMED-
Clinical Terms [SNOMED-CT]) (Donnelly et al., 2006), and Uberon (Mungall et al., 2012) have been
widely used for medical data format standardization (Cimino and Zhu, 2006), medical or clinical
knowledge representation and integration (Isern et al., 2012), and medical decision making (De
Potter et al., 2012) to provide standard semantics. With the continuous evolution of biomedical data,
biomedical vocabularies have become complicated and ambiguous, which leads to challenges in
developing biomedical applications. Moreover, new biomedical ontologies are constructed
independently with diverse ways of defining overlapping biomedical terminologies or
components, which also leads to more heterogeneity (Xie et al., 2016). As shown in Figure 1,
the entities are connected via the subClassOf relation, and the equivalent concepts are linked via
dotted lines. It can be found that for the same concept, “blood vessel” in the source and target
ontologies, they are organized and interpreted at different levels of granularity, named conceptual
heterogeneity. In addition, the concepts that share the same morphology “capillary” indicate
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different semantics in different ontologies, which is called
semiotic heterogeneity. To implement interoperability across
biomedical ontologies, discovering semantic relations between
them is critically important (Xue, 2020). Ontology matching is a
key technique to find semantic correspondences between the
elements of different ontologies to achieve interoperability
(Shvaiko and Euzenat, 2011).

Most existing ontology matching methods have focused on
extracting features from terminological, structural, extensional
(individuals of concepts) information, and external resources
(Nezhadi et al., 2011; Otero-Cerdeira et al., 2015; Babalou
et al., 2016; Chauhan et al., 2018). They use logical reasoning
and rule-based techniques to extract sophisticated features, which
are then used to compute the similarities of ontological elements
(i.e., concepts, properties, and individuals) that promote ontology
matching.

These feature-based methods (e.g., AML (Faria et al., 2013),
FCA_Map (Zhao et al., 2018), LogMap (Jiménez-Ruiz and
Cuenca Grau, 2011), and XMap (Djeddi and Khadir, 2014))
elaborate features of data to evaluate element similarity and
derive semantic correspondences. However, the features in one
ontology usually cannot be transferred to others. Consequently,
the effectiveness and generality of those ontology matching
methods vary significantly (Kolyvakis et al., 2018).

Recently, graph-based representation learning (Kipf and
Welling, 2016; Hamilton et al., 2017) has become a powerful
model for learning vector representations of graph-structured

data. In graph neural networks (GNNs), the representation of a
node is learned through recursively aggregating the
representations of its local neighboring structure and
propagation of features from neighboring nodes. Several
studies (Chen et al., 2017; Wang Z et al., 2018; Wu et al.,
2019; Sun et al., 2020) exploit GNNs for embedding-based
matching in knowledge graphs (KGs), and have achieved
promising results. However, existing GNN-based matching
models still face some problems in ontology matching. First,
ontology matching may face semantic imbalance because the
distributions and amounts of semantic descriptions in different
ontologies are generally different. We argue that if we can enrich
the ontologies by using the metadata, given axioms, and
auxiliary descriptions from external domain resources, and
incorporate a rich set of semantic relationships, the derived
ontologies can be matched with higher precision and recall. To
overcome this problem, we consider designing an ontology-
enriching method. Second, a distinguishable characteristic of
biomedical ontologies, compared to open-domain knowledge
bases such as YAGO (Suchanek et al., 2007), Wikidata
(Vrandečić and Krötzsch, 2014), and DBpedia (Lehmann
et al., 2015), is their domain specificity. These biomedical
ontologies often have rich hierarchical structures that
systematically organize biomedical concepts into categories
and subcategories from general to specific. Figure 2 shows
an example of a hierarchical structure in different biomedical
ontologies. The hierarchical structures of the corresponding

FIGURE 1 | Heterogeneity of biomedical ontologies.
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pairs in different ontologies are similar to some extent. For
example, the hierarchy (through subClassOf relation) of
“pulmonary vasculature” in UBERON and “Vasculature of
lung” in FMA is similar, whereas the terminologies are
morphologically different. Therefore, capturing such
hierarchical structures would be useful for identifying aligned
concepts and improving the matching performance. Finally,
since different ontologies usually have heterogeneous schemas
and incompleteness (Schneider and Šimkus, 2020), the
matching pairs usually have some dissimilar neighboring
structures. Even though we assume that the ontologies to be
matched are complete, because of the schema heterogeneity, the
non-isomorphism in the neighboring structures from different
ontologies is still inevitable. As shown in Figure 2, the one-hop
neighbors of the matching pair (“pulmonary vasculature” and
“Vasculature of lung”) are different, while they share the same
distant neighbor “anatomical structure.” Motivated by the
phenomenon that the relevant information could appear in
both direct and distant neighbors of matching concepts, the
aggregated structural semantics of a concept should include not
only its local neighbors, but also the related distant neighbors. In
addition, to keep the matching performance, we use an attention
mechanism to realize the semantic relatedness of different

neighbors, which could further discover and aggregate
important neighbors.

