378 research outputs found

    Unsupervised Semantic Representation Learning of Scientific Literature Based on Graph Attention Mechanism and Maximum Mutual Information

    Full text link
    Since most scientific literature data are unlabeled, this makes unsupervised graph-based semantic representation learning crucial. Therefore, an unsupervised semantic representation learning method of scientific literature based on graph attention mechanism and maximum mutual information (GAMMI) is proposed. By introducing a graph attention mechanism, the weighted summation of nearby node features make the weights of adjacent node features entirely depend on the node features. Depending on the features of the nearby nodes, different weights can be applied to each node in the graph. Therefore, the correlations between vertex features can be better integrated into the model. In addition, an unsupervised graph contrastive learning strategy is proposed to solve the problem of being unlabeled and scalable on large-scale graphs. By comparing the mutual information between the positive and negative local node representations on the latent space and the global graph representation, the graph neural network can capture both local and global information. Experimental results demonstrate competitive performance on various node classification benchmarks, achieving good results and sometimes even surpassing the performance of supervised learning

    ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ฑด๊ฐ•๋ณดํ—˜ ๋‚จ์šฉ ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ์กฐ์„ฑ์ค€.As global life expectancy increases, spending on healthcare grows in accordance in order to improve quality of life. However, due to expensive price of medical care, the bare cost of healthcare services would inevitably places great financial burden to individuals and households. In this light, many countries have devised and established their own public healthcare insurance systems to help people receive medical services at a lower price. Since reimbursements are made ex-post, unethical practices arise, exploiting the post-payment structure of the insurance system. The archetypes of such behavior are overdiagnosis, the act of manipulating patients diseases, and overtreatments, prescribing unnecessary drugs for the patient. These abusive behaviors are considered as one of the main sources of financial loss incurred in the healthcare system. In order to detect and prevent abuse, the national healthcare insurance hires medical professionals to manually examine whether the claim filing is medically legitimate or not. However, the review process is, unquestionably, very costly and time-consuming. In order to address these limitations, data mining techniques have been employed to detect problematic claims or abusive providers showing an abnormal billing pattern. However, these cases only used coarsely grained information such as claim-level or provider-level data. This extracted information may lead to degradation of the model's performance. In this thesis, we proposed abuse detection methods using the medical treatment data, which is the lowest level information of the healthcare insurance claim. Firstly, we propose a scoring model based on which abusive providers are detected and show that the review process with the proposed model is more efficient than that with the previous model which uses the provider-level variables as input variables. At the same time, we devise the evaluation metrics to quantify the efficiency of the review process. Secondly, we propose the method of detecting overtreatment under seasonality, which reflects more reality to the model. We propose a model embodying multiple structures specific to DRG codes selected as important for each given department. We show that the proposed method is more robust to the seasonality than the previous method. Thirdly, we propose an overtreatment detection model accounting for heterogeneous treatment between practitioners. We proposed a network-based approach through which the relationship between the diseases and treatments is considered during the overtreatment detection process. Experimental results show that the proposed method classify the treatment well which does not explicitly exist in the training set. From these works, we show that using treatment data allows modeling abuse detection at various levels: treatment, claim, and provider-level.์‚ฌ๋žŒ๋“ค์˜ ๊ธฐ๋Œ€์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‚ถ์˜ ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณด๊ฑด์˜๋ฃŒ์— ์†Œ๋น„ํ•˜๋Š” ๊ธˆ์•ก์€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋น„์‹ผ ์˜๋ฃŒ ์„œ๋น„์Šค ๋น„์šฉ์€ ํ•„์—ฐ์ ์œผ๋กœ ๊ฐœ์ธ๊ณผ ๊ฐ€์ •์—๊ฒŒ ํฐ ์žฌ์ •์  ๋ถ€๋‹ด์„ ์ฃผ๊ฒŒ๋œ๋‹ค. ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋งŽ์€ ๊ตญ๊ฐ€์—์„œ๋Š” ๊ณต๊ณต ์˜๋ฃŒ ๋ณดํ—˜ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜์—ฌ ์‚ฌ๋žŒ๋“ค์ด ์ ์ ˆํ•œ ๊ฐ€๊ฒฉ์— ์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ํ™˜์ž๊ฐ€ ๋จผ์ € ์„œ๋น„์Šค๋ฅผ ๋ฐ›๊ณ  ๋‚˜์„œ ์ผ๋ถ€๋งŒ ์ง€๋ถˆํ•˜๊ณ  ๋‚˜๋ฉด, ๋ณดํ—˜ ํšŒ์‚ฌ๊ฐ€ ์‚ฌํ›„์— ํ•ด๋‹น ์˜๋ฃŒ ๊ธฐ๊ด€์— ์ž”์—ฌ ๊ธˆ์•ก์„ ์ƒํ™˜์„ ํ•˜๋Š” ์ œ๋„๋กœ ์šด์˜๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ œ๋„๋ฅผ ์•…์šฉํ•˜์—ฌ ํ™˜์ž์˜ ์งˆ๋ณ‘์„ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํ•˜๋Š” ๋“ฑ์˜ ๋ถ€๋‹น์ฒญ๊ตฌ๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ–‰์œ„๋“ค์€ ์˜๋ฃŒ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ์žฌ์ • ์†์‹ค์˜ ์ด์œ  ์ค‘ ํ•˜๋‚˜๋กœ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋ณดํ—˜ํšŒ์‚ฌ์—์„œ๋Š” ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋ฅผ ๊ณ ์šฉํ•˜์—ฌ ์˜ํ•™์  ์ •๋‹น์„ฑ์—ฌ๋ถ€๋ฅผ ์ผ์ผํžˆ ๊ฒ€์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์€ ๋งค์šฐ ๋น„์‹ธ๊ณ  ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์„ ํšจ์œจ์ ์œผ๋กœ ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š” ์ฒญ๊ตฌ์„œ๋‚˜ ์ฒญ๊ตฌ ํŒจํ„ด์ด ๋น„์ •์ƒ์ ์ธ ์˜๋ฃŒ ์„œ๋น„์Šค ๊ณต๊ธ‰์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ฒญ๊ตฌ์„œ ๋‹จ์œ„๋‚˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์œ ๋„ํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ์‚ฌ๋ก€๋“ค๋กœ, ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ฒญ๊ตฌ์„œ์—์„œ ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ€๋‹น์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ๋น„์ •์ƒ์ ์ธ ์ฒญ๊ตฌ ํŒจํ„ด์„ ๊ฐ–๋Š” ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ๊ธฐ์กด์˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ์‹ฌ์‚ฌ๊ฐ€ ์ด๋ฃจ์–ด ์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๋•Œ, ํšจ์œจ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ์ฒ™๋„๋„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ๋กœ, ์ฒญ๊ตฌ์„œ์˜ ๊ณ„์ ˆ์„ฑ์ด ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋•Œ, ์ง„๋ฃŒ ๊ณผ๋ชฉ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ์šด์˜ํ•˜๋Š” ๋Œ€์‹  ์งˆ๋ณ‘๊ตฐ(DRG) ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค ๊ณ„์ ˆ์„ฑ์— ๋” ๊ฐ•๊ฑดํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ๋กœ, ๋™์ผ ํ™˜์ž์— ๋Œ€ํ•ด์„œ ์˜์‚ฌ๊ฐ„์˜ ์ƒ์ดํ•œ ์ง„๋ฃŒ ํŒจํ„ด์„ ๊ฐ–๋Š” ํ™˜๊ฒฝ์—์„œ์˜ ๊ณผ์ž‰์ง„๋ฃŒ ํƒ์ง€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Š” ํ™˜์ž์˜ ์งˆ๋ณ‘๊ณผ ์ง„๋ฃŒ๋‚ด์—ญ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋Š”๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ํ•™์Šต ๋ฐ์ดํ„ฐ์—์„œ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š” ์ง„๋ฃŒ ํŒจํ„ด์— ๋Œ€ํ•ด์„œ๋„ ์ž˜ ๋ถ„๋ฅ˜ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค๋กœ๋ถ€ํ„ฐ ์ง„๋ฃŒ ๋‚ด์—ญ์„ ํ™œ์šฉํ•˜์˜€์„ ๋•Œ, ์ง„๋ฃŒ๋‚ด์—ญ, ์ฒญ๊ตฌ์„œ, ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž ๋“ฑ ๋‹ค์–‘ํ•œ ๋ ˆ๋ฒจ์—์„œ์˜ ๋ถ€๋‹น ์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 Chapter 2 Detection of Abusive Providers by department with Neural Network 9 2.1 Background 9 2.2 Literature Review 12 2.2.1 Abnormality Detection in Healthcare Insurance with Datamining Technique 12 2.2.2 Feed-Forward Neural Network 17 2.3 Proposed Method 21 2.3.1 Calculating the Likelihood of Abuse for each Treatment with Deep Neural Network 22 2.3.2 Calculating the Abuse Score of the Provider 25 2.4 Experiments 26 2.4.1 Data Description 27 2.4.2 Experimental Settings 32 2.4.3 Evaluation Measure (1): Relative Efficiency 33 2.4.4 Evaluation Measure (2): Precision at k 37 2.5 Results 38 2.5.1 Results in the test set 38 2.5.2 The Relationship among the Claimed Amount, the Abused Amount and the Abuse Score 40 2.5.3 The Relationship between the Performance of the Treatment Scoring Model and Review Efficiency 41 2.5.4 Treatment Scoring Model Results 42 2.5.5 Post-deployment Performance 44 2.6 Summary 45 Chapter 3 Detection of overtreatment by Diagnosis-related Group with Neural Network 48 3.1 Background 48 3.2 Literature review 51 3.2.1 Seasonality in disease 51 3.2.2 Diagnosis related group 52 3.3 Proposed method 54 3.3.1 Training a deep neural network model for treatment classi fication 55 3.3.2 Comparing the Performance of DRG-based Model against the department-based Model 57 3.4 Experiments 60 3.4.1 Data Description and Preprocessing 60 3.4.2 Performance Measures 64 3.4.3 Experimental Settings 65 3.5 Results 65 3.5.1 Overtreatment Detection 65 3.5.2 Abnormal Claim Detection 67 3.6 Summary 68 Chapter 4 Detection of overtreatment with graph embedding of disease-treatment pair 70 4.1 Background 70 4.2 Literature review 72 4.2.1 Graph embedding methods 73 4.2.2 Application of graph embedding methods to biomedical data analysis 79 4.2.3 Medical concept embedding methods 87 4.3 Proposed method 88 4.3.1 Network construction 89 4.3.2 Link Prediction between the Disease and the Treatment 90 4.3.3 Overtreatment Detection 93 4.4 Experiments 96 4.4.1 Data Description 97 4.4.2 Experimental Settings 99 4.5 Results 102 4.5.1 Network Construction 102 4.5.2 Link Prediction between the Disease and the Treatment 104 4.5.3 Overtreatment Detection 105 4.6 Summary 106 Chapter 5 Conclusion 108 5.1 Contribution 108 5.2 Future Work 110 Bibliography 112 ๊ตญ๋ฌธ์ดˆ๋ก 129Docto

