406 research outputs found

    Resource management algorithms for real-time wireless sensor networks with applications in cyber-physical systems

    Get PDF
    Wireless Sensor Networks (WSN) are playing a key role in the efficient operation of Cyber Physical Systems (CPS). They provide cost efficient solutions to current and future CPS re- quirements such as real-time structural awareness, faster event localization, cost reduction due to condition based maintenance rather than periodic maintenance, increased opportunities for real-time preventive or corrective control action and fine grained diagnostic analysis. However, there are several critical challenges in the real world applicability of WSN. The low power, low data rate characteristics of WSNs coupled with constraints such as application specified latency and wireless interference present challenges to their efficient integration in CPSs. The existing state of the art solutions lack methods to address these challenges that impediment the easy integration of WSN in CPS. This dissertation develops efficient resource management algorithms enabling WSNs to perform reliable, real-time, cost efficient monitoring. This research addresses three important problems in resource management in the presence of different constraints such as latency, precedence and wireless interference constraints. Additionally, the dissertation proposes a solution to deploy WSNs based real-time monitoring of critical infrastructure such as electrical overhead transmission lines. Firstly, design and analysis of an energy-aware scheduling algorithm encompassing both computation and communication subsystems in the presence of deadline, precedence and in- terference constraints is presented. The energy-delay tradeoff presented by the energy saving technologies such as Dynamic Voltage Scaling (DVS) and Dynamic modulation Scaling (DMS) is studied and methods to leverage it by way of efficient schedule construction is proposed. Performance results show that the proposed polynomial-time heuristic scheduling algorithm offers comparable energy savings to that of the analytically derived optimal solution. Secondly, design, analysis and evaluation of adaptive online algorithms leveraging run- time variations is presented. Specifically, two widely used medium access control schemes are considered and online algorithms are proposed for each. For one, temporal correlation in sensor measurements is exploited and three heuristics with varying complexities are proposed to perform energy minimization using DMS. For another, an adaptive algorithm is proposed addressing channel and load conditions at a node by influencing the selection of either low energy or low delay transmission option. In both cases, the simulation results show that the proposed schemes provide much better energy savings as compared to the existing algorithms. The third component presents design and evaluation of a WSN based framework to mon- itor a CPS namely, electrical overhead transmission line infrastructure. The cost optimized hybrid hierarchical network architecture is composed of a combination of wired, wireless and cellular technologies. The proposed formulation is generic and addresses constraints such as bandwidth and latency; and real world scenarios such as asymmetric sensor data generation, unreliable wireless link behavior, non-uniform cellular coverage and is suitable for cost minimized incremental future deployment. In conclusion, this dissertation addresses several challenging research questions in the area of resource management in WSNs and their applicability in future CPSs through associated algorithms and analyses. The proposed research opens up new avenues for future research such as energy management through network coding and fault diagnosis for reliable monitoring

    Resource Management in Survivable Multi-Granular Optical Networks

    Get PDF
    The last decade witnessed a wild growth of the Internet traffic, promoted by bandwidth-hungry applications such as Youtube, P2P, and VoIP. This explosive increase is expected to proceed with an annual rate of 34% in the near future, which leads to a huge challenge to the Internet infrastructure. One foremost solution to this problem is advancing the optical networking and switching, by which abundant bandwidth can be provided in an energy-efficient manner. For instance, with Wavelength Division Multiplexing (WDM) technology, each fiber can carry a mass of wavelengths with bandwidth up to 100 Gbits/s or higher. To keep up with the traffic explosion, however, simply scaling the number of fibers and/or wavelengths per fiber results in the scalability issue in WDM networks. One major motivation of this dissertation is to address this issue in WDM networks with the idea of waveband switching (WBS). This work includes the author\u27s study on multiple aspects of waveband switching: how to address dynamic user demand, how to accommodate static user demand, and how to achieve a survivable WBS network. When combined together, the proposed approaches form a framework that enables an efficient WBS-based Internet in the near future or the middle term. As a long-term solution for the Internet backbone, the Spectrum Sliced Elastic Optical Path (SLICE) Networks recently attract significant interests. SLICE aims to provide abundant bandwidth by managing the spectrum resources as orthogonal sub-carriers, a finer granular than wavelengths of WDM networks. Another important component of this dissertation is the author\u27s timely study on this new frontier: particulary, how to efficiency accommodate the user demand in SLICE networks. We refer to the overall study as the resource management in multi-granular optical networks. In WBS networks, the multi-granularity includes the fiber, waveband, and wavelength. While in SLICE networks, the traffic granularity refers to the fiber, and the variety of the demand size (in terms of number of sub-carriers)

