227,732 research outputs found

    Hybrid solutions to the feature interaction problem

    Get PDF
    In this paper we assume a competitive marketplace where the features are developed by different enterprises, which cannot or will not exchange information. We present a classification of feature interaction in this setting and introduce an on-line technique which serves as a basis for the two novel <i>hybrid</i> approaches presented. The approaches are hybrid as they are neither strictly off-line nor on-line, but combine aspects of both. The two approaches address different kinds of feature interactions, and thus are complimentary. Together they provide a complete solution by addressing interaction detection and resolution. We illustrate the techniques within the communication networks domain

    ADVANCED IMPLEMENTATIONS OF THE ITERATIVE MULTI REGION TECHNIQUE

    Get PDF
    The integration of the finite-difference time-domain (FDTD) method into the iterative multi-region (IMR) technique, an iterative approach used to solve large-scale electromagnetic scattering and radiation problems, is presented in this dissertation. The idea of the IMR technique is to divide a large problem domain into smaller subregions, solve each subregion separately, and combine the solutions of subregions after introducing the effect of interaction to obtain solutions at multiple frequencies for the large domain. Solution of the subregions using the frequency domain solvers has been the preferred approach as such solutions using time domain solvers require computationally expensive bookkeeping of time signals between subregions. In this contribution we present an algorithm that makes it feasible to use the FDTD method, a time domain numerical technique, in the IMR technique to obtain solutions at a pre-specified number of frequencies in a single simulation. As a result, a considerable reduction in memory storage requirements and computation time is achieved. A hybrid method integrated into the IMR technique is also presented in this work. This hybrid method combines the desirable features of the method of moments (MoM) and the FDTD method to solve large-scale radiation problems more efficiently. The idea of this hybrid method based on the IMR technique is to divide an original problem domain into unconnected subregions and use the more appropriate method in each domain. The most prominent feature of this proposed method is to obtain solutions at multiple frequencies in a single IMR simulation by constructing time-limited waveforms. The performance of the proposed method is investigated numerically using different configurations composed of two, three, and four objects

    Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines

    Get PDF
    In Software Product Lines (SPLs) it is not possible, in general, to test all products of the family. The number of products denoted by a SPL is very high due to the combinatorial explosion of features. For this reason, some coverage criteria have been proposed which try to test at least all feature interactions without the necessity to test all products, e.g., all pairs of features (pairwise coverage). In addition, it is desirable to first test products composed by a set of priority features. This problem is known as the Prioritized Pairwise Test Data Generation Problem. In this work we propose two hybrid algorithms using Integer Programming (IP) to generate a prioritized test suite. The first one is based on an integer linear formulation and the second one is based on a integer quadratic (nonlinear) formulation. We compare these techniques with two state-of-the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and a greedy algorithm called prioritized-ICPL. Our study reveals that our hybrid nonlinear approach is clearly the best in both, solution quality and computation time. Moreover, the nonlinear variant (the fastest one) is 27 and 42 times faster than PPGS in the two groups of instances analyzed in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2014-57341-R, the University of Málaga, Andalucía Tech and the Spanish Network TIN2015-71841-REDT (SEBASENet)

    How strange are compact star interiors ?

    Full text link
    We discuss a Nambu--Jona-Lasinio (NJL) type quantum field theoretical approach to the quark matter equation of state with color superconductivity and construct hybrid star models on this basis. It has recently been demonstrated that with increasing baryon density, the different quark flavors may occur sequentially, starting with down-quarks only, before the second light quark flavor and at highest densities also the strange quark flavor appears. We find that color superconducting phases are favorable over non-superconducting ones which entails consequences for thermodynamic and transport properties of hybrid star matter. In particular, for NJL-type models no strange quark matter phases can occur in compact star interiors due to mechanical instability against gravitational collapse, unless a sufficiently strong flavor mixing as provided by the Kobayashi-Maskawa-'t Hooft determinant interaction is present in the model. We discuss observational data on mass-radius relationships of compact stars which can put constraints on the properties of dense matter equation of state.Comment: 7 pages, 2 figures, to appear in the Proceedings of the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    Modelling Hybrid Stars in Quark-Hadron Approaches

    Full text link
    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated.Comment: Contribution to the EPJA Topical Issue on "Exotic Matter in Neutron Stars
    corecore