To address these issues, we propose a biomedical ontology
matching framework, BioHAN, with a hybrid graph attention
network. The underlying idea is to first enrich and refine the
ontologies to be matched with the given axioms and auxiliary
semantic descriptions from external resources, such as UMLS
(Bodenreider, 2004). Then, the neighborhood information is
aggregated within multiple hops in the enriched ontologies,
capturing both local and global features, into hyperbolic
representations that are complementary to each other. Both
representations are jointly optimized to improve ontology
matching performance. The main contributions of this study
are listed as follows:

• We propose a matching method BioHAN for biomedical
ontologies. BioHAN first enriches the ontologies for
matching via the axioms and logical rules. Then it
further learns the representations with the hierarchical
structure to realize ontology matching.

• We propose a lightweight and effective way to enrich and
refine ontology with the metadata, axioms, and auxiliary
semantic information from external resources, which is

FIGURE 2 | Hierarchical structure in biomedical ontologies UBERON (left) and FMA (right).

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8934093

Wang and Hu Matching Biomedical Ontologies

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


helpful to discover and simplify the hidden and implicit
semantics in ontologies.

• To capture the hierarchical features in an ontology, we
leverage hyperbolic graph convolution layers to encode
the parent and child concepts in the hyperbolic space.

• To further address the heterogeneity and better capture the
semantics of concepts, we introduce an attention
mechanism to weigh different neighbors and incorporate
multi-hop neighbors to learn both the local and global
hierarchical structures.

• We implement our proposed matching method and
conduct systematic experiments on biomedical ontologies
datasets. The evaluation of the Ontology Alignment
Evaluation Initiative 2021 (OAEI 2021) shows that our
method achieves significantly promising results.

The study is structured as follows. In Section 2, we describe
relevant preliminaries of ontology matching and the overview of
our proposed method. In Section 3, we illustrate the ontology-
enriching operation, including ontology preprocessing and
augmenting. In Section 4, the implementation details of our
proposed matching method BioHAN are presented. Section 5
describes our experiments, the results, and the experimental
analysis and discussion. In Section 6, related work about
ontology matching is systematically reviewed and introduced.
Section 7 summarizes our main findings, and presents
perspectives on future work.

2 PRELIMINARIES AND METHOD
OVERVIEW

2.1 Ontology Matching
Let C be the set of concepts, R be the set of relations, and T �
C × R × C be the set of triples or statements, then a biomedical
ontology can be represented as O � (C,R, T ). The matching
between two ontologies Os and Ot isM � {mk|mk� <ei, ej, r, s> }
(Euzenat and Shvaiko, 2007), where M is an alignment; mk is a
correspondence < ei, ej, r, s> ; ei and ej are elements from Os and
Ot, respectively; r is the semantic relation between ei and ej; and
s ∈ [0, 1] is the confidence about a correspondence. Therefore, an
alignment M is a set of correspondences mk.

2.2 Graph Neural Networks
Graph neural networks (GNNs) are effective for various
applications with graph-structured data (Zhou et al., 2020). A
GNN framework usually has a graph encoder and a graph
decoder, and its input is an adjacency matrix and features
nodes and edges. The encoder uses the graph structure to
propagate and aggregate information across nodes, and learns
embeddings for local structure. A graph decoder is often used to
compute similarity scores for all node pairs. Depending on the
graph properties and aggregation strategies, some GNN
frameworks have been proposed.

The vanilla GCN is a popular variant of the GNN (Kipf and
Welling, 2016), in which the hidden representation of node i at
the l-th (l > 0) layer h(l)i is computed as

h l( )
i � σ ∑

j∈N i∪ i{ }

1
cij
W l( )

i h l−1( )
i

⎛⎝ ⎞⎠ (1)

where σ(·) is an activation function; W(l) is the weight matrix of
the l-th layer and cij is for normalization; and N i denotes the
neighbor set of node i. The vanilla GCN encodes node i as the
mean pooling of the representations of its neighbors and node i
itself from the last layer. The input vector fed to the first layer is
denoted as h(0)i .

A graph attention network (GAT) (Veličković et al., 2018) is a
novel convolution-style neural network with masked self-
attention layers. In contrast to the GCN, it allows for
implicitly setting different weights to nodes of the same
neighboring node. Moreover, analyzing the learned attention
weights could improve interpretability. Formally, the attention
weight α(l)ij ∈ R between i and j at the l-th layer is computed as
follows:

α l( )
ij � exp LeaklyReLU aT Whi‖Whj[ ]( )( )

∑j∈N i
exp LeaklyReLU aT Whi‖Whj[ ]( )( ) (2)

Here, ·T denotes transposition; a is an attention weight matrix; ‖ is
the concatenation operation; and LeaklyReLU is used to achieve
nonlinear transformation.