    TITAN: A Spatiotemporal Feature Learning Framework for Traffic Incident Duration Prediction

    Full text link
    Critical incident stages identification and reasonable prediction of traffic incident duration are essential in traffic incident management. In this paper, we propose a traffic incident duration prediction model that simultaneously predicts the impact of the traffic incidents and identifies the critical groups of temporal features via a multi-task learning framework. First, we formulate a sparsity optimization problem that extracts low-level temporal features based on traffic speed readings and then generalizes higher level features as phases of traffic incidents. Second, we propose novel constraints on feature similarity exploiting prior knowledge about the spatial connectivity of the road network to predict the incident duration. The proposed problem is challenging to solve due to the orthogonality constraints, non-convexity objective, and non-smoothness penalties. We develop an algorithm based on the alternating direction method of multipliers (ADMM) framework to solve the proposed formulation. Extensive experiments and comparisons to other models on real-world traffic data and traffic incident records justify the efficacy of our model

    A guide to learning modules in a dynamic network

    Get PDF

    A guide to learning modules in a dynamic network

    Get PDF

    Latent Representation and Sampling in Network: Application in Text Mining and Biology.

    Get PDF
    In classical machine learning, hand-designed features are used for learning a mapping from raw data. However, human involvement in feature design makes the process expensive. Representation learning aims to learn abstract features directly from data without direct human involvement. Raw data can be of various forms. Network is one form of data that encodes relational structure in many real-world domains. Therefore, learning abstract features for network units is an important task. In this dissertation, we propose models for incorporating temporal information given as a collection of networks from subsequent time-stamps. The primary objective of our models is to learn a better abstract feature representation of nodes and edges in an evolving network. We show that the temporal information in the abstract feature improves the performance of link prediction task substantially. Besides applying to the network data, we also employ our models to incorporate extra-sentential information in the text domain for learning better representation of sentences. We build a context network of sentences to capture extra-sentential information. This information in abstract feature representation of sentences improves various text-mining tasks substantially over a set of baseline methods. A problem with the abstract features that we learn is that they lack interpretability. In real-life applications on network data, for some tasks, it is crucial to learn interpretable features in the form of graphical structures. For this we need to mine important graphical structures along with their frequency statistics from the input dataset. However, exact algorithms for these tasks are computationally expensive, so scalable algorithms are of urgent need. To overcome this challenge, we provide efficient sampling algorithms for mining higher-order structures from network(s). We show that our sampling-based algorithms are scalable. They are also superior to a set of baseline algorithms in terms of retrieving important graphical sub-structures, and collecting their frequency statistics. Finally, we show that we can use these frequent subgraph statistics and structures as features in various real-life applications. We show one application in biology and another in security. In both cases, we show that the structures and their statistics significantly improve the performance of knowledge discovery tasks in these domains
    • โ€ฆ
    corecore