
Field-Programmable Gate-Array (FPGA)

Implementation of Low-Density

Parity-Check (LDPC) Decoder in Digital

Video Broadcasting – Second Generation

Satellite (DVB-S2)

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

By

Kung Chi Cinnati Loi

c©Kung Chi Cinnati Loi, August 2010. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226116279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan

Canada, S7N 5A9

i

Abstract

In recent years, LDPC codes are gaining a lot of attention among researchers. Its near-

Shannon performance combined with its highly parallel architecture and lesser complexity

compared to Turbo-codes has made LDPC codes one of the most popular forward error

correction (FEC) codes in most of the recently ratified wireless communication standards.

This thesis focuses on one of these standards, namely the DVB-S2 standard that was ratified

in 2005.

In this thesis, the design and architecture of a FPGA implementation of an LDPC decoder

for the DVB-S2 standard are presented. The decoder architecture is an improvement over

others that are published in the current literature. Novel algorithms are devised to use

a memory mapping scheme that allows for 360 functional units (FUs) used in decoding

to be implemented using the Sum-Product Algorithm (SPA). The functional units (FU)

are optimized for reduced hardware resource utilization on a FPGA with a large number

of configurable logic blocks (CLBs) and memory blocks. A novel design of a parity-check

module (PCM) is presented that verifies the parity-check equations of the LDPC codes.

Furthermore, a special characteristic of five of the codes defined in the DVB-S2 standard

and their influence on the decoder design is discussed.

Three versions of the LDPC decoder are implemented, namely the 360-FU decoder, the

180-FU decoder and the hybrid 360/180-FU decoder. The decoders are synthesized for two

FPGAs. A Xilinx Virtex-II Pro family FPGA is used for comparison purposes and a Xilinx

Virtex-6 family FPGA is used to demonstrate the portability of the design. The synthesis

results show that the hardware resource utilization and minimum throughput of the decoders

presented are competitive with a DVB-S2 LDPC decoder found in the current literature that

also uses FPGA technology.

ii

Acknowledgements

The project is supported by the Natural Sciences and Engineering Research Council of

Canada and SED Systems Inc., a division of Calian Ltd., Saskatoon, SK, Canada. I would

like to thank my supervisor, Dr. Seok-Bum Ko, for his support in this project. In the

beginning of my M.Sc. program, he gave me a lot of freedom in the topic selection, and

supported and guided me in every decision that I made along the way. Even when he was

away he constantly touched base with me to make sure everything is going well. Without

Dr. Ko’s support, this project would not have been possible. I would also like to thank my

supervisor at SED Systems, Mr. Dave Armstrong, and all other SED Systems employees

for their help while I researched at SED Systems. Special thanks for Prof. Dave Dodds and

Mr. Dennis Akins for setting up the project with SED Systems. Thanks to all the professors

at the University of Saskatchewan who have supported me and their instruction, help and

inspiration during my studies. Also, thanks to Dr. J. C. Lo for his input on the PCM design.

Finally, a big thanks to my parents, friends and family for their moral support throughout

the years.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Literature Review of DVB-S2 LDPC Decoders 2
1.2 Motivation . 7
1.3 Description of the Problem and Major Contributions 9
1.4 Organization of Thesis . 10

2 Background Information 11
2.1 Architecture of Target FPGA . 11
2.2 Review of Linear Block Codes . 15
2.3 LDPC Codes in DVB-S2 Standard . 24

3 Architecture of DVB-S2 LDPC Decoder 33
3.1 Architecture of the Decoder . 33
3.2 Architecture of the RAM and the ROM . 38

3.2.1 Memory Mapping Scheme . 39
3.2.2 Generation of ROM Coefficient . 47
3.2.3 Function and Architecture of the Shuffle Network 48
3.2.4 Special Case of Code Rates in Short Frames 51

3.3 Architecture of the Functional Units . 53
3.3.1 Implementation of the ψ Function . 56
3.3.2 Usage and Design of the SUM FIFO 61
3.3.3 LLR Value Update . 63
3.3.4 The Initialization Step . 64

3.4 Architecture of the Parity Check Module . 65
3.5 Architecture of the LLR and Decoded Message Buffers 72
3.6 Architecture of the 180-FU and Hybrid 360/180-FU Decoders 74

4 Results and Discussion 79

iv

4.1 Synthesis Results . 79
4.2 Throughput Comparison . 81
4.3 Simulation Results . 85

5 Conclusion 87

References 90

A The Encoding and Decoding of a Simple Linear Systematic Block Code 94

B Values from Annex B and C of the DVB-S2 Standard 99

v

List of Tables

2.1 The values of p values in DVB-S2 LDPC codes 26

3.1 Description of the Inputs and Outputs of the Decoder 34
3.2 RAM size of all the block length and code rates in DVB-S2 41
3.3 row, shift and ishift coefficients in the ROM of the example 50
3.4 Row Weight of submatrix A of Problematic Code Rates 52
3.5 ψ Function Quantization Scheme . 59
3.6 ψ function LUT . 60
3.7 Compression Function LUT . 61

4.1 Synthesis results and comparison . 79
4.2 Minimum Throughput of the Decoders . 84

A.1 Example of a (7,4) Linear Systematic Block Code 95
A.2 Decoding table for the (7,4) linear systematic block code 97

B.1 N = 64800, Code Rate = 1/4 . 99
B.2 N = 64800, Code Rate = 1/3 . 100
B.3 N = 64800, Code Rate = 2/5 . 100
B.4 N = 64800, Code Rate = 1/2 . 101
B.5 N = 64800, Code Rate = 3/5 . 102
B.6 N = 64800, Code Rate = 2/3 . 103
B.7 N = 64800, Code Rate = 3/4 . 104
B.8 N = 64800, Code Rate = 4/5 . 105
B.9 N = 64800, Code Rate = 5/6 . 106
B.10 N = 64800, Code Rate = 8/9 . 107
B.11 N = 64800, Code Rate = 9/10 . 108
B.12 N = 16200, Code Rate = 1/5 . 108
B.13 N = 16200, Code Rate = 1/3 . 108
B.14 N = 16200, Code Rate = 2/5 . 109
B.15 N = 16200, Code Rate = 4/9 . 109
B.16 N = 16200, Code Rate = 3/5 . 109
B.17 N = 16200, Code Rate = 2/3 . 110
B.18 N = 16200, Code Rate = 11/15 . 110
B.19 N = 16200, Code Rate = 7/9 . 110
B.20 N = 16200, Code Rate = 37/49 . 111
B.21 N = 16200, Code Rate = 8/9 . 111

vi

List of Figures

1.1 Graph of the ψ function. 5

2.1 Example of a Tanner graph. 28
2.2 Initialization step of SPA. 29
2.3 Check node update step of SPA. 31
2.4 Bit node update step of SPA. 32

3.1 Inputs and Outputs of the LDPC decoder. 35
3.2 Top level block diagram of LDPC decoder. 35
3.3 Controller FSM state diagram. 37
3.4 Edge placement and access of the Top RAM. 39
3.5 Edge placement and access of the Bottom RAM 40
3.6 Block diagram of functional unit. 53
3.7 Block Diagram of the boxplus unit. 57
3.8 Block Diagram of the boxminus unit. 57
3.9 Graph of the ψ function and its approximation. 58
3.10 Block diagram of parity check module. 68
3.11 Block diagram of the barrel shifter. 69
3.12 Block diagram of ones counter. 71
3.13 Diagram of splitting the RAM for 180 FU implementation. 75

4.1 PER vs. SNR of the LDPC decoder. 86

A.1 An example encoder for the (7,4) linear systematic block code. 96
A.2 An example decoder for the (7,4) linear systematic block code. 98

vii

List of Abbreviations

APSK - Amplitude and Phase-Shift Keying
ASIC - Application-Specific Integrated Circuit
AWGN - Additive White Gaussian Noise
BCH - Bose, Chaudhuri and Hocquenghem codes
BPSK - Binary Phase-Shift Keying
BS - Barrel Shifter
BSC - Binary Symmetric Channel
BRAM - Block Random-Access Memory
CLB - Configurable Logic Block
dB - decibel
DVB-C2 - Digital Video Broadcasting – Second Generation Cable
DVB-T2 - Digital Video Broadcasting – Second Generation Terrestrial
DVB-S2 - Digital Video Broadcasting – Second Generation Satellite
FEC - Forward Error Correction
FIFO - First-In First-Out
FPGA - Field-Programmable Gate-Array
FF - Flip-Flop
FU - Functional Unit
GPU - Graphics Processing Unit
HDL - Hardware Description Language
IC - Integrated Circuit
IP - Intellectual Property
IRA - Irregular Repeat-Accumulate
Kb - Kilobit
LDPC - Low-Density Parity-Check
LLR - Log-Likelihood Ratio
LOF - List of Figures
LOT - List of Tables
LUT - Look-Up Table
LRP - Least Reliable Position
LSB - Least Significant Bit
Mb - Megabit
MBWA - Mobile Broadband Wireless Access
MRIP - Most Reliable Independent Position
MRP - Most Reliable Position
MLD - Maximum Likelihood Decoding
MSB - Most Significant Bit
OC - Ones Counter
PCM - Parity Check Module
PER - Packet Error Rate
PSD - Power Spectral Density

viii

PSK - Phase-Shift Keying
PWL - Piece-Wise Linear
QPSK - Quadrature Phase-Shift Keying
RAM - Random-Access Memory
RMSE - Root Mean Square Error
ROM - Read-Only Memory
SNR - Signal-to-Noise Ratio
VHDL - VHSIC Hardware Description Language
VHSIC - Very-High-Speed Integrated Circuit
WLAN - Wireless Local Area Network
WPAN - Wireless Personal Area Network
XOR - Exclusive-OR

ix

Chapter 1

Introduction

In digital data transmission or storage systems, messages transmitted or stored often go

through a channel or storage medium that introduces noise that may corrupt the original

message. Forward error correction (FEC) codes were introduced in order to solve this prob-

lem. In the case of a data transmission communication system, an encoder is introduced

at the transmitter to encode the message bits by adding redundancy to the message. This

redundancy is transmitted to the receiver along with the message. At the receiver, the re-

ceived message is decoded in hopes of correcting the errors that may have been introduced

during the transmission through the channel and retrieving the original message. According

to Shannon’s theorem [1], no matter how noisy the communication channel is, there exists

an error correction code that can make the probability of error arbitrarily small provided

that the transmission rate is less than the Shannon limit. Over the years, researchers have

been developing different kinds of codes to increase the transmission rate, in hopes to reach

the channel capacity as described by Shannon. In recent years, one of the most successful

types of codes in doing so has been LDPC codes.

LDPC codes were originally introduced by Gallanger [2] in the 1960s. However, due

to the lack of an efficient decoding algorithm and subpar hardware capabilities, the codes

were not widely used at the time and slowly faded away. In the 1990s, LDPC codes were

rediscovered and were shown to have performance close to the Shannon limit [3]. In ad-

dition, the encoding and decoding process is much less complex in LDPC codes compared

to Turbo codes [4], another code that has shown to perform close to the Shannon limit.

Furthermore, LDPC codes have highly parallel code structures which are extremely suitable

for FPGA implementation. Due to its advantages, it was adopted by many standards to be

used for FEC such as Digital Video Broadcasting – Second Generation Satellite (DVB-S2),

1

Digital Video Broadcasting – Second Generation Cable (DVB-C2), and Digital Video Broad-

casting – Second Generation Terrestrial (DVB-T2) [5], wireless local area network (WLAN)

air interface (802.11), wireless personal area networks (WPAN) (802.15), broadband wire-

less metropolitan area network (802.16), and mobile broadband wireless access (MBWA)

networks (802.20), among others.

Field-programmable gate-array (FPGA) is an integrated circuit (IC) consisting of logic

circuit elements that can be configured by the user after the IC is fabricated, as opposed to

application-specific integrated circuits (ASICs), where the users’ logic circuits are configured

prior to fabrication. FPGAs are usually programmed using hardware description languages

(HDL), such as VHDL or Verilog. The advantages of the FPGAs compared to ASIC is in its

flexibility to be re-programmed without the need to re-fabricate the IC, which allows for faster

turn-around time for hardware designers. For example, design faults can be fixed by simply

fixing the programming code, re-synthesizing the design, generating all the programming files

and re-programing the FPGA, as opposed to submitting the updated design for fabrication.

Furthermore, an existing FPGA design can be implemented for a different target FPGA by

simply re-synthesizing the existing design for the new target FPGA, which makes FPGAs

very portable. For these reasons among others, FPGA designs have gained much attention

in recent years.

This thesis presents a FPGA implementation of a LDPC decoder in the DVB-S2 standard.

The architecture of the LDPC decoder in this thesis is a combination and improvement of

some of the designs published in the current literature. These designs are reviewed in the

next section.

1.1 Literature Review of DVB-S2 LDPC Decoders

Since the adoption of LDPC codes into the DVB-S2 standard in 2005 [6], researchers have

been working on designing efficient implementations of an LDPC decoder that is compliant

with the standard.

The algorithm used for decoding LDPC codes is a message passing algorithm, where

messages, which are real numbers, are passed between two sets of nodes, called bit nodes

2

and check nodes, through a code rate-specific interconnection network. These messages are

updated at the nodes by performing a mathematical calculation. A more detailed description

of the decoding algorithm is presented in Section 2.3.

One of the challenges in implementing the LDPC decoder for the DVB-S2 standard is

its large block length, or frame size. In the DVB-S2 standard, the block length, N, of the

LDPC codes is either 64800 bits, called normal frames, or 16200 bits, called short frames.

For high throughput, which means a high number of message bits are decoded per unit of

time, the LDPC decoders can be designed with a fully parallel architecture, such as the one

by Blanksby and Howland [7]. In the fully parallel architecture of the LDPC decoder, N

bit node functional units (FUs) are connected to N − K check node FUs, where K is the

number of bits in the transmitted message, through a network of interconnections. A more

detailed discussion on FUs is presented in Section 3.3. However, even with a 1024-bit block

length, such as the decoder by Blanksby and Howland [7], the routing of the interconnections

between the FUs is already cumbersome, not to mention the even larger block lengths in

the DVB-S2 standard. Furthermore, N bit node FUs and N−K check node FUs need to be

implemented. Thus, a fully parallel architecture of the time is not practical to be used by the

LDPC decoders for the DVB-S2 standard. On the other hand, in a fully serial architecture,

where only one FU is implemented to perform all N+N−K calculations, a very large memory

must be used to store all temporary values updated at the nodes and the throughput of the

decoder becomes extremely low. Therefore, a partially parallel architecture is best suited for

the implementation of the LDPC decoders for the DVB-S2 standard. In 2006, Eroz et al. [8]

present a memory architecture that allows for the usage of 360 FUs in the decoder design.

In the paper, the authors explain how the interconnection between the bit and check nodes

is mapped to memory and how the memory is accessed for processing.

The first known hardware decoder design compliant with the DVB-S2 standard is pub-

lished in 2005 by Kienle et al. [9]. In their decoder design, 360 FUs are implemented, but it

decodes only the normal frame code rates and not the short frame code rates. Furthermore,

the authors have optimized the message passing algorithm, such that instead of updating

all the messages in the bit node before passing all the messages to the check nodes for pro-

cessing, and vice versa, some bit nodes are processed as soon as some of the check nodes

3

messages are updated and vice versa, which reduces processing time. In addition, the design

is implemented using ASIC technology.

