193 research outputs found

    Cooperative Control of Multiple Biomimetic Robotic Fish

    Get PDF

    Developing High Performance Linear Carangiform Swimming

    Get PDF
    This thesis examines the linear swimming motion of Carangiform fish, and investigates how to improve the swimming performance of robotic fish within the fields of kinematic modeling and mechanical engineering, in a successful attempt to replicate the high performance of real fish. Intensive research was conducted in order to study the Carangiform swimming motion, where observational studies of the common carp were undertaken. Firstly, a full-body length Carangiform swimming motion is proposed to coordinate the anterior, mid-body and posterior displacements in an attempt to reduce the large kinematic errors in the existing free swimming robotic fish. It optimizes the forces around the centre of mass and initiates the starting moment of added mass upstream therefore increasing performance, in terms of swimming speed. The introduced pattern is experimentally tested against the traditional approach (of posterior confined body motion). A first generation robotic fish is devised with a novel mechanical drive system operating in the two swimming patterns. It is shown conclusively that by coordinating the full-body length of the Carangiform swimming motion a significant increase in linear swimming speed is gained over the traditional posterior confined wave form and reduces the large kinematic errors seen in existing free swimming robotic fish (Achieving the cruising speeds of real fish). Based on the experimental results of the first generation, a further three robotic fish are developed: (A) iSplash-OPTIMIZE: it becomes clear that further tuning of the kinematic parameters may provide a greater performance increase in the distance travelled per tail beat. (B) iSplash-II: it shows that combining the critical aspects of the mechanical drive system of iSplash-I with higher frequencies and higher productive forces can significantly increase maximum velocity. This prototype is able to outperform real Carangiform fish in terms of average maximum velocity (measured in body lengths/ second) and endurance, the duration that top speed is maintained. (C) iSplash-MICRO: it verifies that the mechanical drive system could be reduced in scale to improve navigational exploration, whilst retaining high-speed swimming performance. A small robotic fish is detailed with an equivalent maximum velocity (BL/s) to real fish

    Design of a bioinspired cownose ray robot

    Get PDF

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Efficiency of Fish Propulsion

    Full text link
    It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag

    Energy Based Control System Designs for Underactuated Robot Fish Propulsion

    Get PDF
    In nature through millions of years of evolution fish and cetaceans have developed fast efficient and highly manoeuvrable methods of marine propulsion. A recent explosion in demand for sub sea robotics, for conducting tasks such as sub sea exploration and survey has left developers desiring to capture some of the novel mechanisms evolved by fish and cetaceans to increase the efficiency of speed and manoeuvrability of sub sea robots. Research has revealed that interactions with vortices and other unsteady fluid effects play a significant role in the efficiency of fish and cetaceans. However attempts to duplicate this with robotic fish have been limited by the difficulty of predicting or sensing such uncertain fluid effects. This study aims to develop a gait generation method for a robotic fish with a degree of passivity which could allow the body to dynamically interact with and potentially synchronise with vortices within the flow without the need to actually sense them. In this study this is achieved through the development of a novel energy based gait generation tactic, where the gait of the robotic fish is determined through regulation of the state energy rather than absolute state position. Rather than treating fluid interactions as undesirable disturbances and `fighting' them to maintain a rigid geometric defined gait, energy based control allows the disturbances to the system generated by vortices in the surrounding flow to contribute to the energy of the system and hence the dynamic motion. Three different energy controllers are presented within this thesis, a deadbeat energy controller equivalent to an analytically optimised model predictive controller, a H∞H_\infty disturbance rejecting controller with a novel gradient decent optimisation and finally a error feedback controller with a novel alternative error metric. The controllers were tested on a robotic fish simulation platform developed within this project. The simulation platform consisted of the solution of a series of ordinary differential equations for solid body dynamics coupled with a finite element incompressible fluid dynamic simulation of the surrounding flow. results demonstrated the effectiveness of the energy based control approach and illustrate the importance of choice of controller in performance

    A comparison study of biologically inspired propulsion systems for an autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past two decades. Application areas for AUVs are numerous and varied; from deep sea exploration, to pipeline surveillance to mine clearing. However, one limiting factor with the current technology is the duration of missions that can be undertaken and one contributing factor to this is the efficiency of the propulsion system, which is usually based on marine propellers. As fish are highly efficient swimmers greater propulsive efficiency may be possible by mimicking their fish tail propulsion system. The main concept behind this work was therefore to investigate whether a biomimetic fish-like propulsion system is a viable propulsion system for an underwater vehicle and to determine experimentally the efficiency benefits of using such a system. There have been numerous studies into biomimetic fish like propulsion systems and robotic fish in the past with many claims being made as to the benefits of a fish like propulsion system over conventional marine propulsion systems. These claims include increased efficiency and greater manoeuvrability. However, there is little published experimental data to characterise the propulsive efficiency of a fish like propulsive system. Also, very few direct experimental comparisons have been made between biomimetic and conventional propulsion systems. This work attempts to address these issues by directly comparing experimentally a biomimetic underwater propulsion system to a conventional propulsion system to allow for a better understanding of the potential benefits of the biomimetic system. This work is split into three parts. Firstly, the design and development of a novel prototype vehicle called the RoboSalmon is covered. This vehicle has a biomimetic tendon drive propulsion system which utilizes one servo motor for actuation and has a suite of onboard sensors and a data logger. The second part of this work focuses on the development of a mathematical model of the RoboSalmon vehicle to allow for a better understanding of the dynamics of the system. Simulation results from this model are compared to the experimental results and show good correlation. The final part of the work presents the experimental results obtained comparing the RoboSalmon prototype with the biomimetic tail system to the propeller and rudder system. These experiments include a study into the straight swimming performance, recoil motion, start up transients and power consumption. For forward swimming the maximum surge velocity of the RoboSalmon was 0.18ms-1 and at this velocity the biomimetic system was found to be more efficient than the propeller system. When manoeuvring the biomimetic system was found to have a significantly reduced turning radius. The thesis concludes with a discussion of the main findings from each aspect of the work, covering the benefits obtained from using the tendon drive system in terms of efficiencies and manoeuvring performance. The limitations of the system are also discussed and suggestions for further work are included
    • …
    corecore