99 research outputs found

    Corners-based Image Information Hiding Method

    Get PDF
    The huge explosion of information over World Wide Web forces us to use information security methods to keep it away fromintruders. One of these security methods is information hiding method. Advantage of this method over other security methods is hidingexistence of data using carrier to hold this data embedding inside it. Image-based information hiding represents one of widely usedhiding methods due to the image capability of holding large amount of data as well as its resistance to detectable distortion. In lastdecades, statistical methods (types of stego-analysis methods) are used to detect existing of hidden data. Therefore, areas that have colorvariation (edges area) are used to hide data instead of smooth areas. In this paper, Corners points are proposed to hide data instead ofedges, this to avoid statistical attacks that are used to expose hidden message. Additionally, this paper proposes clearing least significantbit (CLSB) method to retrieve data from stego-image without sending pixels' map; this will increase security of the proposed cornerbasedhiding method. Experimental results show that the proposed method is robust against statistical attacks compared with edge-and sequential-based hiding methods. SVM classifier also confirms the outperformance of the proposed method over the previous methods by using Corel-1000image dataset

    Performance Evaluation of Exponential Discriminant Analysis with Feature Selection for Steganalysis

    Get PDF
    The performance of supervised learning-based seganalysis depends on the choice of both classifier and features which represent the image. Features extracted from images may contain irrelevant and redundant features which makes them inefficient for machine learning. Relevant features not only decrease the processing time to train a classifier but also provide better generalisation. Linear discriminant classifier which is commonly used for classification may not be able to classify in better way non-linearly separable data. Recently, exponential discriminant analysis, a variant of linear discriminant analysis (LDA), is proposed which transforms the scatter matrices to a new space by distance diffusion mapping. This provides exponential discriminant analysis (EDA) much more discriminant power to classify non-linearly separable data and helps in improving classification accuracy in comparison to LDA. In this paper, the performance of EDA in conjunction with feature selection methods has been investigated. For feature selection, Kullback divergence, Chernoff distance measures and linear regression measures are used to determine relevant features from higher-order statistics of images. The performance is evaluated in terms classification error and computation time. Experimental results show that exponential discriminate analysis in conjunction with linear regression significantly performs better in terms of both classification error and compilation time of training classifier.Defence Science Journal, 2012, 62(1), pp.19-24, DOI:http://dx.doi.org/10.14429/dsj.62.143

    Review on Lightweight Cryptography Techniques and Steganography Techniques for IOT Environment

    Get PDF
    In the modern world, technology has connected to our day-to-day life in different forms. The Internet of Things (IoT) has become an innovative criterion for mass implementations and a part of daily life. However, this rapid growth leads the huge traffic and security problems. There are several challenges arise while deploying IoT. The most common challenges are privacy and security during data transmission. To address these issues, various lightweight cryptography and steganography techniques were introduced. These techniques are helpful in securing the data over the IoT. The hybrid of cryptography and steganography mechanisms provides enhanced security to confidential messages. Any messages can be secured by cryptography or by embedding the messages into any media files, including text, audio, image, and video, using steganography. Hence, this article has provided a detailed review of efficient, lightweight security solutions based on cryptography and steganography and their function over IoT applications. The objective of the paper is to study and analyze various Light weight cryptography techniques and Steganography techniques for IoT. A few works of literature were reviewed in addition to their merits and limitations. Furthermore, the common problems in the reviewed techniques are explained in the discussion section with their parametric comparison. Finally, the future scope to improve IoT security solutions based on lightweight cryptography and steganography is mentioned in the conclusion part

    Hiding Functions within Functions: Steganography by Implicit Neural Representations

    Full text link
    Deep steganography utilizes the powerful capabilities of deep neural networks to embed and extract messages, but its reliance on an additional message extractor limits its practical use due to the added suspicion it can raise from steganalyzers. To address this problem, we propose StegaINR, which utilizes Implicit Neural Representation (INR) to implement steganography. StegaINR embeds a secret function into a stego function, which serves as both the message extractor and the stego media for secure transmission on a public channel. Recipients need only use a shared key to recover the secret function from the stego function, allowing them to obtain the secret message. Our approach makes use of continuous functions, enabling it to handle various types of messages. To our knowledge, this is the first work to introduce INR into steganography. We performed evaluations on image and climate data to test our method in different deployment contexts

    Hybrid chaotic map with L-shaped fractal Tromino for image encryption and decryption