Subsequently, many other ASIC decoder designs have been published based on the de-

coder by Kienle et al. [9]. In 2005, Urard et al. [10] present a decoder that uses 360 FUs

and supports both normal frames and short frames, yet does not support all the short frame

code rates in the DVB-S2 standard. In 2006, Dielissen et al. [11] propose a decoder that

uses fewer FUs by further subdividing the calculations at the nodes. The authors also use

a modified algorithm, in which the node update calculations are simplified, called the min-

sum algorithm. However, their decoder also only handles normal frame code rates. Segard

et al. [12] use a different decoding scheduling, called horizontal shuffle scheduling, where

multiple bit and check nodes are updated in one step. In 2007, Masera et al. [13] present a

decoder that supports the DVB-S2, 802.11n and 802.16 standards, but only 32 FUs are used,

so the throughput of the decoder when used for the DVB-S2 standard is very low. Brack

et al. [14] present a decoder that uses 90 FUs and only decodes normal frame code rates.

In 2009, Zhang et al. [15] and Ying et al. [16] also use modified versions of the min-sum

algorithm.

In addition to ASIC designs, some hardware designs have been implemented on FPGAs.

In 2005, Yadav and Parhi [17] have proposed LDPC codes different from the ones that are

used in the standard [6]. However, they were not able to implement all the code rates into

one decoder due to memory limitations at the time and the paper only discusses normal

frame code rates. In 2007, Gomes et al. [18] have presented a decoder that uses 180, 90

or 45 FUs. The paper presents a method that can reduce the number of FUs to factors of

360 without the need to increase the amount of memory utilization. The architecture of

the decoder is the most similar to the one presented in Chapter 3, so its synthesis results

and throughput are used for comparison in Chapter 4. In 2008, Beuschel and Pfleiderer [19]

designed a LDPC decoder that supports any LDPC code up to the block length of 65536

bits. However, it only uses 16 FUs, which deteriorates the throughput to only about 75

Mbps.

In the implementation of the FUs, one of the main concerns is the approximation of the

4

Figure 1.1: Graph of the ψ function.

ψ function defined as follows:

ψ(x) = − ln
(

tanh
∣∣∣x
2

∣∣∣) = ln

(
(1 + e−|x|)

(1− e−|x|)

)
(1.1)

and the graph of the equation is shown in Figure 1.1. One of the approximation approaches is

to use a look-up table (LUT) where an input value is mapped into an output value. However,

using a uniform step size for the input values generates wasted storage in the LUT because

at high input values the slope of the ψ function graph is close to zero. In 2001, Zhang et

al. [20] propose the use of a variable precision quantization scheme for the inputs and outputs

of the ψ function. In this scheme, if the value is less than 1, then its most significant bit

(MSB) is 0, and the rest of the bits are fractional; if the value is greater than or equal to 1,

then the MSB is 1, the decimal point is between the 3rd and 4th MSB, and the integer part

is interpreted as (n is the number of bits):

vn−1 · vn−2 · vn−3 · 22 + vn−2 · 2 + vn−3 (1.2)

The authors show that the use of 6 magnitude bits for the messages between the bit

node and the check nodes provides reasonable trade-off between hardware complexity and

5

performance. Furthermore, the proposed variable precision quantization scheme improves

error performance by about 0.1 dB compared to a uniform quantization scheme.

In 2006, Oh and Parhi [21] propose a different variable quantization scheme for the ψ

function using LUTs. Their quantization scheme is based on the uniform (q : f) quantization

scheme, where q is the total number of bits, including the sign bit, and f is the number of

bits in the fractional part of the value. For input values, x, below decimal number 1.0, the

(q : f) uniform quantization scheme is used for their outputs values. If the input values are

1.0 or above, then its output values use a quantization scheme given as follows:

(q, f) for 0 < x < 2(q−f−3)

(q − 1, f − 1) for 2(q−f−3) ≤ x < 2(q−f−2)

(q − 2, f − 2) for 2(q−f−2) ≤ x < 2(q−f−1)

(1.3)

The proposed quantization scheme reduces the LUT size by 50% compared to the uniform

(q : f) quantization scheme. Furthermore, the authors propose further reduction of the LUT

size to 75% by using the following quantization scheme instead of (1.3):

(q − 1, f − 1) for 0 < x < 2(q−f−3)

(q − 2, f − 2) for 2(q−f−3) ≤ x < 2(q−f−2)

(q − 3, f − 3) for 2(q−f−2) ≤ x < 2(q−f−1)

(1.4)

Using (1.4) to approximate the ψ function reduces the LUT size to only have 2(q−3)

entries, which means the input of the LUT is q − 3 bits. Thus, Oh and Parhi propose a

compression function that reduces the messages sent between the bit nodes and the check

nodes to only have q − 3 bits. Furthermore, the authors show that the performance loss of

using the LUT reduction schemes presented is less than 0.05 dB.

Aside from using LUTs to approximate the ψ function, Masera et al. [22] have proposed

two other approximation techniques: a) piece-wise linear (PWL) approximation and b) a

direct implementation of base 2 formulation (PSI2). The PWL approximation uses linear

equations to approximate sections of the ψ function. The coefficients of the linear equations

are selected to easily implemented with shift and add operations. The PSI2 approximation

changes the base of the logarithmic and exponential functions in (1.1) to base 2 and uses

state-of-the-art binary logarithmic arithmetic units to approximate the ψ function. Both of

6

the techniques show to have no more than 0.1 dB performance loss compared to the infinite

precision case, but the implementation of these techniques in hardware is more complex than

using the LUT approximations. Other approximations can also be found in the literature

based on different approximations of the ψ function, different approximations of the node

update equations and different scheduling techniques, i.e. the order that the bit node and

check nodes are updated. A comparison and analysis of these algorithms is published by

Papaharalabos et al. [23].

1.2 Motivation

In all the LDPC decoder designs discussed in Section 1.1, only the design of the FUs and the

memory mapping schemes are shown. These units perform the updates at the bit and check

nodes and the message passing between the nodes. However, no publication presents the

architecture of a module that is used to verify the parity-check equations to perform hard-

decision decoding. More information about parity-check equations is presented in Section 2.2.

Furthermore, most of the decoders only support normal frames in the DVB-S2 standard.

Some of the ones that support short frames omit some code rates defined in the standard.

Additionally, most of the decoder designs are implemented using ASICs, and only a few

use FPGAs. One reason may be that ASIC implementations give the designers the freedom

to use as many hardware resources as it is necessary to implement the decoder, as opposed

to FPGAs that have a limited number of hardware resources fabricated with the device

that is available to the users. However, FPGA designs gives the design increased portability

and faster design turn-around time compared to ASIC designs, as discussed earlier in this

chapter. Thus, in this thesis, the main design goal of the LDPC decoder is to reduce

hardware resource utilization, such that the design can be implemented using FPGAs. One

way to reduce hardware utilization is by reducing the number of FUs, such as the decoder

by Beuschel and Pfleiderer [19], but using fewer FUs corresponds to lowering throughput.

Therefore, the other design goal of the decoder in this thesis is not to reduce throughput

drastically in the process of reducing hardware resource utilization.

7

This research project is done in collaboration with SED Systems1, who have expressed

a high interest in an FPGA implementation of the DVB-S2 LDPC decoder. SED Systems

currently use commercial ASIC decoders in use in their DVB-S2 receivers. However, imple-

menting the LDPC decoder section of the receiver for use on an FPGA can facilitate system

debugging and increase the portability of the decoder to other systems. Some existing com-

mercial decoders are sold as system-on-chip ASICs, which include the complete DVB-S2

receiver design [24], or as devices in a chassis [25, 26]. In some situations, the functionalities

of these complete receiver solutions are not applicable, which makes these products very

difficult, if not impossible, to integrate with other components.

Furthermore, the complete receiver solutions have a limited throughput. In some sit-

uations, if a higher throughput is required that is not supported by the complete receiver

solutions, the receiver must be re-designed. However, using an FPGA solution, multiple

decoders can be instantiated and executed in parallel to increase throughput. In other situ-

ations when lower throughput is sufficient, an FPGA implementation can be easily modified

to reduce throughput by for example, reducing the number of FUs. Thus, the FPGA imple-

mentation provides the flexibility to implement “special” DVB-S2 receivers that the complete

receiver solutions cannot accommodate.

There are also software solutions available for LDPC decoders, such as the MATLAB

built-in functions dvbs2ldpc [27] and fec.ldpcdec [28], yet the large block lengths of the LDPC

codes defined in the DVB-S2 standard makes the throughput of the software solutions very

low. Furthermore, the low number of processors in current computer architectures does

not allow software implementations to efficiently take advantage of the parallel structure of

LDPC codes.

Moreover, currently, the two world leading FPGA suppliers, Xilinx [29] and Altera [30],

only distribute FPGA intellectual property (IP) Core for DVB-S2 LDPC encoders and not

for decoders. However, some FPGA IP designs can be purchased from smaller independent

suppliers, such as Navtel Systems [31], SoftJin [32] and RAD3 Communications [33].

Even though the architecture of the decoders presented in this thesis targets the LDPC

decoder in the DVB-S2 standard, the soon-to-be ratified DVB-C2 and DVB-T2 standards

1SED Systems, a Division of Calian Ltd., Saskatoon, SK, Canada

8

also adopt LDPC codes for FEC with almost the same structures as the ones in the DVB-S2

standard. Thus, the LDPC decoders described herein may be extended to include DVB-C2

and DVB-T2 standard LDPC codes in the future.

1.3 Description of the Problem and Major Contribu-

tions

Based on the discussion in Section 1.2, the problem with the existing DVB-S2 LDPC de-

coders is that the published designs are incomplete, as no module is presented to verify the

parity-check equations and many of the designs only handle normal frames, and not short

frames. The existing designs are also less flexible for the end users as they are implemented

using ASIC technology. However, implementing the design using FPGAs requires opti-

mizations for the decoder architecture to reduce hardware resource utilization as hardware

resources are limited in FPGAs. Furthermore, there are FPGA decoder designs that reduce

hardware resources by reducing the number of FUs used, but also reduce the throughput,

which is not desired. The objective of this thesis is to improve the DVB-S2 LDPC decoder

designs by combining the decoder architectures published in the current literature and is

a proposed solution for the aforementioned problems. This is verified by comparisons with

other implementations for correctness and performance.

The main issue that originally challenged SED Systems in implementing the DVB-S2

LDPC decoder in FPGA is the memory size. Originally, the idea is to implement two

RAMs for message exchange, where one RAM would store the messages temporarily, while

the other is used for computing, which might consume too many memory resources on the

FPGA. However, using the decoder architecture and memory organization proposed by Eroz

et al. [8], the memory required by the decoder to handle all code rates in the DVB-S2

standard is only approximately 2 Mb, which can be easily accommodated by most modern

FPGAs. Nevertheless, the authors do not clearly indicate the algorithm that is used to map

the interconnection network between the bit and check nodes to the RAM. Thus, a novel

algorithm is devised and presented in Section 3.2.1 to perform such mapping.

9

Another architecture that is improved upon is the FU architecture by Gomes et al. [34].

The components of the FU are modified in order to reduce hardware resource utilization of

the FPGA, while maintaining a competitive decoding throughput. The ψ function and adders

are used instead of the boxplus and boxminus units. More details on these improvements

are presented in Section 3.3. Furthermore, the decoder by Gomes et al. [18] is used for

comparison in Chapter 4 as previously mentioned.

Section 1.2 has indicated that none of the published decoders in the current literature

present a module that verifies the parity-check equations. Thus, a novel module is designed,

called the parity-check module (PCM), and presented in this thesis to perform the verification

of the parity-check equations. Section 3.4 shows that the operation of the PCM is very similar

to the operation of the DVB-S2 LDPC encoder. Thus, the architecture of the PCM is based

on the DVB-S2 LDPC encoder architecture by Gomes et al. [35].

Furthermore, as mentioned in Section 1.2, the short frame code rates are not implemented

in many of the designs in current literature. Among the ones that do, not all short frame code

rates are supported or the details of the implementation are not clear. One of the reasons

may be that there are some code rates in the short frame, denoted as special short frame code

rates in this thesis, have a characteristic that changes the memory organization and memory

mapping of the decoder. These code rates are discussed in more detail in Section 3.2.4.

1.4 Organization of Thesis

The subsequent chapters of the thesis are organized as follows: Chapter 2 reviews some

background information, including the architecture of the target FPGA, the encoding and

decoding of linear block codes, and the encoding and decoding of LDPC codes in the DVB-S2

standard. Chapter 3 presents the architecture and implementation of the designed LDPC

decoder, the details of each component of the decoder, and the modifications on the decoder

architecture to create two other decoders designs. Chapter 4 presents the synthesis results

and minimum throughput of the decoders on the target FPGAs and their comparison with

the decoder designed by Gomes et al. [18], and the simulation results of the decoder are also

presented. Chapter 5 concludes the thesis and suggests potential future work.

10

Chapter 2

Background Information

2.1 Architecture of Target FPGA

The DVB-S2 LDPC decoder design that is shown in Chapter 3 is implemented on two

FPGAs: Xilinx Virtex-II Pro XC2VP100 and Xilinx Virtex 6 XC6VLX240T. In this sec-

tion, a brief overview of the architecture of these two FPGAs is presented, in order to give

some insight into some of the design decisions made in Chapter 3 and to help understand

the synthesis results in Chapter 4. The information in this section and more information

about the architecture of these two FPGAs can be obtained from Xilinx datasheets and user

guides [36, 37, 38, 39].

The Xilinx XC2VP100 FPGA is a Virtex-II Pro device. In Virtex-II Pro FPGAs, con-

figurable logic blocks (CLBs) are used to realize combinational and sequential logic designs.

CLBs are arranged in arrays in an FPGA. A CLB is made up of four slices organized in two

columns, with two slices on each column, with local feedback within the CLB. Each slice

consists of two 4-input function generators, two storage elements, wide function multiplexers,

carry logic and arithmetic logic gates.

Each of the two 4-input function generators can be used as a 4-input look-up table (LUT),

among other functionalities. Each of the two function generators have four independent

inputs and can be used to realize any 4-input Boolean function, and the propagation delay is

independent of the function implemented. The output of each function generator can drive

an output of the slice, the input of the XOR dedicated gate, the input of the carry-logic

multiplexer, the D input of the storage element, or the input of a multiplexer. There is also

logic within a slice that is capable of combining the 4-input functions generators to provide

11

functions of five, six, seven or eight inputs, or selected functions of nine inputs.

The storage elements in the slice can be configured as either edge-triggered D-type flip-

flops or level-sensitive latches. The D input can be driven by either the output of the

function generators or directly by the input of the slice. For control, other than the clock

input, there are also the clock enable and the set and reset inputs, which can be configured

to be synchronous or asynchronous.

The function generators and multiplexers in the Virtex-II Pro FPGAs can be configured

to implement multiplexing functionalities and the resources utilized are as follows:

• 2:1 multiplexer in one LUT

• 4:1 multiplexer in one slice

• 8:1 multiplexer in two slices

• 16:1 multiplexer in one CLB (four slices)

• 32:1 multiplexer in two CLBs (eight slices)

There are other functions that the multiplexers can be used for, but the discussion of

these functionalities are beyond the scope of this thesis.