2.3 Method Overview
As shown in Figure 3, our proposed BioHAN comprises two
phases: ontology enriching and ontology matching. Given a
biomedical ontology, the ontology enriching phase first
preprocesses the ontology with the metadata and axioms,
which complements the informative representations hidden in
the ontology. It also explores matching seeds between the
processed ontologies by supplementing some missing
semantics through external resources. The ontology matching
phase takes as input the derived ontology. Structures of ontologies
are captured via graph attention networks for structural
representation learning. Moreover, the lexical semantics of the
concepts in ontologies are used, providing complementary clues
for ontology matching.

3 ONTOLOGY ENRICHING

In this section, we will discuss ontology preprocessing and
augmenting operation to enrich the initial ontology.
Specifically, we first preprocess the ontology to discover the
hidden semantics and represent them clearly. Then, we use
ontology augmentation strategies to enrich the ontologies.

3.1 Ontology Preprocessing
We notice that there are two common facts in biomedical
ontologies. On the one hand, some semantic information is
hidden or unclear, which is expressed by complex axioms or
ontology semantics. However, to further understand an
ontology, such information is useful. On the other hand,
some triples are used to describe the building and version
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information for an ontology. These statements simply
increase the size of the ontology and are useless for the
definitions of concepts and properties. Therefore, we
conduct a preprocessing operation to refine ontologies.
Specifically, we make the complex expressions of ontologies
much simpler and clearer.

For the ontology language RDFS and OWL, they provide
mechanisms for describing groups of related resources and the
relationships between these resources, where OWL is an
extension of RDFS, providing description logic-based
primitives with richer expressive ability and stronger
reasoning ability. In an ontology, containers (e.g., rdf:Bag,
rdf:Seq, and rdf:Alt) and collections (e.g., rdf:List) are used to
describe a set of resources in RDFS and OWL. They simplify the
ontology expressions but hide some indirect semantics. We
clearly define the semantics of the members in containers
and collections, and then delete those redundant and
complex statements. Table 1 shows the range of property
“physical state” through a collection rdf:List in RDFS format.
Through the RDFS description, we can know that for the
property “physical state” in the ontology “http://bioontology.
org/ontologies/fma,” its values could be one of “Gas,” “Liquid,”
“Semi-solid,” and “Solid.” Each value is represented via rdf:li.
However, the members would be represented as anonymous
nodes while parsing the ontology, such as
<physicalstate, range, BN> , <BN, range, Liquid> , where
BN denotes an anonymous node with no specific meaning.
These statements are difficult to understand directly.

Therefore, it is necessary to formulate this implicit
knowledge, such as <physicalstate, range, Liquid> .

In addition, to further mine the semantic descriptions in the
biomedical ontologies, a rule-based reasoning method is
proposed to discover the hidden information.

1) Enriching domain and range: given a property pa, let pb be the
sub-property of pa. Then we can infer that all semantics of the
domain and range of pa could be inherited by pb. According to
this rule, the semantics of sub-properties will be defined more
comprehensively.

2) Enriching the concept axioms: given a concept axiom (e.g. owl:
oneOf, owl:intersectionOf, owl: unionOf, owl:equivalentClass,
etc.), its equivalent semantics could be rewritten by following
rules. If a complex concept A l B is defined by the axiom owl:
intersectionOf, where the complex concept has a sub concept C,
A M C and B M C could be added to the ontology. If one
complex concept A k B is defined by the axiom owl:unionOf,
where the complex concept has a super concept C, so CM A and
C M B could be added to the ontology. Similarly, we can also
rewrite semantics of owl:oneOf and owl:equivalentClass.
Therefore, complex semantics of concept axioms could be
clearly defined.

3) Enriching the property axioms: given a property axiom (e.g.
owl:SymmetricProperty, owl: TransitiveProperty, owl:
equivalentProperty, etc.), relevant semantic extension could
be realized by following rules. If a property p is declared by
axiom owl:SymmetricProperty and there is a statement
<A, p, B> , a new statement <B, p, A> could be added to
the ontology. If a property p is declared by axiom owl:
TransitiveProperty and there are statements <A, p, B>
and <B, p, C> , then a new statement <A, p, C> could be
added to the ontology.

4) Enriching owl:sameAs axiom: given a statement
<A, owl: sameAs, B> , then the equivalent individuals A
and B could share their semantic information.

5) Enriching properties in the concept hierarchy: given
<p, rdfs: domain, A> and <B, rdfs: subClassOf, A> ,
we can infer an implicit statement <p, rdfs: domain, B> .
According to this rule, the property’s constraints about one
concept could be extended to its sub-concepts.

FIGURE 3 | Framework of BioHAN.

TABLE 1 | Example of ontology collection.

