5 research outputs found

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    The enablers and implementation model for mobile KMS in Australian healthcare

    Get PDF
    In this research project, the enablers in implementing mobile KMS in Australian regional healthcare will be investigated, and a validated framework and guidelines to assist healthcare in implementing mobile KMS will also be proposed with both qualitative and quantitative approaches. The outcomes for this study are expected to improve the understanding the enabling factors in implementing mobile KMS in Australian healthcare, as well as provide better guidelines for this process

    Hybrid wrapper-filter approaches for input feature selection using maximum relevance and Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA)

    Get PDF
    Feature selection is an important research problem in machine learning and data mining applications. This paper proposes a hybrid wrapper and filter feature selection algorithm by introducing the filter's feature ranking score in the wrapper stage to speed up the search process for wrapper and thereby finding a more compact feature subset. The approach hybridizes a Mutual Information (MI) based Maximum Relevance (MR) filter ranking heuristic with an Artificial Neural Network (ANN) based wrapper approach where Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA) has been combined with MR (MR-ANNIGMA) to guide the search process in the wrapper. The novelty of our approach is that we use hybrid of wrapper and filter methods that combines filter's ranking score with the wrapper-heuristic's score to take advantages of both filter and wrapper heuristics. Performance of the proposed MRANNIGMA has been verified using bench mark data sets and compared to both independent filter and wrapper based approaches. Experimental results show that MR-ANNIGMA achieves more compact feature sets and higher accuracies than both filter and wrapper approaches alone. © 2010 IEEE

    Optimum Feature Selection for Recognizing Objects from Satellite Imagery Using Genetic Algorithm

    Get PDF
    Object recognition is a research area that aims to associate objects to categories or classes. Usually recognition of object specific geospatial features, as building, tree, mountains, roads, and rivers from high-resolution satellite imagery is a time consuming and expensive problem in the maintenance cycle of a Geographic Information System (GIS). Feature selection is the task of selecting a small subset from original features that can achieve maximum classification accuracy and reduce data dimensionality. This subset of features has some very important benefits like, it reduces computational complexity of learning algorithms, saves time, improve accuracy and the selected features can be insightful for the people involved in problem domain. This makes feature selection as an indispensable task in classification task. In our work, we propose wrapper approach based on Genetic Algorithm (GA) as an optimization algorithm to search the space of all possible subsets related to object geospatial features set for the purpose of recognition. GA is wrapped with three different classifier algorithms namely neural network, k-nearest neighbor and decision tree J48 as subset evaluating mechanism. The GA-ANN, GA-KNN and GA-J48 methods are implemented using the WEKA software on dataset that contains 38 extracted features from satellite images using ENVI software. The proposed wrapper approach incorporated the Correlation Ranking Filter (CRF) for spatial features to remove unimportant features. Results suggest that GA based neural classifiers and using CRF for spatial features are robust and effective in finding optimal subsets of features from large data sets

    Forensic identification and detection of hidden and obfuscated malware

    Get PDF
    The revolution in online criminal activities and malicious software (malware) has posed a serious challenge in malware forensics. Malicious attacks have become more organized and purposefully directed. With cybercrimes escalating to great heights in quantity as well as in sophistication and stealth, the main challenge is to detect hidden and obfuscated malware. Malware authors use a variety of obfuscation methods and specialized stealth techniques of information hiding to embed malicious code, to infect systems and to thwart any attempt to detect them, specifically with the use of commercially available anti-malware engines. This has led to the situation of zero-day attacks, where malware inflict systems even with existing security measures. The aim of this thesis is to address this situation by proposing a variety of novel digital forensic and data mining techniques to automatically detect hidden and obfuscated malware. Anti-malware engines use signature matching to detect malware where signatures are generated by human experts by disassembling the file and selecting pieces of unique code. Such signature based detection works effectively with known malware but performs poorly with hidden or unknown malware. Code obfuscation techniques, such as packers, polymorphism and metamorphism, are able to fool current detection techniques by modifying the parent code to produce offspring copies resulting in malware that has the same functionality, but with a different structure. These evasion techniques exploit the drawbacks of traditional malware detection methods, which take current malware structure and create a signature for detecting this malware in the future. However, obfuscation techniques aim to reduce vulnerability to any kind of static analysis to the determent of any reverse engineering process. Furthermore, malware can be hidden in file system slack space, inherent in NTFS file system based partitions, resulting in malware detection that even more difficult.Doctor of Philosoph
    corecore