The dedicated lookahead carry logic allows for faster arithmetic addition and subtraction

calculations. Each CLB has two separate carry chains. The arithmetic logic has an XOR

gate that allows for a 2-bit full adder to be implemented within a slice.

For large memory needs, the Virtex-II Pro FPGAs have a large amount of 18 Kb block

SelectRAM+ (BRAM) resources. Each BRAM can be configured to be single-port RAM,

single-port ROM, dual-port RAM or dual-port ROM, where the ROMs are essentially RAMs

without write ports. Each BRAM can also be configured to have one of the following

dimensions:

• 16 Kb configurations:

– 16K × 1 bit

– 8K × 2 bits

– 4K × 4 bits

• 18 Kb configurations:

12

– 2K × 9 bits

– 1K × 18 bits

– 512 × 36 bits

where the first value is the depth of the memory and the second value is the width of the data.

Multiple BRAMs can be combined to implement memory deeper or wider memories. In the

single-port configuration, each BRAM memory has access to either 18 Kb or 16 Kb memory

locations depending on the configuration, it is synchronous and the input and output data

bus widths are identical.

In the dual-port configuration, each port of a BRAM that accesses a common 18 Kb

memory location, is synchronous and has independent control signals. The data width of

each port can be configured independently. The two ports have separate inputs and outputs

and have independent clock inputs.

For the target Xilinx Virtex-II Pro XC2VP100 FPGA, the total available logic and mem-

ory resources are as follows:

Number of Slices: 44096

Number of 4-Input LUTs: 88192

Number of Slice Flip-Flops: 88192

Total Number of 18 Kb BRAMs: 444

The Xilinx XC6LX240T belongs to the Virtex-6 FPGA family, which is a group Xil-

inx’s state-of-the-art FPGA devices. Virtex-6 FPGAs also implement combinational and

sequential logic in CLBs, yet the architecture of the CLB differs from the Virtex-II Pro

FPGAs.

In Virtex-6 devices, each CLB consists of two slices, with no direct connection between

them. The two slices are organized in two columns, with a slice on each column. Each slice

is made up with four function generators, eight storage elements, wide-function multiplexers

and carry logic.

Each of the four function generators is implemented as a LUT. Each LUT can be used

to realize one 6-input Boolean function with six independent inputs or two 5-input Boolean

functions provided that at least one of the inputs is common. Thus, the function generators

13

have either one or two outputs, depending on the function. These outputs can drive the

output of the slice, be used for fast lookahead carry logic, feed the D input of the storage

elements or go to the multiplexers. Each slice has the ability to combine multiple function

generators to implement Boolean functions with seven or eight independent inputs. For

functions with more than eight inputs, multiple slices are necessary.

There are eight storage elements in a slice. Four out of the eight storage elements can

be configured as edge-sensitive D-type flip-flops or level-sensitive latches, as in the Virtex-II

Pro FPGAs. The other four storage elements can only be configured as edge-sensitive D-

type flip-flops and they cannot be used if the former four are used as latches. The input

to the storage elements can come directly from the input of the slice or from the output of

the function generators. Similar to Virtex-II Pro FPGAs, the control inputs of the storage

elements are clock, clock enable, and set and reset.

The function generators and multiplexers in a Virtex-6 CLB can be configured to be

multiplexers using the following amount of resources:

• 4:1 multiplexer in one LUT

• 8:1 multiplexer in two LUTs

• 16:1 multiplexer in four LUTs

Similar to Virtex-II Pro devices, dedicated carry logic is available in the slices to provide

fast lookahead carry logic to perform arithmetic addition and subtraction more efficiently.

Virtex-6 BRAMs differ from Virtex-II Pro BRAMs in that Virtex-6 BRAM stores up to

36 Kb of data. The Virtex-6 BRAM can be used as two independent 18 Kb BRAMs or one

36 Kb BRAM. Each 36 Kb BRAM can be configured to the following dimensions:

• 32 Kb configurations:

– 64K × 1 bit (by cascading two 36 Kb BRAMs)

– 32K × 1 bit

– 16K × 2 bits

– 8K × 4 bits

• 36 Kb configurations:

14

– 4K × 9 bits

– 2K × 18 bits

– 1K × 36 bits

– 512 × 72 bits

and each 18 Kb BRAM can be configured to the same dimensions as in Virtex-II Pro. Simi-

lar to the Virtex-II Pro BRAMs, they can be implemented as single- or dual-port RAMs or

ROMs. The memory is synchronous and in dual-port configuration, the ports have indepen-

dent read and write data buses and clocks that share a common memory data.

The total available logic and memory resources of the XC6VLX240T FPGA are as follows:

Number of Slices: 37680

Number of 6-Input LUTs: 150720

Number of Slice Flip-Flops: 301440

Total Number of 36 Kb BRAMs: 416 (or 832 18 Kb BRAMs)

2.2 Review of Linear Block Codes

In this section, linear block codes are reviewed. The encoding and hard-decision decoding of

linear block codes using generator and parity check matrices are presented. Decoding with

soft-decision decoding metrics is also discussed and a general reliability-based soft-decision

decoding scheme is presented. The information in this section is based on chapters 3 and

10 from Lin and Costello’s book [40]. The block codes discussed in this section are binary

block codes and the information source is also binary digits.

Block codes are a type of error control codes where a message block of length K infor-

mation bits, denoted by u, is encoded into codewords of N bits, denoted by v. Linear block

codes are block codes that the modulo-2 sum of two codewords is also a codeword. In fact,

in linear block codes, it is possible to find K linearly independent codewords, g0, g1, · · · ,

gK−1, such that every codeword v is a linear combination of these K codewords. These K

linearly independent codewords can be organized in a K × N matrix to form the generator

15

matrix, as follows:

G =

g0

g1

...

gK−1

 =

g00 g01 g02 · · · g0,N−1

g10 g11 g12 · · · g1,N−1
...

...
...

...

gK−1,0 gK−1,1 gK−1,2 · · · gK−1,N−1

 (2.1)

where gi = (gi0, gi1, · · · , gi,N−1) for 0 ≤ i ≤ K is one of the codewords. In order to encode

the message u = (u0, u1, · · · , uK−1), the following operation is performed:

v = u ·G

= (u0, u1, · · · , uK−1) ·

g0

g1

...

gK−1

= u0g0 + u1g1 + · · ·+ uK−1gK−1

(2.2)

As shown in equation (2.2), the K linear independent codewords that form the generator

matrix can be used to form all the codewords in the code. Thus the generator matrix

completely specifies the linear block code and only the K rows of the generator matrix need

to be stored in the encoder during implementation instead of all 2K N -bit codewords.

In order to further simplify encoding, linear systematic block codes can be used. The

systematic structure means that the codeword can be subdivided into two parts, the message

part and the redundant checking part. The message part has the K information bits of the

original message before encoding and the redundant checking part has N − K bits, called

parity-check bits, that are linear sums of the information bits. The generator matrix of a

linear systematic code has the form:

G =

g0

g1

g2

...

gK−1

=

p00 p01 · · · p0,N−K−1 1 0 0 · · · 0

p10 p11 · · · p1,N−K−1 0 1 0 · · · 0

p20 p21 · · · p2,N−K−1 0 0 1 · · · 0

pK−1,0 pK−1,1 · · · pK−1,N−K−1 0 0 0 · · · 1

(2.3)

16

where pij = 0 or 1. Let P be the left side of G in equation (2.3) and Ik be the K×K identity

matrix on the right, then G = [PIk]. Encoding message u = (u0, u1, · · · , uK−1) with the

generator matrix in equation (2.3) yields:

vN−K+i = ui (2.4)

for 0 ≤ i < K, which is the message part, and

vj = u0p0j + u1p1j + · · ·+ uK−1pK−1,j (2.5)

for 0 ≤ j < N− K, which is the redundant checking part. The equations in (2.5) are called

parity-check equations. When encoding linear systematic block codes, the parity-check bits

are generated from the parity-check equations and the codeword is formed by concatenating

the parity-check bits and the information bits.

For decoding linear block codes, there is another matrix that is associated with linear

block codes, called the parity-check matrix, denoted matrix H. H is a (N− K)× N matrix

with N−K linearly independent rows that satisfies the equation G ·HT = 0, where HT is the

transpose of H. Matrix H also satisfies the equation v ·HT = 0. If G is in the systematic

form as shown in equation (2.3), the H matrix has the following form:

H = [IN−KPT] =

1 0 0 · · · 0 p00 p10 · · · pK−1,0

0 1 0 · · · 0 p01 p11 · · · pK−1,1

0 0 1 · · · 0 p02 p12 · · · pK−1,2
...

0 0 0 · · · 1 p0,N−K−1 p1,N−K−1 · · · pK−1,N−K−1

(2.6)

The parity-check equations can also be generated from the parity-check matrix, and linear

block codes are also completely specified by its parity-check matrix H.

Let v = (v0, v1, · · · , vN−1) be the transmitted codeword and r = (r0, r1, · · · , rN−1) be the

received vector from the channel. Subsequently, the error vector, denoted e, is given by:

e = r + v

= (e0, e1, · · · , eN−1)
(2.7)

17

where ej = 1 if and only if rj 6= vj and ej = 0 if and only if rj = vj. By rearranging the

terms, the following equations are produced:

v = r + e (2.8)

r = v + e (2.9)

Since the decoder receives r from the channel, the goal of the decoder is to generate e

in order to recover the original codeword v. Subsequently, for linear systematic block codes,

the original message can be obtained from the message part of v.

When decoding, the decoder receives r and produces the syndrome of r, denoted by s,

by performing the following calculation:

s = r ·HT (2.10)

The syndrome vector has length N − K and since v ·HT = 0, s = 0 if and only if r is

a codeword, otherwise s 6= 0. However, if e is itself a codeword, then r = v + e is also a

codeword, from the definition of linear block codes. Thus, the syndrome, s = 0, but r is

not the original codeword sent through the channel, in which case, it is said that a decoding

error has occurred. Furthermore, according to equation (2.9), s can also be written as:

s = e ·HT (2.11)

Solving the set of linear equations resulting from the expansion of equation (2.11) would

yield the error vector e. However, the result of the linear equations does not have a unique

solution. Thus, in order to minimize decoding error, the most probable solution is selected.

In a binary symmetric channel (BSC), where the output of the channel is a binary digit, the

most probable solution is the one with the fewest number of non-zero elements. Furthermore,

for large values of N and K, solving the set of N− K equations with N unknowns becomes

impractical, so more efficient methods are required.

One of these methods is called syndrome decoding. In this decoding method, the first

step is to build a standard array. First, 1) place the 2K codewords on the zeroth row of the

standard array with the all-zero codeword, v0 = (0, 0, · · · , 0) as the leftmost element. Then,

2) select e1 to be a N -bit vector with the smallest number of non-zero elements and place

18

it under the all-zero vector, v0. 3) Complete the first row by adding each of the remaining

2K − 1 codewords in the zeroth row to e1 and place e1 + vi under vi. Afterwards, 4) select

e2 to be another N -bit vector with the smallest number of non-zero elements that does not

already exist in the standard array. 5) Complete the second row using the same method as

the first row. 6) Complete the remaining rows in a similar fashion until all N -bit vectors are

exhausted. The completed standard array has the following format:

v0 = 0 v1 · · · vi · · · v2K−1

e1 e1 + v1 · · · e1 + vi · · · e1 + v2K−1
... · · · ...

el el + v1 · · · el + vi · · · el + v2K−1
... · · · ...

e2N−K−1 e2N−K−1 + v1 · · · e2N−K−1 + vi · · · e2N−K−1 + v2K−1

(2.12)

Each row in the standard array is called a coset, and the leftmost element, el is called the

coset leader. Decoding can be performed using the standard array as a dictionary because all

2N possible N -bit vectors are present. In order to use the standard array for decoding, find

the received vector, r, among the vectors in the standard array, and the decoded codeword

is vector, vi, on the same column as r. However, the decoded codeword vi may or may not

be the original codeword sent through the channel because using this method to decode r to

vi means that r = el +vi, where el is interpreted as the error vector. Thus, vi is the original

codeword sent through the channel if and only if the error vector is indeed el. Therefore,

assuming on a BSC, in order to minimize decoding error, the coset leaders, el, are chosen to

have the smallest number of non-zero elements.

One drawback in decoding using the standard array directly is that all 2N vectors must be

stored in the decoder, so for large N it becomes impractical. This drawback can be overcome

with some observations about the standard array.

Firstly, the syndrome of every vector in a coset is the same. Consider the vector el + vi,

19

then its syndrome is as follows:

s = (el + vi) ·HT

= el ·HT + vi ·HT

= el ·HT + 0

= el ·HT (2.13)

Since s is independent of vi, the syndrome of any element of the coset is equal to the

syndrome of the coset leader. In addition, the set of all non-zero coset leaders can generate the

set of all non-zero syndromes using equation (2.13) and there is a one-to-one correspondence

between them. Thus, the decoder only needs to store or to wire a look-up table that converts

the syndrome to the coset leader and uses it to correct the received vector from the channel,

r.

In summary, syndrome decoding is performed using the following three steps:

1. Compute the syndrome of r, s = r ·HT .

2. Using the look-up table to convert the syndrome, s, into the error vector, el.

3. Decode the received vector, r, into the codeword, v∗ = r + el.

An example of the encoding and decoding using the syndrome decoding of a N = 7 and

K = 4 linear systematic block code is attached in Appendix A.

As mentioned earlier in this section, decoding a received vector into a codeword does

not guarantee that the decoded codeword is the original codeword sent through the chan-

nel. An important parameter that determines the random-error-detecting and random-error-

correcting capabilities of a linear block code is the minimum distance, denoted dmin. The

minimum distance can be defined using one of two parameters, the Hamming weight or the

Hamming distance. The Hamming weight of a vector v = (v0, v1, · · · , vN−1), denoted by

w(v), is defined as the number of non-zero elements in v. The Hamming distance between

two vectors, v = (v0, v1, · · · , vN−1) and w = (w0, w1, · · · , wN−1), denoted by d(v,w), is the

number of places where v and w differ by. Subsequently, the minimum distance can be

defined as the minimum Hamming distance among all the codewords in the linear block

code. The minimum distance can also be defined as the minimum Hamming weight of all

20

the codewords in the linear block code. Based on the minimum distance, dmin, the random-

error-detecting capability of a block code is dmin − 1, which means any error vector with

dmin−1 or less non-zero elements is guaranteed to be detected by the decoder. Additionally,

the random-error-correcting capability of a block code is given by:

t =

⌊
dmin − 1

2

⌋
(2.14)

which means that any error vector with t or less non-zero elements is guaranteed to be

corrected by the decoder.

The discussion presented so far only applies to hard-decision decoding, where the received

values from the channel are only treated as binary digits, 0 or 1. By doing so, much of the

information from the channel is lost, which degrades performance. If the received values are

interpreted as more than two levels, then the decoding is called soft-decision decoding. In

general, soft-decision decoding has better performance than hard-decision decoding from the

usage of the channel information. However, the drawback is the increased complexity in the

implementation of the decoder to handle the multi-level values.

In soft-decision decoding, the minimum distance, Hamming weight and Hamming dis-

tance metrics are not applicable, so other metrics must be used. The most commonly used

metrics are likelihood functions, Euclidean distance, correlation and correlation discrepancy.