< rdf:Description rdf:about = “http://bioontology.org/ontologies/fma/physical
state”
< rdfs:range >
< rdf:List>
< rdf:li>Gas< /rdf:li>
< rdf:li> Liquid< /rdf:li>
< rdf:li>Semi-solid< /rdf:li>
< rdf:li>Solid< /rdf:li>
< rdf:List>
< /rdfs:range >
< /rdf:Description>
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3.2 Ontology Augmentation
Even though the derived ontologies have clearly specified the hidden
semantics, they are still insufficient to some extent. Some semantic
relationships are still missing, which may lead to the sparse problem
of ontology structure. To alleviate this problem, we introduce several
augmentation heuristics to enrich biomedical ontologies through the
external domain resources, that is, UMLS.

3.2.1 Concept Augmentation
We first explore the anchors between the ontologies to be
matched and the external resources, which is performed by
using a simple string-based technique. Then, for one concept
in ontologies, the relative semantics (e.g. rdfs:label, owl:
annotation, owl:equivalentClass, etc.) of its anchored concept
in external resources could be transferred and added to the
ontology. Concept augmentation can significantly enrich
ontologies with available information from external resources.

3.2.2 Neighborhood Augmentation
Relations between source and target concepts could also be
derived from the anchored concepts in external resources.
Specifically, if there is a relation between concepts i and j of
the external resource, their anchors i′ and j′ are also linked by this
relation. The goal is to reduce the semantic gap between
ontologies by adding the missing structural information and
solving the problem of sparse ontology graphs.

With the augmented ontologies, ourmatching framework enables
sufficient learning of ontology representations. To match the
concepts in ontology Os and ontology Ot, we use graph pooling to
obtain the embeddings of concepts. After investigating different
graph pooling methods (Hamilton et al., 2017; Ying et al., 2018),
we choose mean-pooling to capture information across concept
neighbors. Finally, the graph neural networks take the enriched
ontologies Os and Ot as input to find the alignments.

4 MATCHING METHOD

In this section, we first embed the elements in ontologies to low
dimension vectors, and then discuss the hyperbolic graph
attention mechanism. Subsequently, we elaborate on the
matching computation and the model training in detail.

4.1 Embedding
The terminological descriptions of concepts within a
biomedical ontology are generally represented by a
sequence of words. We leverage deep learning-based
embedding methods (Peters et al., 2018; Devlin et al., 2019)
to derive a fixed-size terminological description embedding
for each concept. In this study, we choose BioBERT, a high-
quality medical language model pre-trained on PubMed
abstracts and clinical notes (Lee et al., 2020), to encode
concepts. Considering the domain specificity of biomedical
ontology, the embedding models toward a specific task can
provide significant benefits (Alsentzer et al., 2019; Peng et al.,
2019), and are much more appropriate than the general pre-
training language model. The embeddings are used as the

initial states h0,E of concepts, where E indicates the low-
dimensional vectors in the Euclidean space.

4.2 Hyperbolic Graph Attention
Conventional GNNs typically capture the graph via message
propagation to embed nodes into the Euclidean space. However, it
could lead to the distortion of hierarchical structures (Nickel and
Kiela, 2017). Hence, we transfer the node representations to a
hyperbolic embedding space that can better capture the
hierarchical characteristics of tree-like ontologies. In this study, we
use a specific model, hyperbolic graph attention network (HGAT)
(Zhang et al., 2021), which jointly implements both the
expressiveness of a GAT and the superiority of hyperbolic
geometry in capturing the hierarchical features. Moreover, multi-
hop neighbors are also encoded into concepts, to comprehensively
consider a broader context of concepts and alleviate the heterogeneity
problem. The network architecture is shown in Figure 4.

4.2.1 Hyperbolic Feature Projection
The hyperbolic graph attention layer first establishes transformation
between the tangent (Euclidean) and Poincaré ball, which is carried
out by exponential and logarithmic maps. Specifically, we project the
vector in a tangent space to a hyperbolic manifold through the
exponential map, whereas the logarithmic map reverses the
hyperbolic representation back to the Euclidean space. The initial
hyperbolic embedding h0,Hi of node i is

h0,H
i � expK

o 0, h0,E
i( ) (3)

where K determines the constant negative curvature −1/K(K > 0)
and the tangent space is centered at point o. To transform the
hyperbolic features from one layer to the next layer, we follow the
following computation:

hl,H
i � W l⊗Kl−1hi−1,Hi( )⊕Kl−1bl (4)

where ⊗ and ⊕ are hyperboloid matrix multiplication and
addition, respectively.