    Get PDF
    Insecure communication in digital image security and image storing are considered as important challenges. Moreover, the existing approaches face problems related to improper security at the time of image encryption and decryption. In this research work, a wavelet environment is obtained by transforming the cover image utilizing integer wavelet transform (IWT) and hybrid discrete cosine transform (DCT) to completely prevent false errors. Then the proposed hybrid chaotic map with L-shaped fractal Tromino offers better security to maintain image secrecy by means of encryption and decryption. The proposed work uses fractal encryption with the combination of L-shaped Tromino theorem for enhancement of information hiding. The regions of L-shaped fractal Tromino are sensitive to variations, thus are embedded in the watermark based on a visual watermarking technique known as reversible watermarking. The experimental results showed that the proposed method obtained peak signal-to-noise ratio (PSNR) value of 56.82dB which is comparatively higher than the existing methods that are, Beddington, free, and Lawton (BFL) map with PSNR value of 8.10 dB, permutation substitution, and Boolean operation with PSNR value of 21.19 dB and deoxyribonucleic acid (DNA) level permutation-based logistic map with PSNR value of 21.27 dB

    Adaptive spatial image steganography and steganalysis using perceptual modelling and machine learning

    Get PDF
    Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research.Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research

    Machine learning based digital image forensics and steganalysis

    Get PDF
    The security and trustworthiness of digital images have become crucial issues due to the simplicity of malicious processing. Therefore, the research on image steganalysis (determining if a given image has secret information hidden inside) and image forensics (determining the origin and authenticity of a given image and revealing the processing history the image has gone through) has become crucial to the digital society. In this dissertation, the steganalysis and forensics of digital images are treated as pattern classification problems so as to make advanced machine learning (ML) methods applicable. Three topics are covered: (1) architectural design of convolutional neural networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model classification, and (3) real-world tampering detection and localization. For covert communications, steganography is used to embed secret messages into images by altering pixel values slightly. Since advanced steganography alters the pixel values in the image regions that are hard to be detected, the traditional ML-based steganalytic methods heavily relied on sophisticated manual feature design have been pushed to the limit. To overcome this difficulty, in-depth studies are conducted and reported in this dissertation so as to move the success achieved by the CNNs in computer vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a proposed CNN architecture incorporating the domain knowledge of steganography and steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN is currently one of the best classifiers against steganography. Camera model classification from images aims at assigning a given image to its source capturing camera model based on the statistics of image pixel values. For this, two types of statistical features are designed to capture the traces left by in-camera image processing algorithms. The first is Markov transition probabilities modeling block-DCT coefficients for JPEG images; the second is based on histograms of local binary patterns obtained in both the spatial and wavelet domains. The designed features serve as the input to train support vector machines, which have the best classification performance at the time the features are proposed. The last part of this dissertation documents the solutions delivered by the author’s team to The First Image Forensics Challenge organized by the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. In the competition, all the fake images involved were doctored by popular image-editing software to simulate the real-world scenario of tampering detection (determine if a given image has been tampered or not) and localization (determine which pixels have been tampered). In Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector equipped with PatchMatch as a fast approximate nearest neighbor searching method were developed to identify duplicated regions within images. With these tools, the author’s team won the runner-up prizes in both the two phases of the Challenge

    ARMAS: Active Reconstruction of Missing Audio Segments

    Full text link
    Digital audio signal reconstruction of a lost or corrupt segment using deep learning algorithms has been explored intensively in recent years. Nevertheless, prior traditional methods with linear interpolation, phase coding and tone insertion techniques are still in vogue. However, we found no research work on reconstructing audio signals with the fusion of dithering, steganography, and machine learning regressors. Therefore, this paper proposes the combination of steganography, halftoning (dithering), and state-of-the-art shallow (RF- Random Forest regression) and deep learning (LSTM- Long Short-Term Memory) methods. The results (including comparing the SPAIN, Autoregressive, deep learning-based, graph-based, and other methods) are evaluated with three different metrics. The observations from the results show that the proposed solution is effective and can enhance the reconstruction of audio signals performed by the side information (e.g., Latent representation and learning for audio inpainting) steganography provides. Moreover, this paper proposes a novel framework for reconstruction from heavily compressed embedded audio data using halftoning (i.e., dithering) and machine learning, which we termed the HCR (halftone-based compression and reconstruction). This work may trigger interest in optimising this approach and/or transferring it to different domains (i.e., image reconstruction). Compared to existing methods, we show improvement in the inpainting performance in terms of signal-to-noise (SNR), the objective difference grade (ODG) and the Hansen's audio quality metric.Comment: 9 pages, 2 Tables, 8 Figure
    • …
    corecore