Assume that the codeword v = (v0, v1, · · · , vN−1) is transmitted over an additive white

Gaussian noise (AWGN) channel with two-sided power spectral density (PSD) N0/2 using

binary phase-shift keying (BPSK) modulation. The codeword is mapped into a bipolar signal

sequence c = (c0, c1, · · · , cN−1), as follows:

cl = 2vl − 1 =

−1 for vl = 0

+1 for vl = 1

(2.15)

where l = 0, 1, · · · ,N. In addition, assume at the output of the channel, the soft-decision

vector, r = (r0, r1, · · · , rN−1), is received. The log-likelihood function of r given a codeword

v is as follows:

logP (r|v) =
N−1∑
i=0

logP (ri|vi) (2.16)

21

Using the log-likelihood function as decoding metric to perform maximum likelihood decod-

ing (MLD), the received vector r is decoded into codeword v for which the log-likelihood

function in (2.16) is maximized.

The squared Euclidean distance between r and c, denoted d2E(r, c) is defined as follows:

d2E(r, c) ,
N−1∑
i=0

(ri − ci)2 (2.17)

Soft-decision MLD is carried out by decoding the received sequence r into codeword v for

which the squared Euclidean distance, d2E(r, c), is minimized.

The correlation between the received sequence r and the transmitted code sequence c is

defined as follows:

m(r, c) ,
N−1∑
i=0

ri · ci (2.18)

Soft-decision MLD is achieved by decoding the received sequence r into the codeword v for

which the correlation, m(r, c), is maximized.

Finally, the correlation discrepancy between r and c is defined as:

λ(r, c) ,
∑

i:ri·ci<0

|ri| (2.19)

Soft-decision MLD is also carried out by decoding r into v for which the correlation discrep-

ancy, λ(r, c), is minimized.

Using these metrics, soft-decision MLD can be performed by taking the received signal

sequence, r, and computing one of the metrics for all 2K codewords and selecting the code-

word with the maximum, or minimum depending on the metric, as the decoded codeword.

However, for large K values, this method becomes impractical. To overcome this challenge,

several non-optimum or sub-optimum soft-decoding algorithms have been developed. These

algorithms can be divided into two categories: structure-based and reliability-based. The

following discussion is on a general reliability-based soft-decision decoding algorithm scheme

because the decoding algorithm used for the decoder in this thesis, as described in Sec-

tion 2.3, is a reliability-based soft-decision decoding algorithm. For more information on

other decoding schemes, refer to Lin and Costello’s book [40].

In reliability-based decoding, the each symbol, ri, in the received signal sequence, r =

(r0, r1, · · · , rN−1), is separated into two parts. The sign part, which is used for hard-decision

22

decoded bit:

zi =

0 for ri < 0

1 for ri ≥ 0

(2.20)

and the magnitude part, |ri|, which is used as a reliability measure of zi because the magni-

tude of the log-likelihood ratio (LLR) given by:∣∣∣∣log

(
P (ri|vi = 1)

P (ri|vi = 0)

)∣∣∣∣ (2.21)

is proportional to |ri|. Thus, the larger the |ri|, the more reliable the hard-decision decoded

bit zi is. Based on the reliability measure, the elements in the received signal sequence, r,

can be reordered in decreasing order of reliability. As a result, the left side of the reordered

sequence has elements that are more reliable, so they are called the most reliable positions

(MRPs). In contrast, the right side of the reordered sequence contains the less reliable

elements, so they are called the least reliable positions (LRPs). Consequently, errors are more

likely to occur in the LRPs and less likely to occur in the MRPs. Based on these positions

there exists two sub-categories of reliability-based decoding algorithms: LRP-reprocessing

algorithms and MRIP-reprocessing algorithms.

LRP-reprocessing algorithms take advantage of the property that most errors exist within

the LRPs of r. These algorithms generally follow these steps:

1. Construct a set of error patterns confined only in the LRPs of r.

2. Add each error pattern, e, in the set to the hard-decision decoded vector, z.

3. The resultant vector, z + e, is decoded using a hard-decision decoding algorithm to

generate a list of candidate codewords.

4. Apply the soft-decision decoding metrics, as presented above, to each candidate code-

word and select the codeword from the list of candidates which maximizes or minimizes

the metric, depending on the metric used, to be the decoded codeword.

MRIP-reprocessing algorithms are based on the MRPs of r. Since there are K inde-

pendent positions on z that uniquely determine a codeword in a linear block code, these

algorithms first determine a set of K most reliable independent positions (MRIPs) in r. Let

zk denote a vector that consists of these K MRIP elements of z. The following steps are the

general procedure of MRIP-reprocessing algorithms:

23

1. Construct a set of low-weight K -length error patterns based on the K MRIPs of r.

2. Add each error pattern, e, in the set to zk.

3. Encode each resultant vector, zk + e, into a codeword to form a list of candidate

codewords.

4. Apply the soft-decision decoding metrics, as presented above, to each candidate code-

word and select the codeword from the list of candidates which maximizes or minimizes

the metric, depending on the metric used, to be the decoded codeword.

LDPC codes are a subcategory of linear block codes. Thus, they are characterized by the

parity check matrix, H, except the structure of H has the following properties, according to

Lin and Costello’s book [40]: a) no two rows or columns have more than one non-zero element

in common; b) the row and column weights of H are small compared to the length of the

code. Row and column weights refer to the number of non-zero elements in a row and column

of the H matrix, respectively. If the row and column weights are constant, then the H matrix

describes a regular LDPC code; otherwise, it describes an irregular LDPC code, which is the

case in the DVB-S2 standard. All of the properties discussed in this section are applicable to

LDPC codes. However, the encoding and decoding techniques discussed in the Section 2.3

differ from the ones presented in this section since the structure of the LDPC codes in the

DVB-S2 standard allows for more efficient encoder and decoder implementations.

2.3 LDPC Codes in DVB-S2 Standard

One of the improvements of the DVB-S2 standard, which was ratified in 2005, from the

original DVB-S standard is the usage of LDPC codes concatenated with BCH codes for

FEC encoding and decoding, replacing convolutional and Reed-Solomon codes. This thesis

focuses solely on the LDPC codes in the DVB-S2 standard. The discussion of the BCH codes

in the standard is beyond the scope of this thesis. In this section, an overview of the LDPC

codes in the DVB-S2 standard is presented.

The LDPC codes in the DVB-S2 standard have two block lengths. Normal frames have

block length N = 64800 and short frames have N = 16200. Eleven code rates are specified

24

in normal frames1 and ten in short frames2.

According to the standard, even though the parity check matrices, H, chosen by the

standard are sparse, their respective generator matrices are not. Thus, the DVB-S2 standard

adopts a special structure of the H matrix in order to reduce the memory requirement and

the complexity of the encoder. It is called Irregular Repeat-Accumulate (IRA) [41]. The H

matrix consists of two matrices A and B, as follows:

H(N−K)×N = [A(N−K)×K|B(N−K)×(N−K)] (2.22)

where B is a staircase lower triangular matrix as shown in equation (2.23). The matrix A

is a sparse matrix, where the locations of the non-zero elements are specified in Annex B

and C of the standard [6] and reproduced in Appendix B. Furthermore, the standard also

introduces a periodicity of M = 360 to the submatrix A in order to further reduce storage

requirements.

B =

1 0 · · · · · · · · · · · · 0

1 1 0 · · · · · · · · · 0

0 1 1 0 · · · · · · 0

0 0 1 1 0 · · · 0
...

.
...

0 · · · 0 1 1 0 0

0 · · · · · · 0 1 1 0

0 · · · · · · · · · 0 1 1

(2.23)

The periodicity condition divides the A matrix into groups of M = 360 columns. For each

group, the locations of the non-zero elements of the first column are given in Appendix B.

Let the set of non-zero locations on first, or leftmost, column of a group be c0, c1, · · · , cdb−1,

where db is the number of non-zero elements in that first column. For each of the M−1 = 359

other columns, the locations of the non-zero elements of the ith column of the group are given

by (c0 + (i − 1)p) mod (N−K), (c1 + (i − 1)p) mod (N−K), (c2 + (i − 1)p) mod (N−K),

· · · , (cl + (i− 1)p) mod (N−K). N−K is the number of parity-check bits and p = N−K
M

is a

11/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10
21/5, 1/3, 2/5, 4/9, 3/5, 2/3, 11/15, 7/9, 37/49, and 8/9

25

Table 2.1: The values of p values in DVB-S2 LDPC codes

N = 64800 N = 16200

Code Rate p Code Rate p

1/4 135 1/5 36

1/3 120 1/3 30

2/5 108 2/5 27

1/2 90 4/9 25

3/5 72 3/5 18

2/3 60 2/3 15

3/4 45 11/15 12

4/5 36 7/9 10

5/6 30 37/49 8

8/9 20 8/9 5

9/10 18

code dependent constant as shown in Table 2.1. The values in Table 2.1 are obtained from

the user guidelines of the standard [42].

Since the LDPC codes in the DVB-S2 standard are systematic, the encoding of message

bits simply involves finding the parity bits through the parity-check equations. Using the

structure of the codes as mentioned above, the A submatrix with dimensions (N−K)×K can

be generated. Let ai,j denote the elements in the A submatrix, where i = 0, 1, · · · ,N−K−1

and j = 0, 1, · · · ,K − 1. In order to encode the message, u = u0, u1, · · · , uK−1, the parity

bits are computed using the following parity-check equations as shown in Gomes et al. [35]:

p0 = a0,0u0 ⊕ a0,1u1 ⊕ · · · ⊕ a0,K−1uK−1
p1 = a1,0u0 ⊕ a1,1u1 ⊕ · · · ⊕ a1,K−1uK−1 ⊕ p0
p2 = a2,0u0 ⊕ a2,1u1 ⊕ · · · ⊕ a2,K−1uK−1 ⊕ p1

...

pN−K−1 = aN−K−1,0u0 ⊕ aN−K−1,1u1 ⊕ aN−K−1,K−1uK−1 ⊕ pN−K−2

(2.24)

The encoded codeword is the concatenation of the message bits and the parity bits. Thus,

26

the resultant N -bit codeword has the following form:

(u0, u1, · · · , uK−1, p0, p1, · · · , pN−K−1) (2.25)

The decoding of LDPC codes in the DVB-S2 standard is a soft-decision decoding. The

output of the decoder is the hard-decision information bit sequence. To simplify the calcu-

lations, the inputs of the system are log-likelihood ratio (LLR) values. Let the transmitted

codeword be v = (v0, v1, · · · , vl, · · · , vN−1) and the soft-decision received sequence be y, then

the LLR value, denoted λl, for each code bit is given by:

λl = log

(
P (vl = 0|y)

P (vl = 1|y)

)
(2.26)

The LLR value represents the probability that a given received signal is more likely to be

a 1 or a 0. A larger positive value represents a higher probability of the received signal being

a 0 and a larger negative value represents a higher probability of it being a 1. The output

of the system is the decoded message in bits, along with an output to indicate whether the

decoding was completed successfully or an error still exists in the decoded message.

The decoding process can be visualized using the parity-check matrix H or with the help

of Tanner graphs. In 1981, Tanner [43] developed a method of representing LDPC codes in

a graphical form, which enabled further research using an iterative method to decode LDPC

codes. An example of a Tanner graph is shown in Figure 2.1, and its respective H matrix

is shown in (2.27)3. In the Tanner graph, each bit node (BN) represents a column in the H

matrix, each check node (CN) represents a row, and each edge represents a non-zero element

in the H matrix. For example, consider the H matrix in (2.27), there is a non-zero element

at row 1, column 4, so there is an edge connecting check node m1 to bit node n4 in Figure 2.1.

H =

1 0 0 1 1 0 0 1

0 1 1 0 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 0 1 1 0

 (2.27)

3For simplicity, the H matrix in (2.27) does not have the structure of the H matrices in the DVB-S2
standard.

27

n0

n5

n6

n4

n2

n1

n7

n3

m3

m2

m0

m1

Bit nodes Check nodes

Figure 2.1: Example of a Tanner graph.

One of the commonly known algorithm to decode LDPC codes is the Sum-Product Al-

gorithm (SPA) [40]. There are a few variations of this algorithm resulting from algebraic

manipulation of mathematical expressions and approximations as presented by Papaharala-

bos et al. [23]. The SPA is a message-passing algorithm, where the messages that are real

values are passed back-and-forth between the bit nodes and the check nodes. The message

boxes of the nodes are the edges on the Tanner graph, which represent the non-zero elements

in the parity-check matrix, H. The algorithm described below is similar to the one presented

by Masera et al. [22], except the ψ−1 function in the Check Node Update step is replaced by

the ψ function in the Bit Node Update step. This modification simplifies the control flow

for the implementation of the equations in hardware, but does not affect the outcome of the

equations because the ψ function is an involution, which means that the ψ function is its

28

BNj

Qjki[0]= λj

CNk0

CNk1

CNki

:

:

Qjk0[0]= λj

Qjk1[0]= λj

Figure 2.2: Initialization step of SPA.

own inverse. In addition, the steps are as laid out by Eroz et al. [44]. The algorithm consists

of four steps:

1. (Initialization) Let the block length be N and the LLR of the received signals be λj

where j = 0, 1, · · · ,N − 1. Let Qjki [l] be the messages sent from BNj to CNki during the

lth iteration, where ki is the index of a check node that has an edge connecting it to BNj,

i = 0, 1, · · · , db − 1 and db is the bit node degree of BNj. In the initialization step, perform

the following operation:

Qjki [0] = λj (2.28)

The Tanner graph representation is shown in Figure 2.2. Using the H matrix, this step is

29

equivalent to assigning λj to every non-zero element on column j of the H matrix as follows:

H[0]b =

h00 · λ0 h01 · λ1 · · · h0,N−1 · λN−1
h10 · λ0 h11 · λ1 · · · h1,N−1 · λN−1

...
...

hN−K−1,0 · λ0 hN−K−1,1 · λ1 · · · hN−K−1,N−1 · λN−1

 (2.29)

where hij = 0 or 1 is the element on the ith row and jth column in H and H[0]b is the

initialized H matrix.

2. (Check Node Update) Let Rikj [l] be the message sent from CNi to BNkj during the

lth iteration, where kj is the index of a bit node that has an edge connecting it to CNi,

j = 0, 1, · · · , dc− 1 and dc is the check node degree of CNi. Let B[i] be the set of BN indices

of all the messages incoming into CNi from the BNs connected to it, i.e. the set of all kj

indices of CNi. Perform the following calculation:

Rikj [l] = [
∑

m∈B[i]

ψ(Qmi[l])− ψ(Qkji[l])] ·

[
∏

m∈B[i]

sgn(Qmi[l])× sgn(Qkji[l])] (2.30)

where the ψ function is shown in (1.1) and sgn(x) is the signum function defined as follows:

sgn(x) =

−1 for x < 0

0 for x = 0

1 for x > 0

(2.31)

In other words, check node update has 2 parts: magnitude and sign. In the magnitude

part, for every CN, take all the incoming Q values, transform them using the ψ function

and add up the results. Finally, for every outgoing message, subtract the sum by the ψ(Q)

value that corresponds to it. Similarly, the sign is computed the same way except, there

is no ψ function and the product is taken instead of the sum. Refer to Figure 2.3 for a

graphical representation of this step. Using the H matrix to visualize, this step takes in all

non-zero elements on each row of H[l]b, processes them according to equation (2.30), and

assigns Rikj[l] to the ith row and kthj column of the H[l]c matrix, where H[l]c is the resultant

H matrix after the Check Node Update step of the lth iteration.

