27,486 research outputs found

    Coherent optical wavelength conversion via cavity-optomechanics

    Get PDF
    We theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi

    Erasing the orbital angular momentum information of a photon

    Full text link
    Quantum erasers with paths in the form of physical slits have been studied extensively and proven instrumental in probing wave-particle duality in quantum mechanics. Here we replace physical paths (slits) with abstract paths of orbital angular momentum (OAM). Using spin-orbit hybrid entanglement of photons we show that the OAM content of a photon can be erased with a complimentary polarization projection of one of the entangled pair. The result is the (dis)appearance of azimuthal fringes based on whether the \which-OAM" information was erased. We extend this concept to a delayed measurement scheme and show that the OAM information and fringe visibility are complimentary

    The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy

    Get PDF
    We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument (LFI) osbervations (Mandolesi et al 1998) and describe a simple method for removing striping effects from the maps for a number of different scanning stategies. A configuration with an angle between telescope optical axis and spin-axis just less than 90 degrees (namely 85 degress) shows good destriping efficiency for all receivers in the focal plane, with residual noise degradation < 1-2 %. In this configuration, the full sky coverage can be achieved for each channel separately with a 5 degrees spin-axis precession to maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript figure

    Charmonium Decays of $Y(4260), psi(4160), and psi(4040)

    Full text link
    Using data collected with the CLEO detector operating at the CESR e+e- collider at sqrt s = 3.97-4.26 GeV, we investigate 15 charmonium decay modes of the psi(4040), psi(4160), and Y(4260) resonances. We confirm, at 11σ\sigma significance, the BaBar Y(4260) --> pi+ pi- J/psi discovery, make the first observation of Y(4260) --> pi0 pi0 J/psi (5.1 sigma), and find the first evidence for Y(4260) --> K+ K- J/psi (3.7 sigma). We measure e+e- cross-sections at sqrt s = 4.26 GeV as sigma(pi+ pi- J/psi) = 58 +12-10 +- 4 pb, sigma(pi0 pi0 J/psi) = 23 +12 -8 +- 1 pb, and sigma(K+ K- J/psi) = 9 +9 -5 +- 1 pb, in which the uncertainties are statistical and systematic, respectively. Upper limits are placed on other decay rates from all three resonances.Comment: 11 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2006/, Submitted to PR

    Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Full text link
    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data is complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.Comment: 21 pages, including 2 pages of supplementary materia

    A bright nanowire single photon source based on SiV centers in diamond

    Get PDF
    The practical implementation of many quantum technologies relies on the development of robust and bright single photon sources that operate at room temperature. The negatively charged silicon-vacancy (SiV-) color center in diamond is a possible candidate for such a single photon source. However, due to the high refraction index mismatch to air, color centers in diamond typically exhibit low photon out-coupling. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion efficiency to single SiV- centers, targeted to fabricated nanowires. The co-localization of single SiV- centers with the nanostructures yields a ten times higher light coupling efficiency than for single SiV- centers in bulk diamond. This enhanced photon out-coupling, together with the intrinsic scalability of the SiV- creation method, enables a new class of devices for integrated photonics and quantum science.Comment: 15 pages, 5 figure

    Enhanced relativistic-electron beam collimation using two consecutive laser pulses

    Full text link
    The double laser pulse approach to relativistic electron beam (REB) collimation has been investigated at the LULI-ELFIE facility. In this scheme, the magnetic field generated by the first laser-driven REB is used to guide a second delayed REB. We show how electron beam collimation can be controlled by properly adjusting laser parameters. By changing the ratio of focus size and the delay time between the two pulses we found a maximum of electron beam collimation clearly dependent on the focal spot size ratio of the two laser pulses and related to the magnetic field dynamics. Cu-K alpha and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy ( MeV) components of the REB
    corecore