4.2.2 Hyperbolic Attention Mechanism
To measure the importance of various neighbors and aggregate
the neighbors’ features to the center node according to their
semantic weights, a self-attentionmechanism is performed on the
nodes. To that end, one parameterized weight matrixW is applied
to all nodes to conduct the shared linear transformation. Then,
the attention coefficient can be represented with a self-attention
weight a on the nodes as follows:

eij � aT W hhi , h
h
i( )( ) (5)

eij indicates the importance of node j to node i.
In addition, GAT considers only the local neighbors (i.e., one-hop

neighbor nodes) for graph attention, while distant neighboring nodes
can also contribute semantics to the central node. To reduce the
effects of non-isomorphism in neighboring structures, we introduce
distant neighboring information. Without loss of generality, we
aggregate both the one-hop and two-hop neighboring information
in ontologies, obtaining a proximity matrix.
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P � B1 + B2( )/2 (6)
where B is the transition matrix and Bk denotes the adjacency
matrix of k-th hop. Bij = 1/di if there exists an edge between i and j
in the k-th hop, otherwise Bij = 0. Then, Pij denotes the topological
weight that node j exerts on i.

To make coefficients comparable across different concepts, the
attention weights are normalized via the softmax function.

αij � softmax eij( ) � exp eij( )
∑k∈N i

exp eij( ) (7)

Finally, using the topological weights P and applying the
LeakyReLU nonlinearity, the coefficients can be expressed as

α l( )
ij �

exp LeaklyReLU Pij · aT Whi
→‖Whj

→[ ]( )( )
∑k∈N i

exp LeaklyReLU Pij · aT Whi‖Whj[ ]( )( ) (8)

4.2.3 Hyperbolic Attention-Based Aggregation
Similar to GAT, the hyperbolic graph convolution layer
aggregates features from a node’s local neighbors. There is no
notion of a vector space structure in a hyperbolic space, while the
hyperboloidal aggregation requires multiplication by a weight
matrix along with a bias operation. The main idea is to leverage
the logarithmic projection to perform the Euclidean
transformation and aggregation in the tangent space, and then
transfer the obtained vectors back to the hyperbolic space. In
addition, an attention mechanism is applied to learn the semantic
relatedness between the neighboring nodes and the central node.
Then, the neighbors’ features are assembled in accordance with
the learned attention coefficients. The hyperbolic attention-based
aggregation is defined as follows:

AGGK hH( )i � exp ∑
j∈N i

αijlog
K
hHi

hl−1,H
j( )⎛⎝ ⎞⎠ (9)

To avoid semantic loss during the information propagation
and maintain its transitivity between different convolutional
layers, it is also necessary to incorporate the semantics of the
central node itself.

AGGK hH( )i � exp WAGG hH
i + ∑

j∈N i

αijlog
K
hHi

hl−1,H
j( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(10)
where WAGG is the aggregated weight matrix, and hHi is the

representation of the central node.
Finally, a non-linear activation function is used to increase the

nonlinear expression ability and further improve the
performance of the model. Specifically, BioHAN first applies
Euclidean non-linear activation in the tangent space and then
projects back to the hyperbolic space.

σ⊕Kl−1 ,Kl hH( ) � expKl
o σ logoKl−1 hH( )( )( ) (11)

The l-th layers of a hyperbolic graph attention layer are

hl,H
i � σ⊕Kl−1 ,Kl AGGKl−1 hl−1,H( )

i
( ) (12)

where −1/Kl−1 and −1/Kl are the hyperbolic curvatures at the (l-1)-th
and l-th layer, respectively. After iterative propagation and update of
representations between layers, the final hyperbolic vector
representations hH can be obtained to represent the concepts.

4.3 Matching
Based on the learned concept representations hH from the
hyperbolic graph attention layers, our matching module takes
as input pairs of concept embeddings from Os and Ot, and then
measures the semantic relatedness with a similarity metric
function, defined as follows:

sim ci, cj( ) � exp
1
t

dK hH
i , h

H
j( )2 − r( )[ ] + 1{ }−1

(13)

where dK (·, ·) is the hyperbolic distance, and r and t are hyper-
parameters. Then we iteratively match the concepts of two different
ontologies using the Stable Marriage algorithm (SM) (Gale and
Shapley, 1962) over the concepts’ pairwise similarities.

4.4 Training
To improve the matching performance of the proposed method,
we jointly consider the reconstruction performance of the

FIGURE 4 | Hyperbolic graph attention layers in BioHAN.
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hyperbolic graph attention network and the matching
performance of the matching module.

For the hyperbolic graph attention network module, the graph
transition matrix of the final output should be as close as possible
to the original graph structure. Therefore, the graph
reconstruction loss should be minimized.

LH � ∑
i,j( )∈E+

p ci, cj( ) + ∑
i,j( )∈E−

ω μ − p ci, cj( )[ ] (14)

where E+ is the set of adjacency concept pairs; E− represents
the corresponding negative samples; μ is the margin value; ω is a
trade-off factor; and [·]+ = max (0, ·).

Then, for the matching module, we minimize the
contrastive matching loss to actualize that the distances
between pre-aligned concepts (positive) are as small as
possible whereas the unmatched (negative) pairs have a
relatively larger distance.

LM � − ∑
i,j( )∈M+

logsim ci, cj( ) − ∑
i,j( )∈M−

log 1 − sim ci, cj( )( )
(15)

whereM+ is the set of seed correspondences between Os and Ot,
and M− denotes the corresponding opposite ones.