30

CNi

Qkji[l]

BNk0

BNk1

BNkj

:

:

Qk0i[l]

Qk1i[l]

Rik0[l]

Rik1[l]

Rikj[l]

Figure 2.3: Check node update step of SPA.

3. (Bit Node Update) Let C[j] be the set of CN indices of all messages incoming into

BNj from the CNs connected to it, i.e. the set of all ki indices of BNj. For bit node update,

perform the following calculation:

Qjki [l] = λj +
∑

m∈C[j]

sgn(Rmj[l − 1]) · ψ(Rmj[l − 1])−

sgn(Rkij[l − 1]) · ψ(Rkij[l − 1]) (2.32)

This equation is similar to the check node update equation, except the sign calculations

are included in the sum calculations, and the sum is added to the LLR value, λj. Figure 2.4

shows the graphical representation of this step. Using the H matrix, this step takes in all

non-zero elements on each column of H[l]c, processes them using equation (2.32), and assigns

Qjki[l] to the kthi row and jth column of the H[l]b matrix., where H[l]b is the resultant H

matrix after the Bit Node Update step of the lth iteration.

4. (Hard Decision Making) After bit node update, the soft-decision candidate codeword

31

BNj

Qjki[l]

CNk0

CNk1

CNki

:

:

Qjk0[l]

Qjk1[l]

Rk0j[l-1]

Rk1j[l-1]

Rkij[l-1]

Figure 2.4: Bit node update step of SPA.

sequence, S[l] = (S0, S1, · · · , Sj, · · · , SN−1), is computed as follows:

Sj = λj +
∑

m∈C[j]

sgn(Rmj[l − 1]) · ψ(Rmj[l − 1]) (2.33)

Equation (2.33) is equivalent to the first part of equation (2.32). Subsequently, the S

sequence is decoded into hard-decision sequence, z[l] = (z0, z1, · · · , zj, · · · , zN−1), with the

following equation:

zj =

0 for Sj ≥ 0

1 for Sj < 0

(2.34)

The resultant sequence, z, is a candidate codeword and is used to verify whether or not

the parity-check equations in (2.24) are satisfied. If all parity-check equations are satisfied,

decoding is complete, z is the decoded codeword, and its message part is the output. More

specifically, the decoder outputs (z0, z1, · · · , zK−1). Otherwise, repeat steps 2, 3 and 4 un-

til all parity-check equations are satisfied, or until a pre-determined number of iterations

has elapsed without satisfying all parity-check equations, in which case a decoding error is

declared.

32

Chapter 3

Architecture of DVB-S2 LDPC Decoder

3.1 Architecture of the Decoder

In this chapter, the details of the architecture of the implemented DVB-S2 LDPC decoder

are presented. Figure 3.1 shows the inputs and outputs of the decoder. Table 3.1 describes

each input and output of the decoder in more detail. In Table 3.1, the upstream side refers

to the inputs and outputs of the decoder that interfaces an external module that inputs LLR

values to the decoder. The downstream side refers to the inputs and outputs of the decoder

that interfaces an external module that reads the output decoded message bits from the

decoder.

The architecture of the LDPC decoder is based on the memory mapping scheme that is

presented by Eroz et al. [8]. Figure 3.2 shows the block diagram of the LDPC decoder. The

decoder consists of eight components: LLR Buffer, Functional Units (FUs), Shuffle Network,

ROM, RAM, Parity Check Module (PCM), Decoded Message Buffer and Controller.

Referring back to the steps of SPA as laid out in Section 2.3, during the initialization step,

the LLR values are input into the LLR Buffer as a serial stream of data. The LLR values

are 6 bit values since Zhang et al. [20] demonstrates that 6-bit LLR values are sufficient

to a small performance degradation. For every 360 LLR values collected, the values are

copied into the RAM through the FUs, where they are compressed (described in more detail

later in this chapter), and the Shuffle Network, where the values are shifted to the correct

positions for the next step (also discussed in more detail later in this chapter). In the Check

Node Update step, the values are read from the RAM and processed in the FUs according

to equation (2.30). The results are written back to the RAM through the Shuffle Network,

33

Table 3.1: Description of the Inputs and Outputs of the Decoder

Input/ Bit Name Description

Output Width

Upstream Side:

Input 6 llr Serial 6-bit wide input LLR values

Input 1 nd New data indicates that input LLR values are incoming

Input 1 fd in First data input marks the beginning of an input frame

Output 1 rfd Ready for data indicates that the decoder is ready for more

LLR values

Output 1 rffd Ready for first data indicates that the decoder is ready for

a new frame

Downstream Side:

Output 1 decmsg Serial hard decoded message output

Output 1 err Indicates whether or not a decoding error has occurred

Output 1 rdy Ready indicates the output data is ready to stream out

Output 1 fd out First data output marks the beginning of an output frame

Input 1 cts Clear to send informs the decoder as to whether or not to

output the decoded message

Others:

Input 1 clk Clock

Input 1 reset Reset

Input 1 N Selects between normal and short frames (0 - normal frame;

1 - short frame)

Input 4 rate Selects the code rate (0000b → 1010b for normal frames;

0000b → 1001b for short frames; in increasing order of code

rate)

Input 8 max iter Sets the maximum number of iterations the decoder will

perform

Input 1 fu sel Only used in the hybrid implementation, to select between

the 360- or 180-Functional Unit mode

34

clk

reset

N

rate

max_iter

llr

nd

fd_in

rfd

rffd

decmsg

err

cts

rdy

fd_out

(fu_sel)

4

8

6

Figure 3.1: Inputs and Outputs of the LDPC decoder.

LLR

Buffer

Shuffle

Network

Functional

Units

RAM

ROM

PCM

Decoded

Message

Buffer

Controller

Input

LLR

Values

Output

Decoded

Bits

Figure 3.2: Top level block diagram of LDPC decoder.

35

where they are shifted into position for the next step. In the Bit Node Update step, the

values are once again read from the RAM and processed in the FUs, but this time using

equation (2.32). Since the LLR values are necessary in equation (2.32), the LLR Buffer is also

read during this step. Once the resultant values are computed, the output is written back

into the RAM through the Shuffle Network, where the values are shifted for the Check Node

Update step if necessary. During the Bit Node Update step, the decoder is also performing

the Hard Decision Making step because in order for the FUs to compute equation (2.32),

they first compute the summation part, which is equation (2.33), as discussed in Section 2.3.

Furthermore, from equation (2.34), the elements of the hard-decision candidate codeword

sequence, z[l], are equivalent to the sign of the elements of the sequence S[l], so only the

sign bits of S[l] are output from the FUs to the PCM. The FUs can generate 360- or 180-

bit portions of the complete sign bit sequence, z[l], at a time and they are input into the

PCM as they are generated. The portions that belong to the message part of the codeword

are simultaneously stored in the Decoded Message Buffer as they are generated. The PCM

verifies the parity-check equations, and its error output indicates whether or not the parity-

check equations are satisfied. The error output of the PCM is input into the Controller

to indicate whether or not to continue decoding. If the error output indicates that all the

parity-check equations are satisfied, then the message part of the candidate codeword that

has been stored in the Decoded Message Buffer is the decoded message and it is the output

of the decoder. The decoded message is outputted from the Decoded Message Buffer and the

decoder serially. Simultaneously, a new set of LLR values may be inputted into the decoder.

If the error output of the PCM indicates that not all parity-check equations are satisfied, the

decoder returns to the Check Node Update step and iterate until all parity-check equations

are satisfied or a maximum number of iterations is reached.

The controller is a finite state machine that controls the above mentioned data flow in

the decoder, so it has connections to all seven other components available in Figure 3.2, but

these connections are not shown in the block diagram to avoid congestion in the figure. The

state transition diagram of the controller is shown in Figure 3.3.

The decoder’s control flow begins in the IDLE state. When both inputs nd and fd in are

active, the controller enters the INIT state. During the INIT state, the LLR values are being

36

IDLE

INIT

IWAIT

CNUP

BNUP

CHECK

nd = 1

fd_in = 1

when all data

is acquired

when all data

is in RAM

when CNUP

is completed

when BNUP

is complete

error = 0

or

max_iter is

reached

error = 1

and

max_iter is

not reached

Figure 3.3: Controller FSM state diagram.

inputted into the decoder and the controller remains in the INIT state until all 64800 LLR

values for normal frame, or 16200 LLR values for short frame, are inputted into the decoder,

in which case the controller moves to the IWAIT state. The IWAIT state is a transitional

state where the decoder has received all LLR values, but is not ready to perform calculations

yet because some LLR values are still being written into the RAM through the FUs and the

Shuffle Network. Once all the RAM values are ready, the controller goes into the CNUP

state where the Check Node Update step is performed. Once the Check Node Update step is

complete, the controller goes into the BNUP state where the Bit Node Update is performed.

After all the Bit Node Update calculations are performed, the controller enters the CHECK

state. During the CHECK state, the PCM verifies the parity-check equations. If all parity-

check equations are satisfied, error = 0, then the controller enters the IDLE state and waits

for the next frame of LLR values while outputting the decoded message. Otherwise, error =

1, and the controller returns to the CNUP state to repeat the CNUP, BNUP and CHECK

states. If the maximum number of iterations is reached during the CHECK state, the

37

controller also moves to the IDLE state and outputs the decoded message with the output

err set to 1.

There are three versions of the decoder, namely the 360-Functional-Unit (360-FU) ver-

sion, the 180-Functional-Unit (180-FU) version and the hybrid 360/180-Functional-Unit (hy-

brid) version. Architecture of the 360-FU version is discussed first in the sections to follow.

The design and architecture of each of the components of the decoder is discussed in detail.

Subsequently, the modifications required to change from the 360-FU version to the 180-FU

and the hybrid versions are presented.

The architecture of the decoder presented in the subsequent sections are designed for the

Xilinx Virtex II-Pro XC2VP100 FPGA for comparison purpose with the decoder designed

by Gomes et al. [18]. The discussion involving the use of the Xilinx Virtex-6 XC6VLX240T

FPGA is presented in Chapter 4.

3.2 Architecture of the RAM and the ROM

From the control flow discussion above, for high throughput, the ideal decoder implemen-

tation would be to have one FU for every bit and check node, where each FU can perform

either (2.30) or (2.32) calculations, and all FUs would run independently, which is the fully

parallel decoder architecture. However, as mentioned above, the Check Node Update and

Bit Node Update calculations are never performed at the same time. Thus, the FUs are

designed to be able to handle both the (2.30) and (2.32) calculations provided that they are

not performed at the same time, in which case, one FU is necessary per bit node because

N > N−K. However, in the DVB-S2 standard, N = 64800 for normal frames and N = 16200

for short frames, so 64800 FUs are required, which is impractical for hardware implementa-

tion because there is a limited number of hardware resources on an FPGA as described in

Section 2.1.

Eroz et al. [8] propose that taking advantage of the periodicity factor of M = 360 of

the parity-check matrix H, as discussed in Section 2.3, and appropriately organizing the

RAM can result in a decoder architecture that can efficiently perform the decoding by only

using 360 FUs. In the following subsections, the mentioned memory organization scheme is

38

0

1

2

3

:

:

q-1

:

:

:

:

pq-1

pq

pq+1

pq+2

pq+3

:

:

(p+1)q-1

:

:

:

:

2pq-1

.

.

(M-1)pq

(M-1)pq+1

(M-1)pq+2

(M-1)pq+3

:

:

:

:

:

:

Mpq-1

C
h

e
c
k
 N

o
d

e
 P

ro
c
e

s
s
in

g

E
d

g
e

 A
c
c
e

s
s

(c
o

n
s
e

c
u

ti
v
e

 r
o

w
s
)

B
it
 N

o
d

e
 P

ro
c
e

s
s
in

g

E
d

g
e

 A
c
c
e

s
s

(r
a

n
d

o
m

 r
o

w
s
)

Figure 3.4: Edge placement and access of the Top RAM.

presented, followed by a discussion of the modules required for its implementation.

3.2.1 Memory Mapping Scheme

The memory mapping scheme of the LDPC decoder presented here is based on the scheme

presented by Eroz et al. [8]. Each edge in the Tanner graph (or each non-zero element in

the H matrix) is mapped to a location in the RAM, which acts as the message box for the

R and Q values from (2.30) and (2.32), respectively, to be stored. The RAM is virtually

divided into a top and a bottom RAM. The top RAM corresponds to the non-zero elements

of the A submatrix and the bottom RAM corresponds to the non-zero elements of the B

submatrix. During the Check Node Update and Bit Node Update steps, the FUs read the

values from the RAM, process them, and write them back to the RAM. The locations from

which the FUs read from the RAM depending on the H matrix.

Eroz et al. [8] suggest that if the RAM is organized as shown in Figure 3.4 and Figure 3.5

and each non-zero element of H is mapped correctly to each cell of the RAM, the RAM

access during the Check Node Update step is a sequential access in the top RAM of q rows

39

x

Mpq

Mpq+1

Mpq+2

:

:

Mpq+2p-2

Mpq+2p-1

Mpq+2p

Mpq+2p+1

Mpq+2p+2

:

:

Mpq+4p-2

.

.

Mpq+2(M-1)p-1

Mpq+2(M-1)p

Mpq+2(M-1)p+1

Mpq+2(M-1)p+2

:

:

Mpq+2Mp-2

C
h

e
c
k
 N

o
d

e
 P

ro
c
e

s
s
in

g

E
d

g
e

 A
c
c
e

s
s

B
it
 N

o
d

e
 P

ro
c
e

s
s
in

g

E
d

g
e

 A
c
c
e

s
s

Figure 3.5: Edge placement and access of the Bottom RAM

followed by 2 rows of the bottom RAM. In Figure 3.4 and Figure 3.5, p and q are code-

rate-specific values. p is shown in Table 2.1 and Table 3.2 and it represents the number of

M = 360 check node groups and q is shown in Table 3.2 and it corresponds to the row weight

of the A submatrix. Furthermore, by organizing the RAM as in Figure 3.4 and Figure 3.5,

only M = 360 FUs need to be implemented and each FU only accesses and processes the

values stored in one column of the top RAM and one column of the bottom RAM. During

the Bit Node Update step, the rows that need to be processed are at random locations in the

top RAM followed by a sequential access of rows in the bottom RAM. Thus, the address of

the rows that are accessed during Bit Node Update need to be stored in the ROM for each

code rate in the standard.

