28 research outputs found

    View Independent Vehicle Make, Model and Color Recognition Using Convolutional Neural Network

    Get PDF
    This paper describes the details of Sighthound's fully automated vehicle make, model and color recognition system. The backbone of our system is a deep convolutional neural network that is not only computationally inexpensive, but also provides state-of-the-art results on several competitive benchmarks. Additionally, our deep network is trained on a large dataset of several million images which are labeled through a semi-automated process. Finally we test our system on several public datasets as well as our own internal test dataset. Our results show that we outperform other methods on all benchmarks by significant margins. Our model is available to developers through the Sighthound Cloud API at https://www.sighthound.com/products/cloudComment: 7 Page

    Learning Compositional Visual Concepts with Mutual Consistency

    Full text link
    Compositionality of semantic concepts in image synthesis and analysis is appealing as it can help in decomposing known and generatively recomposing unknown data. For instance, we may learn concepts of changing illumination, geometry or albedo of a scene, and try to recombine them to generate physically meaningful, but unseen data for training and testing. In practice however we often do not have samples from the joint concept space available: We may have data on illumination change in one data set and on geometric change in another one without complete overlap. We pose the following question: How can we learn two or more concepts jointly from different data sets with mutual consistency where we do not have samples from the full joint space? We present a novel answer in this paper based on cyclic consistency over multiple concepts, represented individually by generative adversarial networks (GANs). Our method, ConceptGAN, can be understood as a drop in for data augmentation to improve resilience for real world applications. Qualitative and quantitative evaluations demonstrate its efficacy in generating semantically meaningful images, as well as one shot face verification as an example application.Comment: 10 pages, 8 figures, 4 tables, CVPR 201

    Learning Representations from Spatio-Temporal Distance Maps for 3D Action Recognition with Convolutional Neural Networks

    Get PDF
    This paper addresses the action recognition problem using skeleton data. In this work, a novel method is proposed, which employs five Distance Maps (DM), named as Spatio-Temporal Distance Maps (ST-DMs), to capture the spatio-temporal information from skeleton data for 3D action recognition. Among five DMs, four DMs capture the pose dynamics within a frame in the spatial domain and one DM captures the variations between consecutive frames along the action sequence in the temporal domain. All DMs are encoded into texture images, and Convolutional Neural Network is employed to learn informative features from these texture images for action classification task. Also, a statistical based normalization method is introduced in this proposed method to deal with variable heights of subjects. The efficacy of the proposed method is evaluated on two datasets: UTD MHAD and NTU RGB+D, by achieving recognition accuracies91.63% and 80.36% respectively
    corecore