    Link failure protection and restoration in WDM optical networks

    Get PDF
    In a wavelength-division-multiplexing (WDM) optical network, the failure of fiber links may cause the failure of multiple optical channels, thereby leading to large data loss. Therefore the survivable WDM optical networks where the affected traffic under link failure can be restored, have been a matter of much concern. On the other hand, network operators want options that are more than just survivable, but more flexible and more efficient in the use of capacity. In this thesis, we propose our cost-effective approaches to survive link failures in WDM optical networks. Dynamic establishment of restorable connections in WDM networks is an important problem that has received much study. Existing algorithms use either path-based method or link-based method to protect a dynamic connection; the former suffers slow restoration speed while the latter requires complicated online backup path computation. We propose a new dynamic restorable connection establishment algorithm using p-cycle protection. For a given connection request, our algorithm first computes a working path and then computes a set of p-cycles to protect the links on the working path so that the connection can survive any single link failure. The key advantage of the proposed algorithm over the link-based method is that it enables faster failure restoration while requires much simpler online computation for connection establishment. Tree-based schemes offer several advantages such as scalability, failure impact restriction and distributed processing. We present a new tree-based link protection scheme to improve the hierarchical protection tree (p-tree) scheme [31] for single link failure in mesh networks, which achieves 100% restorability in an arbitrary 2-connected network. To minimize the total spare capacity for single link failure protection, an integer linear programming (ILP) formulation is provided. We also develop a fast double-link failure restoration scheme by message signaling to take advantage of the scalable and distributed processing capability of tree structure

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Network Function Virtualization Service Delivery In Future Internet

    Get PDF
    This dissertation investigates the Network Function Virtualization (NFV) service delivery problems in the future Internet. With the emerging Internet of everything, 5G communication and multi-access edge computing techniques, tremendous end-user devices are connected to the Internet. The massive quantity of end-user devices facilitates various services between the end-user devices and the cloud/edge servers. To improve the service quality and agility, NFV is applied. In NFV, the customer\u27s data from these services will go through multiple Service Functions (SFs) for processing or analysis. Unlike traditional point-to-point data transmission, a particular set of SFs and customized service requirements are needed to be applied to the customer\u27s traffic flow, which makes the traditional point-to-point data transmission methods not directly used. As the traditional point-to-point data transmission methods cannot be directly applied, there should be a body of novel mechanisms that effectively deliver the NFV services with customized~requirements. As a result, this dissertation proposes a series of mechanisms for delivering NFV services with diverse requirements. First, we study how to deliver the traditional NFV service with a provable boundary in unique function networks. Secondly, considering both forward and backward traffic, we investigate how to effectively deliver the NFV service when the SFs required in forward and backward traffic is not the same. Thirdly, we investigate how to efficiently deliver the NFV service when the required SFs have specific executing order constraints. We also provide detailed analysis and discussion for proposed mechanisms and validate their performance via extensive simulations. The results demonstrate that the proposed mechanisms can efficiently and effectively deliver the NFV services under different requirements and networking conditions. At last, we also propose two future research topics for further investigation. The first topic focuses on parallelism-aware service function chaining and embedding. The second topic investigates the survivability of NFV services

    Network slicing architecture for SDM and analog-radio-over-fiber-based 5G fronthaul networks

    Get PDF
    \u3cp\u3eThe blueSPACE project focuses on the study of innovative technologies to overcome the limitations of current fronthaul networks. The key technology proposed is space-division multiplexing, which makes it possible to increase the capacity available in conventional single-mode fibers, effectively encompassing this capacity to the forecasted bandwidth demands imposed by 5G mobile communications. In this paper, we present the innovative optical fronthaul infrastructure proposed in the project and the tailored extensions to the European Telecommunications Standards Institute network function virtualization management and orchestration architecture for this enhanced infrastructure together with practical implementation considerations.\u3c/p\u3
    corecore