Relating back to the H matrix, during the Check Node Update step, each row of the

top or bottom RAM corresponds to the set that consists of one non-zero element from each

row of a check node group in H, where a check node group is the collection of the rows

i, i+ p, i+ 2p, · · · , i+ (M − 1)p of the H matrix, and i = 0, 1, 2, · · · , p− 1 is the check node

group index. Thus, when sequentially accessing the top RAM rows, the decoder is accessing

the message box values that corresponds to each non-zero element of the rows in a check node

group in the A submatrix. When accessing the bottom RAM rows, the decoder is accessing

the message box values that corresponds to each non-zero element of the rows in a check

node group in the B submatrix. In other words, if cell 0 in Figure 3.4 corresponds to a non-

40

Table 3.2: RAM size of all the block length and code rates in DVB-S2

Block

length

Code

Rate

of check node

groups

check node

degree

of edges in top

RAM

of RAM

rows

N p = N−K
M

dc q = dc − 2 pq + 2p

64800

1/4 135 4 2 540

1/3 120 5 3 600

2/5 108 6 4 648

1/2 90 7 5 630

3/5 72 11 9 792

2/3 60 10 8 600

3/4 45 14 12 630

4/5 36 18 16 648

5/6 30 22 20 660

8/9 20 27 25 540

9/10 18 30 28 540

16200

1/5 36 3.75∗ 1.75 135

1/3 30 5 3 150

2/5 27 6 4 162

4/9 25 5.4∗ 3.4 135

3/5 18 11 9 198

2/3 15 10 8 150

11/15 12 11∗ 9 132

7/9 10 12.5∗ 10.5 125

37/49 8 17.13∗ 15.13 137

8/9 5 27 25 135
∗Special Case Code Rates

zero element on row 0 of the A submatrix, then cells 1, 2, · · · , q− 1 correspond to the other

non-zero elements on row 0 of the A submatrix. Furthermore, cells pq, 2pq, · · · , (M − 1)pq

correspond to a non-zero element on rows p, 2p, · · · , (M − 1)p, respectively.

During the Bit Node Update step, each row in the top RAM corresponds to the set that

consists of one non-zero element from each column of a bit node group, where a bit node

group is a collection of the columns i, i + 1, i + 2, · · · , i + (M − 1) of the A submatrix,

41

and i = 0,M, 2M, · · · ,K −M is the row index of the bit node group leader. Recall from

Section 2.3 that if the locations of the non-zero elements of the leftmost column in a bit node

group in the A submatrix, which is the bit node group leader, are c0, c1, · · · , cdb−1, where db

is the bit node degree, which is the number of edges that are connected to that bit node, then

the non-zero element locations of the other columns of the same bit node group are given by

the downward cyclic shift of c0, c1, · · · , cdb−1 by p. By mapping the RAM accordingly, the

cells of a top RAM row correspond to the respective non-zero elements on each column of a

bit node group. In other words, if cell 0 in Figure 3.4 corresponds to the non-zero element

on row (or location) c0 and column 0 of the A submatrix, then cell pq, which is in the same

top RAM row as cell 0, corresponds to the non-zero element on row (c0 + p) mod (N−K)

and column 1 of the A submatrix, cell 2pq corresponds to the non-zero element on row

(c0 + 2p) mod (N−K) and column 2 of the A submatrix, and so on. Furthermore, since cell

0, pq and 2pq are in row 0 of the top RAM, the value 0 must be stored in the ROM. Similarly,

the row indices of the cell in the top RAM, which corresponds to rows c1, c2, · · · , cdb−1 and

column 0 of the A submatrix also need to be stored in the ROM because these row indices

are code rate dependent.

In the B submatrix, the bit node groups are organized differently. The bit node groups

are columns i, i+ p, i+ 2p, · · · , i+ (M − 1)p of the B submatrix, where i = 0, 1, 2, · · · , p− 1.

However, since the B submatrix always has two non-zero elements in sequence, except for

the rightmost column, the bottom RAM to B submatrix correspondence during Bit Node

Update is less complex. If cell Mpq in Figure 3.5 corresponds to the top non-zero element

of column 0 of B, then cell Mpq + 1 corresponds to the other non-zero element of column 0

and cells Mpq + 2p,Mpq + 4p, · · · ,Mpq + 2(M − 1)p correspond the top non-zero element

of columns p, 2p, · · · , (M − 1)p, respectively.

As can be seen in Figure 3.4 and Figure 3.5, the size of the top RAM is pq ×M and

the size of the bottom RAM is 2p ×M . In order for the decoder to support all 21 block

length and code rate combinations, the size of the RAM must be the maximum value of

(pq + 2p) × 360 for each of the code rates. According to Table 3.2, the largest RAM is

necessary when the block length is 64800 and the code rate is 3/5, where the RAM size is

792× 360. Note that in Table 3.2 there are some code rates where q is not an integer. These

42

code rates will be discussed later.

In Section 3.3, the values stored in RAM will be shown to be 5 bits wide. Thus, the

total size of the RAM is 792 × 360 × 5 = 1425600 bits or 1.36 Mb. However, recall from

Section 2.1 that the RAM in the Virtex-II Pro FPGAs are organized as 18 Kb BRAMs with

various configurations. In order to implement the RAM for the decoder, the FPGA utilizes

100 18Kb BRAMs using the 1K × 18 bits configuration.

Eroz et al. [8] make a one-to-one mapping of every non-zero element in the H matrix

to every location in the RAM. The paper presents an example on how after the H matrix

is successfully mapped to the RAM, the RAM access is sequential during the Check Node

Update step and indexed during the Bit Node Update step as described above, but it only

discusses the algorithm to map the bottom RAM. When mapping the B submatrix to the

bottom RAM, the top left corner cell of the bottom RAM is unused. Subsequently, the

non-zero elements in the submatrix B are mapped as follows:

B =

1

↓

1 → 1

↓ 0

1 → 1

↓

1 →
. . .

0 → 1

↓

1 → 1

(3.1)

However, Eroz et al. [8] do not present the algorithm to map the A submatrix to the top

RAM. Thus, a novel algorithm is devised that can systematically map the A submatrix of

any LDPC code with the same structure as the ones defined in the DVB-S2 standard to the

RAM architecture as described above.

43

Consider the H matrix of the example in Eroz et al. [8] as equation (3.2).

H =

1 0 1 0 1 0 0 0 1 1 1 0

0 0 1 1 1 0 1 1 0 0 0 1

1 1 0 0 0 1 1 0 0 0 1 1

1 0 0 0 1 1 0 1 1 1 0 0

0 1 1 1 0 0 0 1 0 1 0 1

0 1 0 1 0 1 1 0 1 0 1 0

1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

⇒ e0 → e5, e36

⇒ e6 → e11, e37 → e38

⇒ e12 → e17, e39 → e40

⇒ e18 → e23, e41 → e42

⇒ e24 → e29, e43 → e44

⇒ e30 → e35, e45 → e46

︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

(3.2)

The parameters for this code are: N = 18, M = 3, p = 2, and q = 6. The top and bottom

RAM are shown in (3.3).

topRAM =

e0 e12 e24

e1 e13 e25

e2 e14 e26

e3 e15 e27

e4 e16 e28

e5 e17 e29

e6 e18 e30

e7 e19 e31

e8 e20 e32

e9 e21 e33

e10 e22 e34

e11 e23 e35

bottomRAM =

x e39 e43

e36 e40 e44

e37 e41 e45

e38 e42 e46

 (3.3)

The cells in the top and bottom RAMs are represented by ei, which correspond to edges in

the Tanner graph or non-zero elements in the H matrix. As shown in (3.2), the six non-zero

elements in row 0 of submatrix A maps to e0 → e5, the six non-zero elements in row 1 maps

to e6 → e11, and so on. However, in order to perform the Bit Node Update step, one needs

to know exactly which non-zero element corresponds to which edge. Thus, Algorithm 1 is

devised to systematically map the non-zero elements to the edges.

44

Algorithm 1 Memory Mapping Algorithm

1. Set up top RAM with size pq ×M .

2. Label all edges sequentially as in (3.3).

3. Identify the set of edges that corresponds to each row of submatrix A as in (3.2).

for Every bit node group of M columns in submatrix A, starting from the left do

for Every non-zero element in the bit node group leader, starting from the top do

4a. Identify the row where the current non-zero element is located.

4b. Assign the lowest numbered edge available of that row to the current non-zero

element.

4c. From the top RAM, find the edge that was just assigned.

4d. Identify the remaining edges that are in the same top RAM row.

4e. Assign those edges from left to right and cyclically wrapped to the corresponding

non-zero elements in the remaining columns of the bit node group, which are all

downward-cyclic-shifted versions of the column to its left by p.

end for

end for

In the above example, start with the non-zero element in row 0, column 0 and assign it

to e0. The remaining edges in the same row as e0 in the top RAM are e12 and e24 which

are assigned to the non-zero elements in row 2, column 1 and row 4, column 2, respectively.

Next, row 2, column 0 is assigned e13 because e12 is already used, and e25 and e1 is assigned

to row 4, column 1 and row 0, column 2, respectively. The process continues until all edges

are assigned. Upon the completion of applying Algorithm 1 and using the mapping of the

bottom RAM provided in (3.1), the following is the mapped version of matrix H in (3.2):

H =

e0 0 e1 0 e2 0 0 0 e3 e4 e5 0

0 0 e6 e7 e8 0 e9 e10 0 0 0 e11

e13 e12 0 0 0 e14 e15 0 0 0 e16 e17

e18 0 0 0 e19 e20 0 e21 e22 e23 0 0

0 e25 e24 e26 0 0 0 e27 0 e29 0 e28

0 e30 0 e32 0 e31 e34 0 e33 0 e35 0

e36 0 0 0 0 0

e37 e38 0 0 0 0

0 e39 e40 0 0 0

0 0 e41 e42 0 0

0 0 0 e43 e44 0

0 0 0 0 e45 e46

(3.4)

45

From (3.4), the row
shift

coefficients can be generated. These coefficients are stored in the

ROM for the Bit Node Update step and for the example above they are as follows:

0
0

, 1
1

, 6
1

7
0

, 2
2

, 8
2

9
0

, 3
1

, 10
2

4
0

, 11
1

, 5
2

(3.5)

The row coefficient indicates the locations of the top RAM rows for a given bit node group.

From the example, for the leftmost bit node group, which consists of columns 0, 1 and 2 of

the H matrix, the row coefficients are 0, 1 and 6, from the top row in (3.5). These coefficients

are generated from the H matrix in (3.4). The bit node group leader, which is column 0

of the H matrix in (3.4), has three non-zero elements and they are labelled e0, e13 and e18.

From (3.3), these three labels are found in rows 0, 1 and 6 of the top RAM, which are the

row coefficients of the bit node group. Notice that the non-zero elements on column 1 and

2 of (3.4) are also found on rows 0, 1 and 6 of the top RAM in (3.3) and the respective

elements resulted from the downward cyclic shift of the non-zero locations of the bit node

group leader are on the same row in the top RAM, i.e. e0, e12 and e24 are on the same row

because the locations of e12 and e24 are downward cyclic shifts of the location of e0 by p = 2.

The shift coefficients are generated by finding column in the top RAM in which the non-zero

elements of the bit node group leader are located. For the leftmost bit node group, edges e0,

e13 and e18 from the bit node group leader in matrix H in (3.4) are in columns 0, 1 and 1 of

the top RAM in (3.3), respectively. Thus, the shift coefficients in the first row of (3.5) are

0, 1 and 1.

The set of coefficients presented in (3.5) are different from the ones generated by Eroz et

al. [8] for the same H matrix, which means that the memory mapping algorithm applied is

different. Nevertheless, Algorithm 1 still produces a RAM in which the same RAM access

mechanism can be applied. Furthermore, in the given example, the A submatrix only has

36 non-zero elements, and the number of non-zero elements in the A submatrices defined in

the DVB-S2 standard are in the order of 105 for normal frames and 104 for short frames.

In order to generate the ROM coefficients for the LDPC codes in the DVB-S2 standard

using Algorithm 1, the complete A submatrix needs to be generated first using the values

46

given in Appendix B, which are related to the non-zero element locations of the bit node

group leaders. Subsequently, one can apply Algorithm 1, which searches through every non-

zero element in the A submatrix and assign them to a cell in the top RAM. However, the

completely labelled A submatrix is then reduced to the row
shift

coefficients to store in ROM,

which only depends on the non-zero element locations of the bit node group leader. The

process is cumbersome and impractical because of the large number of non-zero elements in

A that are assigned a label only to be reduced back to only the non-zero elements in the

bit node group leader. Therefore, a more efficient method has been devised to generate the

ROM coefficients as described next.

3.2.2 Generation of ROM Coefficient

Upon examining Algorithm 1 more closely, one can see that only the locations of the non-

zero elements of the bit node group leaders, given in Appendix B, are necessary to map the

cells of the top RAM to the A submatrix. Furthermore, only the labels and positions of the

cells in the top RAM of the non-zero elements in the bit node group leaders are responsible

for the row and shift values given in (3.5). Thus, it would be logical to conclude that it

is possible to convert the values given in Appendix B directly into the ROM coefficients.

Algorithm 2 has been devised to perform this conversion more efficiently than the process

described in Section 3.2.1.

Referring back to the N = 18 example, if the LDPC code was part of the standard, the

values in Appendix B would be of the form:

0 2 3

1 4 5

1 2 5

0 3 4

(3.6)

These values are obtained from the H matrix in (3.2). The bit node group leader of the

leftmost bit node group has non-zero elements in rows 0, 2 and 3, and the remaining bit

node group columns are the downward cyclic shift version of the bit node group leader by

p = 2. Thus, the first set of coefficients is 0, 2 and 3 as found in (3.6).

47

Algorithm 2 ROM Coefficient Generation Algorithm for any code rate (except for the
special code rates discussed in Section 3.2.4)

1. Read the values from Appendix B for a particular code rate.

2. Initialize a vector LUT = [0, q, 2q, 3q, · · · , (p− 1)q].

for Every value (g) read from Appendix B do

3a. index = g mod p

3b. Collect row = LUT(index)

3c. LUT(index) = LUT(index) + 1

3d. Collect shift = g ÷ p

end for

return Every row and shift value collected

By applying Algorithm 2, the row
shift

values obtained in (3.5) can be generated from (3.6)

and the result is identical to the ones generated using Algorithm 1 and reading the ROM

coefficients from the labelled H matrix as described in Section 3.2.1.

Even though the generation of the ROM coefficients are performed off-line, Algorithm 2

allows the generation of the ROM coefficients more efficiently without the need to expand

the values given in the standard into a complete H matrix. Furthermore, Algorithm 2 can

be used for any LDPC code that has the same structure as the codes defined in the DVB-S2

standard.

3.2.3 Function and Architecture of the Shuffle Network

The shift coefficients discussed in previous sections are also stored in the ROM. These coef-

ficients are used by the Shuffle Network to perform cyclic shifts on the outputs of the FUs

before they are stored in the RAM. The outputs of the FUs need to be shifted because from

the memory mapping scheme discussed in Section 3.2.1, each FU accesses and processes one

column in the top RAM and one column in the bottom RAM. For example, consider the

mapped H matrix in (3.4) and its top and bottom RAM in (3.3). Since M = 3 in the exam-

ple, 3 FUs are implemented, denoted FU0, FU1 and FU2 that are responsible for columns 0,

1 and 2 respectively. Consider the top RAM access for FU0. During the Check Node Update

48

step, FU0 accesses top RAM cells e0, e1, e2, e3, e4 and e5 because they are all in row 0 of

the A submatrix in (3.4). Since these cells are all in column 0, FU0 simply needs to access

contents of the cells sequentially from the RAM. Similarly, the RAM access of FU1 and FU2

are also sequential and the RAM access for all other check node groups are also performed

in a similar fashion.