The final joint loss function is defined as follows:

L � LH + α · LM (16)
where α is positive hyper-parameters to control the trade-off

among these loss components. The model is trained by
minimizing the overall loss and optimized with an Adam
(Kingma and Ba, 2014) optimizer.

5 EXPERIMENTS

This section reports the experimental results. To verify the
effectiveness of BioHAN, we used Python to implement our
approaches in Pytorch and conduct the experiments on a
computer with an Intel Xeon 4110 CPU, Nvidia 2080Ti GPU,
and 64-GB memory.

5.1 Datasets
The experiments are performed on the biomedical evaluation
benchmark from the Ontology Alignment Evaluation
Initiative 2021 (OAEI 2021), which organizes annual
evaluation campaigns aiming at evaluating ontology
matching technologies. Biomedical ontologies are collected
from the Large Biomedical track in OAEI 2021, including the
Foundational Model of Anatomy Ontology (FMA),
SNOMED CT, and the National Cancer Institute
Thesaurus (NCI).

The FMA is an ontology for biomedical informatics that
symbolically represents the phenotypic structure of the human
body (Rosse and Mejino, 2003). FMA has 78,988 concepts
together with 78,985 isA triples.

The NCI provides reference terminologies for clinical care,
translational and basis research, public information, and
administrative activities (Golbeck et al., 2003). It comprises
66,724 concepts and 59,794 isA triples.

SNOMED CT is a systematically organized collection of
medical terms and provides comprehensive, multilingual
clinical healthcare terminology for clinical documentation and
reporting (Donnelly et al., 2006). It contains 1,22,222 concepts
and 1,05,624 isA triples.

The matching tasks are FMA-NCI, FMA-SNOMED, and
NCI-SNOMED. On account of the primary hierarchical
architecture of ontologies and the deficiency of some other
relations, except the hierarchical structure, we mainly
consider the SubClassOf relationship of these datasets. In
this study, we only focus on identifying one-to-one
equivalence correspondences between concepts. Seed
alignments are extracted from the UMLS (Bodenreider,
2004) and trained as positive samples. The negative
alignments are sampled by randomly modifying one of the
concepts in the positive sample pairs.

5.2 Evaluation Measures
We follow the standard evaluation criteria in OAEI 2021,
calculating the precision (P), recall (R), and F1-measure (F1)
for each matching task. Given a reference alignment set Ref and
mapping correspondences Map, the precision and recall are
calculated as follows:

P � |Map ∩ Ref|
|Map| (17)

R � |Map ∩ Ref|
|Ref| (18)

The F1-measure is the weighted harmonic average of precision
and recall, defined as

F1 � 2 × P × R

P + R
(19)

5.3 Experimental Settings
For our proposed BioHAN, each training takes 1,000 epochs with
the learning rates among {0.01, 0.001, 0.0001}. The embedding
dimension d is set to 128, and the initial input embedding has the
size (d) 512. By default, we stack two hyperbolic graph attention
layers in our model. For the hyperbolic graph attention decoder,
we set r = 2.0, t = 1.0, and apply trainable curvature, which refer to
the parameter configuration inMEDTO (Hao et al., 2021).We set
the trade-off hyper-parameters α1 to 1.0. In addition, for each
seed correspondence, we corrupt it and randomly replace it with
five additional concepts to generate negative mapping pairs.

5.4 Experimental Results
5.4.1 Ontology Matching Results
Table 2 shows the matching results of our proposed model
compared with several matching methods or systems based on
feature engineering and representation learning. The feature
engineering-based top-performing matching systems are
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selected according to the results published in the Large
Biomedical track by OAEI 2021. The comparative
representation learning models are several recent typical
embedding-based entity alignment models (MTransE, GCN-
Align) and ontology matching models (DAEOM, MEDTO).

Compared with the extensively developed feature-based
approaches such as AML, LogMap, and LogMapBio, our
method achieves competitive results across all three tasks. The
proposed BioHAN outperforms these rule-based approaches in
measure R in FMA-NCI and FMA-SNOMED. AML, LogMap,
and LogMapBio heavily rely on lexical features extracted from
ontologies, while using representation learning could better
capture some hidden semantics to discover more complex
matching pairs. We can also observe that entity alignment
models (MTransE, GCN-Align) designed for general
knowledge bases are insufficient for domain-specific ontology
matching. Compared to the representative matching methods
(DAEOM, MEDTO), BioHAN also achieves competitive
performance. The performance difference between MEDTO
and BioHAN validates the importance of hierarchical features.
BioHAN explicitly distinguishes and models the hierarchical
structure, taking into account both the local and global
hierarchical features, and obviously leads to promising results
in biomedical ontology matching.

