9,719 research outputs found

    Cross domain recommender systems using matrix and tensor factorization

    Get PDF
    Today, the amount and importance of available data on the internet are growing exponentially. These digital data has become a primary source of information and the people’s life bonded to them tightly. The data comes in diverse shapes and from various resources and users utilize them in almost all their personal or social activities. However, selecting a desirable option from the huge list of available options can be really frustrating and time-consuming. Recommender systems aim to ease this process by finding the proper items which are more likely to be interested by users. Undoubtedly, there is not even one social media or online service which can continue its’ work properly without using recommender systems. On the other hand, almost all available recommendation techniques suffer from some common issues: the data sparsity, the cold-start, and the new-user problems. This thesis tackles the mentioned problems using different methods. While, most of the recommender methods rely on using single domain information, in this thesis, the main focus is on using multi-domain information to create cross-domain recommender systems. A cross-domain recommender system is not only able to handle the cold-start and new-user situations much better, but it also helps to incorporate different features exposed in diverse domains together and capture a better understanding of the users’ preferences which means producing more accurate recommendations. In this thesis, a pre-clustering stage is proposed to reduce the data sparsity as well. Various cross-domain knowledge-based recommender systems are suggested to recommend items in two popular social media, the Twitter and LinkedIn, by using different information available in both domains. The state of art techniques in this field, namely matrix factorization and tensor decomposition, are implemented to develop cross-domain recommender systems. The presented recommender systems based on the coupled nonnegative matrix factorization and PARAFAC-style tensor decomposition are evaluated using real-world datasets and it is shown that they superior to the baseline matrix factorization collaborative filtering. In addition, network analysis is performed on the extracted data from Twitter and LinkedIn

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Tensor approximation in visualization and graphics

    Full text link
    In this course, we will introduce the basic concepts of tensor approximation (TA) – a higher-order generalization of the SVD and PCA methods – as well as its applications to visual data representation, analysis and visualization, and bring the TA framework closer to visualization and computer graphics researchers and practitioners. The course will cover the theoretical background of TA methods, their properties and how to compute them, as well as practical applications of TA methods in visualization and computer graphics contexts. In a first theoretical part, the attendees will be instructed on the necessary mathematical background of TA methods to learn the basics skills of using and applying these new tools in the context of the representation of large multidimensional visual data. Specific and very noteworthy features of the TA framework are highlighted which can effectively be exploited for spatio-temporal multidimensional data representation and visualization purposes. In two application oriented sessions, compact TA data representation in scientific visualization and computer graphics as well as decomposition and reconstruction algorithms will be demonstrated. At the end of the course, the participants will have a good basic knowledge of TA methods along with a practical understanding of its potential application in visualization and graphics related projects

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro
    • …
    corecore