Assume that the new contents at the output of FU0 are written back to the same top

RAM locations as they are read from at the end of the Check Node Update. During the

Bit Node Update step, FU0 is responsible for processing the bit node group leader of the bit

node groups. Thus, FU0 needs to process the contents in cells e0, e13 and e18 for the leftmost

bit node group, according to (3.4). In the top RAM, the contents of these cells are in row

0, columns 0; row 1, column 1; and row 6, column 1 of the top RAM, respectively, which

are the row and shift coefficients stored in ROM for the leftmost bit node group, as shown

in (3.5). In order for FU0 to access the appropriate contents, the outputs of rows 0, 1 and

6 of the top RAM must be cyclically left-shifted by 0, 1 and 1, respectively, before entering

FU0. Furthermore, at the end of the Bit Node Update step, the outputs of FU0 need to be

cyclically right-shifted back by 0, 1 and 1 before they are stored in the RAM in order for

FU0 to be able to access the appropriate cell contents during the Check Node Update of

the next iteration. Thus, two shifting modules, called Shuffle Network, are necessary. One

between the outputs of the RAM the inputs FUs and another one between the inputs of the

RAM and the outputs of the FUs.

In order to reduce the hardware resource utilization of the FPGA, only one Shuffle Net-

work is implemented between the outputs of the FUs and the inputs of the RAM, as shown in

the top-level block diagram in Figure 3.2. This implementation is possible by implementing

both left and right cyclic shift operations in the Shuffle Network. At the end of the Check

Node Update step, instead of writing the outputs of the FUs back to the same locations as

they were read, the outputs of the FUs are cyclically left-shifted by the shift coefficients to

set up for the Bit Node Update. At the end of the Bit Node Update step, the output of the

FUs are cyclically right-shifted before writing back to the RAM as previously discussed.

Furthermore, two sets of the shift coefficients are stored for more efficient ROM access.

Consider the example, where the row and shift values are shown in (3.5). During the Bit

49

Table 3.3: row, shift and ishift coefficients in the ROM of the example

ROM Location row shift ishift

0 0 0 3

1 1 1 2

2 6 1 1

3 7 0 2

4 2 2 3

5 8 2 1

6 9 0 2

7 3 1 3

8 10 2 1

9 4 0 3

10 11 1 1

11 5 2 2

Node Update step, the shift values stored in ROM are in the same order as in (3.5), as shown

in Table 3.3. Thus, the ROM access for the shift coefficients is sequential during the Bit Node

Update step because the top RAM row that is accessed is indexed by the row coefficients

which are in the same ROM address location as the shift coefficients. However, during the

Check Node Update step, the top RAM row access is sequential, so in order to avoid the need

to search for the shift coefficient from the ROM, another set of shift coefficients are stored

in the ROM, called ishift. Furthermore, since another set of shift coefficients is stored in the

ROM, the Shuffle Network architecture can be further simplified by implementing only the

cyclic right-shift operation and store the values ishift = M − shift in the ROM. In summary,

in order to obtain the ishift coefficients and their respective ROM address location, sort the

list of shift coefficients in increasing order of their respective row coefficients and generate

the ishift values using ishift = M−shift. The resultant ishift values and their ROM locations

are shown in Table 3.3.

As shown later in Section 3.3, the output of each FU to be stored in the RAM is a 5-bit

value. Since 360 FUs are used, the input and output of the Shuffle Network is 360×5 = 1800

50

bits wide. Furthermore, the Shuffle Network can cyclically right-shift the input of 360 5-bit

values by 0 to 359 positions selected by an input. The Shuffle Network is implemented as a

structure that consists of five barrel shifters. Each barrel shifter outputs a 360-bit sequence

from cyclically right-shifting the 360-bit input by 0 to 359 positions selected by an input.

More details on the architecture of the barrel shifter are presented in Section 3.4.

3.2.4 Special Case of Code Rates in Short Frames

In Table 3.2, some code rates are marked as special case code rates, yet these code rates

in the short frame are not specially marked in the standard. The reason that these code

rates are marked is that the memory mapping scheme in Algorithm 1 assumes that the row

weight of submatrix A is always constant. However, the assumption is not true in the code

rates that are marked as special case code rates in Table 3.2. In these code rates, the row

weight of submatrix A is not always constant. Moreover, these code rates have row weights

of anywhere between two and five different values, as shown in Table 3.4.

The various row weights of these code rates affects the Check Node Update step because

the FUs no longer always access a constant number of top RAM rows, q, at a given time,

especially since in some of these code rates, q is not an integer. This special characteristic

of these code rates also affects the mapping of the edges to the non-zero elements in the A

submatrix to the top RAM using Algorithm 1. Nevertheless, the periodicity of M = 360 still

exists, which means if row i in A, for 0 ≤ i < p, has a particular row weight, then the rows

i + p, i + 2p, i + 3p, · · · , i + (M − 1)p, which are from the same check node group, all have

the same row weight. In Table 3.4, the check node group indices identify the check node

groups in the particular code rate that has the particular row weight. Using the periodicity

property of the row weights, during the Check Node Update step, the FUs read the number

of rows from the top RAM according to the row weight values and check node group indices

given in Table 3.4, instead of always reading q rows from the top RAM, which is the case

for all other code rates.

51

Table 3.4: Row Weight of submatrix A of Problematic Code Rates

rate
row

check node group indices
weight

1/5

1 6, 13, 14, 15, 20, 26, 27, 28, 30

2
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 16, 17, 18,

19, 21, 22, 23, 24, 25, 29, 31, 32, 33, 34, 35

4/9

2 4, 6, 16, 19

3 0, 5, 7, 9, 10, 15, 18, 21, 23

4 1, 3, 8, 11, 12, 13, 14, 17, 20, 22

5 2, 24

11/15

7 3

8 0, 4, 9

9 2, 6, 8, 10

10 1, 7, 11

11 5

7/9

9 1

10 0, 3, 4

11 2, 5, 6, 7, 8, 9

37/45

14 0, 1, 2, 3

15 7

16 5

17 4,6

For example, in code rate 37/45, where p = 8, the FUs reads the first 14 rows of the top

RAM to process the check node group with index 0, which corresponds to processing rows

0, 8, 16, · · · , 2872 of submatrix A. Then, it reads the next 14 rows to process the check node

group with index 1, which corresponds to rows 1, 9, 17, · · · , 2873 of submatrix A. Then, it

reads the next 14 rows for check node group 2 and another 14 rows for check node group

3. Next, it reads 17 rows from the top RAM for the check node group 4, 16 rows for check

52

FIFO

SUM

FIFO

LLR

FIFO

SIGN

ACCUM

-/+

+/-

0

0 PAD

LLR

0

SIGN

REG

0 PAD
+

-
SAT

REG
SAT

ABS

0 PAD

COMP

LLR

Ψ

CHECK

-/+

0 1.0

RAM

IN

RAM

OUT

CHECK

LLR

+

+

0

Figure 3.6: Block diagram of functional unit.

node group 5, 17 rows for check node group 6 and 15 rows for check node group 7.

For the generation of the ROM coefficients, the only modification to Algorithm 2 is the

initialization of the vector LUT. Instead of initializing LUT = [0, q, 2q, 3q, · · · , (p − 1)q],

initialize LUT = [0, rw0, rw0 + rw1, rw0 + rw1 + rw2, · · ·], where rwi is the row weight of

check node group index i. The rest of Algorithm 2 is executed the same way as with any

other code rate.

3.3 Architecture of the Functional Units

The Functional Units (FUs) are used to compute the equations (2.30) and (2.32). The FU

design is a modification and improvement of the serial FU architecture presented by Gomes

et al. [34]. The modified FU design and architecture is presented in this section. The block

diagram of a FU is shown in Figure 3.6. Each FU is a hybrid structure that is capable of

performing either equation (2.30) or (2.32). Since the two calculations are not performed

simultaneously in the SPA as described in Section 2.3, the two operations are combined into

one module to reduce hardware resources. The operation of the FU module is described

below using the block diagram in Figure 3.6 as reference.

53

The FU receives the values from the RAM through the RAM IN input. Recall from

Section 3.2 that during the Check Node Update step, q rows from the top RAM and two

rows from the bottom RAM are processed for each check node group. During the Bit Node

Update step, for each bit node group the number of top RAM rows processed depends on

the bit node degree, db, of the bit node group. Since q and the bit node degree vary for

each code rate, the FU has adopted a serial input architecture where one row of the RAM

is accessed per clock cycle, which means that the content of one cell in the row of the RAM

is sent to the RAM IN input of one FU per clock cycle.

During the Check Node Update step, when each of the RAM values are inputted, its

sign bit is sent to the XOR gate at the bottom left of Figure 3.6 where the sign bits of each

RAM value is accumulated in the SIGN register. The SIGN register is initialized to the

value 0 through the multiplexer at its input before every set of q+2 input RAM values. The

magnitude of each RAM value goes through the ψ block, which performs the ψ function as

shown in (1.1) and the implementation of the function in hardware is shown in Section 3.3.1.

The output of the ψ function is added with the value in the ACCUM register and stored back

into ACCUM to perform the summation in (2.30). The ACCUM register is also initialized

to the value 0 through the multiplexer at its input by setting the LLR input to 0. The third

input of the adder/subtractor selects whether the adder/subtractor performs an addition

or subtraction. During the Check Node Update step, the multiplexer to the right of the

ψ block in Figure 3.6 selects the value 0 for addition since the ψ outputs are to be added

together. The outputs of the ψ function along with the sign bit of the RAM values are

concatenated and stored in the FIFO, which is a first-in first-out queue. Once the ACCUM

and SIGN registers have accumulated q + 2 items, their values are concatenated and stored

in the SUM FIFO. The output of the SUM FIFO is separated back into the ACCUM and

SIGN register parts. The ACCUM register part is used by the subtractor/adder, where the

ψ output, which is stored in the FIFO for each RAM value, is read out to subtract from

the accumulated sum. The third input of the subtractor/adder is used to select between

the subtraction or addition operations and is controlled by a multiplexer that outputs the

value 0 for subtraction during the Check Node Update step. The output of the subtraction

is saturated in the SAT block, temporarily stored in the SAT REG register for pipelining

54

purposes and compressed by the COMP block. These operations are discussed in more detail

in the following subsections. The SIGN register part of the output of the SUM FIFO is used

as input of the XOR gate before the SIGN REG register. The other input of the XOR gate

is the sign bit of the RAM that is stored in the FIFO. The XOR gate performs the sign

“subtraction” in the second part of (2.30). The output of the XOR gate is selected by the

multiplexer to be temporarily stored in the SIGN REG register for pipelining purposes. The

output of the SIGN REG register is selected by the next multiplexer to be concatenated

with the output of the COMP block. The combined value is the output value of RAM OUT

that is sent to the Shuffle Network and subsequently stored back to the RAM.

During the Bit Node Update step, db values are inputted to the FU from the RAM IN

input. Since in (2.32) the sign calculations are included in the summation, as opposed to

separate as in the Check Node Update step, the XOR gate and SIGN register are not used

in the Bit Node Update step. The sign bit of the RAM value is simply separated from the

magnitude part. The magnitude part is input into the ψ block and its output goes to the

adder/subtractor where the summation is accumulated in the ACCUM register. During the

Bit Node Update step, the multiplexer at the select input of the adder/subtractor outputs

the sign bit of the RAM IN input. Thus, if the RAM IN value is positive, then the sign

bit is 0 and the adder/subtractor performs addition, otherwise it performs subtraction. The

ACCUM register is initialized to the value of the LLR input, which reads the values from

the LLR Buffer, to add the λj term in (2.32) to the summation. Similar to the Check

Node Update step, the output of the ψ function and the sign bit of the RAM IN input

are stored in the FIFO. Once db values have been accumulated, the resultant sum in the

ACCUM register is stored in the SUM FIFO. Similar to the Check Node Update step, the

SUM FIFO output is input into the subtractor/adder, where each ψ output value stored

in the FIFO are to be subtracted from the sum. Since the sign and magnitude values are

used together in the calculation in the Bit Node Update step, the sign bit from the FIFO is

selected by the multiplexer to be used as the select input of the subtractor/adder, such that

if the sign of the value from the FIFO is positive the subtractor/adder performs subtraction,

otherwise it performs addition. The value stored in the SUM FIFO is also the Sj value in

equation (2.33) of the Hard Decision Making step. Thus, its sign bit, which is zj in (2.34), is

55

temporarily stored in the CHECK register for pipelining purposes and used as the CHECK

output of the FU that is sent to the Parity Check Module (PCM) and Decoded Message

Buffer. The output of the subtractor/adder is separated into the magnitude and sign parts.

The magnitude part is saturated through the SAT block, temporarily stored in the SAT

REG register for pipelining purposes, and compressed by the COMP block. The sign part is

selected by the multiplexer to be stored temporarily stored in the SIGN REG register and

subsequently selected by the next multiplexer to be combined with the COMP block output

to form the RAM OUT output of the FU.

According to the memory mapping scheme discussed in Section 3.2.1, 360 FUs are re-

quired for the implementation of the decoder. These 360 FUs operate in parallel and inde-

pendent from each other, such that all rows or columns of the same check node group or bit

node group, respectively, are processed simultaneously. Collectively, all 360 FUs begin all

the calculations for a check node group or bit node group together, finish all the calculations

together and begin the calculations of the next check node group or bit node group together.

Furthermore, the 360 outputs of the 360 FUs to be written back to the RAM always belong

to the same row in the RAM, as 360 values were read together from the RAM to be inputs

of the 360 FUs.

Since 360 FUs are required in the implementation of the LDPC decoder, any reduction in

the hardware resource utilization of one FU results in a 360 times reduction in the hardware

resource utilization of the decoder. The following subsections discuss the modifications of

the FU in Figure 3.6 from the original serial architecture FU design presented by Gomes et

al. [34] to reduce hardware resource utilization. Furthermore, other modifications that result

in better control flow and performance of the decoder are also presented.

3.3.1 Implementation of the ψ Function

The main modification of the FU design from the original serial FU architecture by Gomes

et al. [34] is the usage of adders and the ψ function, instead of the boxplus and boxminus

operations. The block diagram of the implementation of these two functions are shown in

Figure 3.7 and Figure 3.8. In the FU design in Figure 3.6, the boxplus function is replaced

by the adder/subtractor before the ACCUM register and the boxminus function is replaced

56

Figure 3.7: Block Diagram of the boxplus unit.

Figure 3.8: Block Diagram of the boxminus unit.

by the subtractor/adder at the output of the SUM FIFO. These modifications are possible

with the usage of the ψ function to implement the equations (2.30) and (2.32) instead of the

equations used by Gomes et al. [34]. Furthermore, these modifications reduce the hardware

resource utilizations of the decoder as long as the implementation of the ψ function is less

complex than the boxplus and boxminus functions in Figure 3.7 and Figure 3.8. Thus, the

implementation of the ψ function is discussed in this section.