5.4.2 Effectiveness of Ontology Enriching
To evaluate the effectiveness of the enriching phase, we
further compare the isA triple size during ontology
enriching. The detailed statistics concerning the size of
each ontology matching task are shown in Table 3. Here,
Nodes means the number of ontology entities, and isA is the
edges between nodes with the relation owl: subClassOf in the
ontology graph, while the origin and enriching represents the
change in isA triple size before and after the enriching
operation.

We can observe that the change in the triple size of both the
ontology NCI and SNOMED is explicit, while the FMA remains.
The structure of NCI and SNOMED is sophisticated, and contains

substantive owl:intersectionOf and owl:unionOf property links,
especially SNOMED. Specifically, the owl:intersectionOf
statement describes classes which contain precisely those
individuals that are members of the class extension of all class
descriptions in the list, while the owl:unionOf statement describes
an anonymous class containing those individuals occurring in at
least one of the class extensions in the list.

Moreover, we compare the matching performance between
the proposed BioHAN and its variation BioHAN (w/o OB),
which does not pay attention to ontology preprocessing and
enriching. Results are also shown in Table 2. It is obvious that our
model BioHAN consistently outperforms across these tasks, with
an average increase of 6.0% in the F1 measure. This is attributed
to the critically abundant structural features and implicit
semantics added to ontology, which indicates that hierarchical
information and implicit semantic descriptions contain
considerably representative and critical features for ontology
matching.

5.5 Discussion
5.5.1 Impact of Ontology Enriching
According to the intuition that there are some hidden informative
semantics in ontologies, especially for the complex one, we
propose to enrich the ontology through ontology
preprocessing and complementing. Through the statistics
described in Table 3, numerous relationship descriptions are
implicit but express a well-established role in ontology matching.
Particularly in SNOMED, there are nearly more than twice the
hierarchical relationships after enriching. Through the
comparison of matching performance between BioHAN and

TABLE 2 | Results of ontology matching.

Method FMA-NCI FMA-SNOMED SNOMED-NCI

P R F1 P R F1 P R F1

AML 0.958 0.910 0.933 0.923 0.762 0.835 0.906 0.746 0.818
LogMap 0.940 0.898 0.919 0.941 0.689 0.796 0.954 0.667 0.785
LogMapBio 0.904 0.920 0.912 0.911 0.711 0.799 0.909 0.696 0.88

MTransE 0.627 0.640 0.633 0.505 0.475 0.490 0.254 0.378 0.304
GCN-align 0.813 0.783 0.798 0.763 0.729 0.746 0.745 0.775 0.760
DAEOM 0.882 0.689 0.774 0.719 0.693 0.706 0.891 0.682 0.773
MEDTO 0.944 0.874 0.908 0.871 0.762 0.813 0.901 0.802 0.849

BioHAN 0.930 0.922 0.926 0.898 0.775 0.832 0.911 0.797 0.850
BioHAN (w/o OB) 0.930 0.922 0.926 0.782 0.731 0.756 0.788 0.709 0.746
BioHAN (w/o HB) 0.831 0.822 0.826 0.771 0.729 0.749 0.850 0.711 0.774
BioHAN (w/o AM) 0.860 0.842 0.851 0.819 0.726 0.770 0.864 0.719 0.785
BioHAN (w/o MN) 0.893 0.849 0.870 0.822 0.745 0.782 0.877 0.701 0.779

Bold values represents the best results for the column in which they are located.

TABLE 3 | Summary statistics of ontology enriching.

Ontology Nodes isA (origin) isA (enriching)

FMA 78,988 78,985 78,985
NCI 66,724 59,794 75,454
SNOMED 1,22,222 1,05,624 2,03,942
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BioHAN (w/o OB) shown in Table 2, we can draw the conclusion
that the enriching phase indeed contributes to ontology matching
with the sufficient complements of semantic and structural
information.

5.5.2 Performance Analysis of BioHAN
BioHAN uses the hyperbolic space projection to solve the
intrinsical limitation in encoding complex patterns by its
polynomial expanding capacity. In addition, it captures the
structure of the concept by iteratively aggregating multi-hop
neighborhoods with an attention mechanism. To gain an in-
depth analysis of these components, we further design three
variants of BioHAN: BioHAN (w/o HB), BioHAN (w/o AM),
and BioHAN (w/o MN). BioHAN (w/o HB) replaces the
hyperbolic projection with Euclidean space projection.
BioHAN (w/o AM) removes the attention mechanism and
regards all the neighboring nodes sharing the same weight.
BioHAN (w/o MN) only considers the direct local neighbors
and removes the multi-hop aggregation module in BioHAN.
From the matching results reported in Table 2, we observe
that the full model BioHAN achieves the best performance
across all three matching tasks. It is also worth noting that
both BioHAN (w/o AM) and BioHAN (w/o MN) perform
better than BioHAN (w/o HB), which indicates that the
hierarchical structure of the ontology captures much more
essential and representative semantics. The hyperbolic graph
convolutional layers can effectively encode such semantic
information. By comparing the results of BioHAN (w/o AM)
and BioHAN, it is obvious that the attention mechanism plays a
significant role in solving the hierarchical heterogeneity of
ontologies, which has improved the matching performance of
6.7% in F1 on average. For the multi-hop aggregation, by
contrasting the performances of BioHAN (w/o MN) and
BioHAN, it also exerts an important influence on capturing
the semantics much more precisely than the complex
hierarchical structures of biomedical ontologies. Multi-hop
neighboring aggregation can discover much more complex
matching pairs and has further improved the matching
performance, especially in the measure R with an increase of
5.8% on average.

