286 research outputs found

    A Flexible LDPC/Turbo Decoder Architecture

    Get PDF
    Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio

    Design of a GF(64)-LDPC Decoder Based on the EMS Algorithm

    No full text
    International audienceThis paper presents the architecture, performance and implementation results of a serial GF(64)-LDPC decoder based on a reduced-complexity version of the Extended Min-Sum algorithm. The main contributions of this work correspond to the variable node processing, the codeword decision and the elementary check node processing. Post-synthesis area results show that the decoder area is less than 20% of a Virtex 4 FPGA for a decoding throughput of 2.95 Mbps. The implemented decoder presents performance at less than 0.7 dB from the Belief Propagation algorithm for different code lengths and rates. Moreover, the proposed architecture can be easily adapted to decode very high Galois Field orders, such as GF(4096) or higher, by slightly modifying a marginal part of the design

    Decoding of Decode and Forward (DF) Relay Protocol using Min-Sum Based Low Density Parity Check (LDPC) System

    Get PDF
    Decoding high complexity is a major issue to design a decode and forward (DF) relay protocol. Thus, the establishment of low complexity decoding system would beneficial to assist decode and forward relay protocol. This paper reviews existing methods for the min-sum based LDPC decoding system as the low complexity decoding system. Reference lists of chosen articles were further reviewed for associated publications. This paper introduces comprehensive system model representing and describing the methods developed for LDPC based for DF relay protocol. It is consists of a number of components: (1) encoder and modulation at the source node, (2) demodulation, decoding, encoding and modulation at relay node, and (3) demodulation and decoding at the destination node. This paper also proposes a new taxonomy for min-sum based LDPC decoding techniques, highlights some of the most important components such as data used, result performances and profiles the Variable and Check Node (VCN) operation methods that have the potential to be used in DF relay protocol. Min-sum based LDPC decoding methods have the potential to provide an objective measure the best tradeoff between low complexities decoding process and the decoding error performance, and emerge as a cost-effective solution for practical application

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    Binary Message Passing Decoding of Product-like Codes

    Get PDF
    We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to 0.290.29 dB and 0.310.31 dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.Comment: Accepted for publication in the IEEE Transactions on Communication

    Field-programmable gate-array (FPGA) implementation of low-density parity-check (LDPC) decoder in digital video broadcasting - second generation satellite (DVB-S2)

    Get PDF
    In recent years, LDPC codes are gaining a lot of attention among researchers. Its near-Shannon performance combined with its highly parallel architecture and lesser complexity compared to Turbo-codes has made LDPC codes one of the most popular forward error correction (FEC) codes in most of the recently ratified wireless communication standards. This thesis focuses on one of these standards, namely the DVB-S2 standard that was ratified in 2005. In this thesis, the design and architecture of a FPGA implementation of an LDPC decoder for the DVB-S2 standard are presented. The decoder architecture is an improvement over others that are published in the current literature. Novel algorithms are devised to use a memory mapping scheme that allows for 360 functional units (FUs) used in decoding to be implemented using the Sum-Product Algorithm (SPA). The functional units (FU) are optimized for reduced hardware resource utilization on a FPGA with a large number of configurable logic blocks (CLBs) and memory blocks. A novel design of a parity-check module (PCM) is presented that verifies the parity-check equations of the LDPC codes. Furthermore, a special characteristic of five of the codes defined in the DVB-S2 standard and their influence on the decoder design is discussed. Three versions of the LDPC decoder are implemented, namely the 360-FU decoder, the 180-FU decoder and the hybrid 360/180-FU decoder. The decoders are synthesized for two FPGAs. A Xilinx Virtex-II Pro family FPGA is used for comparison purposes and a Xilinx Virtex-6 family FPGA is used to demonstrate the portability of the design. The synthesis results show that the hardware resource utilization and minimum throughput of the decoders presented are competitive with a DVB-S2 LDPC decoder found in the current literature that also uses FPGA technology
    • …
    corecore