61 research outputs found

    A decentralized spectrum allocation and partitioning scheme for a two-tier macro-femtocell network with downlink beamforming

    Get PDF
    This article examines spectrum allocation and partitioning schemes to mitigate cross-tier interference under downlink beamforming environments. The enhanced SIR owing to beamforming allows more femtocells to share their spectrum with the macrocell and accordingly improves overall spectrum efficiency. We first design a simplified centralized scheme as the optimum and then propose a practical decentralized algorithm that determines which femtocells to use the full or partitioned spectrum with acceptable control overhead. To exploit limited information of the received signal strength efficiently, we consider two types of probabilistic femtocell base station (HeNB) selection policies. They are equal selection and interference weighted selection policies, and we drive their outage probabilities for a macrocell user. Through performance evaluation, we demonstrate that the outage probability and the cell capacity in our decentralized scheme are significantly better than those in a conventional cochannel deployment scheme. Furthermore, we show that the cell utility in our proposed scheme is close to that in the centralized scheme and better than that in the spectrum partitioning scheme with a fixed ratio.open0

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Femtocell Networks: A Survey

    Full text link
    The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hotspots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells, also called home base-stations, which are data access points installed by home users get better indoor voice and data coverage. In this article, we overview the technical and business arguments for femtocells, and describe the state-of-the-art on each front. We also describe the technical challenges facing femtocell networks, and give some preliminary ideas for how to overcome them.Comment: IEEE Communications Magazine, vol. 46, no.9, pp. 59-67, Sept. 200

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Application of fractional frequency reuse technique for cancellation of interference in heterogeneous cellular network

    Get PDF
    The continuously growing number of mobile devices in terms of hardware and applications augments the necessity for higher data rates and a larger capacity in wireless communication networks. The Long Term Evolution (LTE) standard was designed to provide these mobile users with a better throughput, coverage and a lower latency. This thesis studies a specific area in Heterogeneous Networks; the subject of femtocells. The aim of femtocells is to provide better indoor coverage so as to allow users to benefit from higher data rates while reducing the load on the macro cell. Femtocells were proposed for Long Term Evolution (LTE) for indoor coverage. It is achieved using access points by home users. However, co-channel interference is a serious issue with femtocells that may dramatically reduce the performance of femto and macrocells. The system capacity and throughput decreases. As femtocells use the same spectrum as the macrocells, and the femtocells are deployed without proper planning, interference from femtocells to macrocells becomes a major issue. In this thesis, the interference from femtocells to macrocells is studied and a solution for the mitigation of this kind of interference is suggested using FFR mechanism. In our proposed scheme for interference avoidance, femtocells use those frequency sub bands which are currently not being used within the macrocell, the process of assigning the frequency bands is based on FFR. The simulation results suggest that the suggested technique enhances total/edge throughputs, and optimizes the SINR and CDF of femtocells users (FUEs) and reduces the outage probability of the network

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v
    corecore