6 RELATED WORK

6.1 Biomedical Ontology Matching
Traditional feature-based approaches have been investigated for
ontology matching, using terminological, structural, and
semantic features for the discovery of semantically similar
elements. LogMap (Jiménez-Ruiz and Cuenca Grau, 2011)
uses lexical and structural indexes to enhance its scalability.
AML (Faria et al., 2013) also uses various informative features
and domain-specific thesauri to complete ontology matching.
Feature-based matching systems mainly rely on hand-crafted
features to achieve specific tasks. Unfortunately, these methods
will be limited for a given scenario with weak informativeness.
Representation learning has an important impact on ontology
matching. OntoEmma (Wang L et al., 2018) proposes a novel

neural architecture for biomedical ontology matching, feeding
into amounts of definitions and contexts to encode the concepts.
It derives a variety of labeled data for supervised training and
augments entities with complementary descriptions from
external biomedical thesauri to improve the quality of
alignments. MultiOM (Li et al., 2019) models features in
ontologies from multiple views: lexical, structural, and
resource. Then, it optimizes the vectors by limiting the
sampling scope via structural relations in ontologies. Wang
et al. (2021) systematically analyze and verify the effectiveness
of multi-dimensions matching clues, subsequently aggregating
the representation learning clues to boost biomedical ontology
matching.

6.2 Graph Representation Learning
Recently, graph representation learning has gained great attention
as graph neural networks (GNNs) have achieved state-of-the-art
performance in various fields, such as community detection (Gargi
et al., 2011), link prediction (Liben-Nowell and Kleinberg, 2007),
graph alignment (Sun et al., 2018), and node classification (Bhagat
et al., 2011). Some studies (Chen et al., 2017; Wang L et al., 2018)
have used GNNs to achieve graph-embedded entity alignment, as
similar entities often have similar neighborhoods in knowledge
graphs (KG). Considering the attention mechanism, a graph
attention network (Veličković et al., 2018) is proposed to learn
the relatedness and importance propagated from the neighbors to
the centered node. Then the neighboring message is incorporated
with the measured weights. DAEOM (Wu et al., 2020) develops
Siamese graph attention mechanism-based autoencoders to
effectively integrate both the network structure and
terminological description for deep latent representation
learning in ontology matching. Recently, some researchers have
substantiated that data in the form of graphs exhibit a non-
Euclidean latent anatomy (Wilson et al., 2014; Bronstein et al.,
2017). In addition, some recent works (Bronstein et al., 2017;
Nickel and Kiela, 2017) have demonstrated the distinguished
representation ability of hyperbolic manifold to model datasets
with hierarchical layouts, as the hyperbolic geometry performs well
in reflecting hierarchical representations naturally. Inspired by this
insight, numerous research studies focus on investigating the
hyperbolic geometric graph models, such as those by Nickel
and Kiela (2017); Nickel and Kiela (2018); Ganea et al. (2018);
and Hao et al. (2021). MEDTO (Hao et al., 2021) encodes the
hierarchical features of concepts through hyperbolic graph
convolution layers and further captures both local and global
structural information of concepts via heterogeneous graph
layers to learn better concept representations for
ontology matching, and has achieved remarkably competitive
performance.

7 CONCLUSION

In this study, we propose BioHAN for biomedical ontology
matching, a hybrid graph neural network-based auto encoder
to effectively integrate hierarchical structures for latent
representation learning in biomedical ontology matching.
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The proposed framework BioHAN executes ontology
enriching to refine and complement the semantic
information and hierarchical structures. Then it encodes
the geometrical properties of concepts into a hyperbolic
space to capture the hierarchical information through
hyperbolic graph attention layers. We further implement
multi-hop neighboring aggregation to incorporate both the
local and global hierarchical structures with an attention
mechanism to learn better concept representations for
ontology matching. Our experiments conducted on a
variety of biomedical ontologies demonstrate the
effectiveness of BioHAN. Nonetheless, our approach only
considers the subClassOf relationship in the ontology,
which would restrict the capability of graph representation
learning. In the future, it is promising to investigate some
other types of non-isomorphism relations and incorporate the
heterogeneous features into biomedical ontology matching. In
addition, as for the large-scale biomedical ontology, the
matching efficiency would also be taken into account in
future research.
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