The ψ block in Figure 3.6 is the implementation of the ψ function in (1.1). The graph of

the function is shown in Figure 1.1 and in Figure 3.9. Notice from Figure 3.9 that for large

input values, the output becomes arbitrarily small. Due to its non-linearity and constantly

increasing slope, Zhang et al. [20] have suggested a variable precision quantization scheme,

57

Figure 3.9: Graph of the ψ function and its approximation.

as presented in Section 1.1. However, using this quantization scheme for both the inputs

and outputs of the ψ block, requires the outputs to be converted from the variably quantized

format to two’s complement format before they can be used by the adder/subtractor and

accumulated in the ACCUM register in Figure 3.6, which increases hardware resource uti-

lization. Thus, the FU utilizes the variable precision quantization scheme only for the inputs

of the ψ function. The outputs of the ψ block are 6-bit fixed point value in 2.4 format,

where the most significant two bits are the integer part and the least significant four bits

are the fractional part of the value. Using the variable quantization scheme, Table 3.5 is

generated. Table 3.5 is sorted in sequential order of the binary value of the input and the

output decimal ψ values are not quantized, but the binary output values are generated by

quantizing the decimal values in 2.4 format.

Direct implementation of Table 3.5 requires a 6-bit input, 6-bit output Boolean function,

which is a 26 × 6-bit LUT. Oh and Parhi [21] have suggested a method of reducing the

LUT size as discussed in Section 1.1. Applying a similar method, the “Comp.” column in

Table 3.5 is generated. As a result, the ψ function can be implemented as a 24 × 6-bit LUT

58

Table 3.5: ψ Function Quantization Scheme

Input Output Input Output

Dec. Bin. Dec. Bin. Comp. Dec. Bin. Dec. Bin. Comp.

0.00000 0.00000 Inf 11.1111
11.1111

4.000 100.000 0.0366 00.0001

00.0000

0.03125 0.00001 4.1590 11.1111 4.125 100.001 0.0323 00.0001

0.06250 0.00010 3.4661 11.0111
11.0100

4.250 100.010 0.0285 00.0000

0.09375 0.00011 3.0610 11.0001 4.375 100.011 0.0252 00.0000

0.12500 0.00100 2.7739 10.1100
10.1011

4.500 100.100 0.0222 00.0000

0.15625 0.00101 2.5515 10.1001 4.625 100.101 0.0196 00.0000

0.18750 0.00110 2.3701 10.0110
10.0101

4.750 100.110 0.0173 00.0000

0.21875 0.00111 2.2170 10.0011 4.875 100.111 0.0153 00.0000

0.25000 0.01000 2.0846 10.0001
10.0001

1.000 101.000 0.7719 00.1100

00.1010
0.28125 0.01001 1.9682 01.1111 1.125 101.001 0.6737 00.1011

0.31250 0.01010 1.8644 01.1110
01.1101

1.250 101.010 0.5895 00.1001

0.34375 0.01011 1.7708 01.1100 1.375 101.011 0.5169 00.1000

0.37500 0.01100 1.6856 01.1011
01.1011

1.500 101.100 0.4539 00.0111

00.0110
0.40625 0.01101 1.6076 01.1010 1.625 101.101 0.3990 00.0110

0.43750 0.01110 1.5356 01.1001
01.1000

1.750 101.110 0.3511 00.0110

0.46875 0.01111 1.4689 01.1000 1.875 101.111 0.3092 00.0101

0.50000 0.10000 1.4063 01.0111

01.0101

2.000 110.000 0.2723 00.0100

00.0011

0.53125 0.10001 1.3488 01.0110 2.125 110.001 0.2400 00.0100

0.56250 0.10010 1.2944 01.0101 2.250 110.010 0.2116 00.0011

0.59375 0.10011 1.2432 01.0100 2.375 110.011 0.1866 00.0011

0.62500 0.10100 1.1950 01.0011

01.0010

2.500 110.100 0.1645 00.0011

0.65625 0.10101 1.1494 01.0010 2.625 110.101 0.1451 00.0010

0.68750 0.10110 1.1062 01.0010 2.750 110.110 0.1280 00.0010

0.71875 0.10111 1.0652 01.0001 2.875 110.111 0.1130 00.0010

0.75000 0.11000 1.0262 01.0000

01.0000

3.000 111.000 0.0997 00.0010

00.0000

0.78125 0.11001 0.9891 01.0000 3.125 111.001 0.0879 00.0001

0.81250 0.11010 0.9538 00.1111 3.250 111.010 0.0776 00.0001

0.84375 0.11011 0.9200 00.1111 3.375 111.011 0.0685 00.0001

0.87500 0.11100 0.8878 00.1110

00.1110

3.500 111.100 0.0604 00.0001

0.90625 0.11101 0.8569 00.1110 3.625 111.101 0.0533 00.0001

0.93750 0.11110 0.8274 00.1101 3.750 111.110 0.0470 00.0001

0.96875 0.11111 0.7991 00.1101 3.875 111.111 0.0415 00.0001

59

Table 3.6: ψ function LUT

Input Output Input Output

0000 11.1111 1000 01.0101

0001 11.0100 1001 01.0010

0010 10.1011 1010 01.0000

0011 10.0101 1011 00.1110

0100 10.0001 1100 00.0000

0101 01.1101 1101 00.1010

0110 01.1011 1110 00.0110

0111 01.1000 1111 00.0011

instead of a 26 × 6-bit LUT. The resultant LUT to approximate the ψ function is shown in

Table 3.6 and its graph is shown with the dashed lines in Figure 3.9.

One parameter that can be used to measure the precision of the ψ function approxi-

mation in Table 3.6 compared to the actual value of ψ as given in (1.1) is the root mean

square error (RMSE). The RMSE between two vectors, y1 = (y1,0, y1,1, · · · , y1,n−1) and

y2 = (y2,0, y2,1, · · · , y2,n−1), of length n is given by the following equation:

RMSE =

√√√√√√
n−1∑
i=0

(y1,i − y2,i)2

n
(3.7)

Since (3.7) uses a vector of discrete values for y1 and y2, rather than a continuous function,

a vector x is selected to be a sequence of sequential value between 0.03 and 4 in steps

of 0.000001 to compute ψ(x) and the approximation of ψ(x). Applying (3.7) on the two

resultant vectors, the RMSE value is found to be 0.0719. Since the RMSE value of the

approximation of the ψ function is not published for the decoders reviewed in Section 1.1,

no comparisons are drawn from the result. However, the RMSE result presented can be used

as a comparison benchmark for future improvements on the approximation of the ψ function.

Oh and Parhi [21] also propose a compression function (COMP) that compresses the

values of the RAM OUT output. According to Figure 3.6, the magnitudes of the RAM IN

inputs enter the ψ block immediately after they are inputted. Since the ψ function LUT

60

Table 3.7: Compression Function LUT

Input Output Input Output

00.0000 0000 00.100x 1000

00.0001 0001 00.101x 1001

00.0010 0010 00.110x 1010

00.0011 0011 00.111x 1011

00.0100 0100 01.0xxx 1101

00.0101 0101 01.1xxx 1110

00.0110 0110 10.xxxx 1111

00.0111 0111 11.xxxx 1100

only has a 4-bit input value, even if the RAM IN input has more than 4 bits, it would

need to be rounded off or truncated to be used by the ψ block. Thus, the result of the

subtractor/adder is compressed through the COMP block to reduce the two’s complement

value into a 4-bit value. The generated 4-bit value corresponds to the 4-bit input of the

ψ block, so the compression function is obtained by finding the set of input values that

would generate the same ψ output, group them together and assign them the 4-bit value in

Table 3.6 that generates the corresponding ψ output value. The resultant LUT is shown in

Table 3.7. By doing so, the values in the RAM are 4 magnitude bits + 1 sign bit = 5 bits

wide. Furthermore, from Table 3.7, the input values of the COMP block are 6 bits wide and

they are interpreted with the 2.4 format. Any value larger than 11.1111 in binary, which is

3.9375 in decimal, is saturated to 6 bits because from Table 3.5, any input to the ψ function

larger than the decimal value 3.0 outputs 000000. Thus, the SAT block is used before the

COMP block to saturate the values to 6 bits wide.

3.3.2 Usage and Design of the SUM FIFO

The SUM FIFO is one of the blocks that is not in the serial FU architecture by Gomes

et al. [34], where a sum register is used instead. The use of the SUM FIFO improves the

control flow of the FU that is made difficult by the variation in the number of RAM IN values

61

that are inputted into the FU. Consider the normal frame code rate 1/4 LDPC code in the

DVB-S2 standard. In the A submatrix of this code, there are columns with twelve, three,

two and one non-zero elements, i.e. the bit node degrees, db, of the bit node groups can be

any of the four values. During the Bit Node Update step, the FU begins with processing sets

of twelve RAM IN values. When the last set of twelve RAM IN values is inputted, RAM IN

inputs sets of three RAM IN values. However, when the first set of three RAM IN values

have finished inputting, the FU is still producing the RAM OUT values using sum value

from the last set of twelve RAM IN values and subtracting it from the values in the FIFO.

If a sum register is used instead of the SUM FIFO, the inputting of the set of three RAM

IN values must be suspended after the last set of twelve RAM IN values are inputted, until

the sum register value is ready to be overwritten. However, using the SUM FIFO, the set of

three RAM IN values does not need to be suspended and the resultant summation value is

queued in the SUM FIFO, while the RAM OUT values from the last set is computed. By

using the SUM FIFO instead of the sum register, the control flow of the FU is improved

because the flow of RAM IN values does not need to be suspended in situations described

above. However, the trade-off is an increase in hardware resource utilization. Nevertheless,

the size of the SUM FIFO may be reduced by making an observation about the RAM IN

values that are inputted.

The ACCUM register and adder/subtractor in Figure 3.6 perform the summation part

of equations (2.30) and (2.32). Given the code specified in the DVB-S2 standard [6], the

maximum number of RAM values that are added together in (2.30) and (2.32) are 30 and

13, respectively. Since the FU performs both the Check Node Update and Bit Node Update

steps, the maximum number of values that would be accumulated in the FU is 30. Thus,

the bit width of the ACCUM register and the adder/subtractor are equal to the number

of bits of each value that is added, which is 1 sign bit + the 6-bit output of ψ, plus the

ceiling of log2 of the number of items added together. Thus, the ACCUM register size

is 7 + dlog2(30)e = 7 + 5 = 12. However, since the sum stored in the ACCUM register

is subsequently stored in the SUM FIFO and subtracted by exactly one ψ output value,

saturated and then compressed to generate the output values of the FU, the width of the

SUM FIFO can be reduced.

62

According to Table 3.6, the maximum output of the ψ function is 11.1111 in binary, which

is 011.1111 in two’s complement binary and 3.9375 in decimal. Thus, the maximum possible

sum stored in the ACCUM register is 3.9375 × 30 = 118.125, which is 01110110.0010 in a

12-bit two’s complement binary. Subsequently, this sum must be subtracted by one value

from the FIFO at a time, whose maximum is the maximum output of the ψ function, namely

3.9375 in decimal. The difference is then compressed through the LUT given in Table 3.7.

However, according to Table 3.7, any value greater than 11.0000 in binary, or 3.0 in decimal,

is compressed to 1100 in binary. Thus, if the sum stored in the ACCUM register is greater

than 3.0 + 3.9375 = 6.9375 in decimal or 0110.1111 in two’s complement binary, regardless

of the FIFO value that is subtracted from it, the result is always greater than or equal to

3.0 in decimal or 011.0000 in two’s complement binary. This result is passed to the ABS

block, which converts the value to a number greater than or equal to 11.0000 in binary.

Finally, any value greater than or equal to 11.0000 in binary is compressed to 1100 through

the COMP block and according to Table 3.7. Therefore, the value in the ACCUM register

can be reduced from 12 bits to 8 bits before storing in the SUM FIFO and the SUM FIFO is

only 8 bits wide because if the sum result stored in the SUM FIFO is greater than or equal

to 0110.1111 in binary, the RAM OUT output is always 1100 regardless of the values stored

in the FIFO.

3.3.3 LLR Value Update

In the Hard Decision Making step of the SPA algorithm, the LLR values (λj) always remain

the same and in essence, the second part of (2.33) adjusts the value of the LLR in order

to produce Sj and its sign bit, zj, is used for parity checking. (2.33) has no problems as

long as the LLR values and the summation have infinite or high precision. A performance

degradation occurs when the decoder has finite precision and is restricted by the hardware

resources. In infinite precision, assume that the magnitude of the LLR value in a certain

position is close to 0 and the sign bit is positive, which means the LLR value indicates that

its hard-decision bit is 0 and it has a lower reliability. In addition, assume that the correct

transmitted hard-decision bit of the codeword is actually 1. Furthermore, assume that the

summation part of the (2.33) is negative and the magnitude is also close to 0 but larger than

63

the magnitude of the LLR value. Applying (2.33), Sj is a negative value, which decodes to

hard-decision bit 1 and decoding is correct. In finite precision, due to truncation of values

and approximations of ψ function, after multiple iterations of the SPA, the small magnitude

of the summation part may become smaller than the magnitude of the LLR value, in which

case the result of (2.33) remains positive and the hard-decision bit is erroneously decoded to

0 causing the decoder to continue the SPA instead of exiting with the correct decoded bit.

To improve the performance of the decoder, the LLR values may be updated by adding

or subtracting by 1.0 decimal. The sign bit of the LLR value and the sign bit of the SUM

FIFO value stored in the CHECK register determine if any changes to the LLR value are

necessary. If the sign of the LLR value is the same as value in the CHECK register, then

the LLR value and Sj have the same sign, so no change is needed. If the sign of the LLR

value and the value in the CHECK register are different, when the LLR value is updated

by adding 1.0 if LLR is negative and subtracting 1.0 if LLR is positive. By doing so, the

LLR value adjusts its reliability value towards what Sj suggests its sign is and reduces the

number of iterations necessary.

3.3.4 The Initialization Step

During the Initialization step of the SPA, the LLR values are inputted into the decoder into

the LLR Buffer. Subsequently, these values are stored in the RAM when assigning each LLR

value to a bit node message box. Since the RAM values are compressed using the COMP

block in the FU, the LLR values also need to be compressed before storing into the RAM in

the Initialization step. In order to avoid implementing a set of COMP blocks external to the

FU, the LLR values are input into the FUs during the Initialization step through the LLR

input in the middle of the block diagram in Figure 3.6. The multiplexer selects the LLR

value instead of the SAT REG register value to be used by the ABS and COMP blocks. The

sign bit of LLR is selected by the multiplexer in the bottom right to be combined with the

output of the COMP block to form the RAM OUT output value. By doing so, the hardware

resources for the ABS and COMP blocks are efficiently utilized because the calculation of

(2.30) and (2.32) for the Check Node Update and Bit Node Update steps are not being

carried out during the Initialization step.

64

3.4 Architecture of the Parity Check Module

The Parity Check Module (PCM) is used to verify the parity-check equations during the

Hard Decision Making step in the SPA. The parity check equations as shown in (2.24) that

are used during the encoding of DVB-S2 LDPC codes are also used in the decoder, except

they are expressed as follows:

0 = a0,0u0 ⊕ a0,1u1 ⊕ · · · ⊕ a0,K−1uK−1 ⊕ p0
0 = a1,0u0 ⊕ a1,1u1 ⊕ · · · ⊕ a1,K−1uK−1 ⊕ p0 ⊕ p1
0 = a2,0u0 ⊕ a2,1u1 ⊕ · · · ⊕ a2,K−1uK−1 ⊕ p1 ⊕ p2

...

0 = aN−K−1,0u0 ⊕ aN−K−1,1u1 ⊕ aN−K−1,K−1uK−1 ⊕ pN−K−2 ⊕ pN−K−1

(3.8)

where the difference is that the parity bits are moved to the right hand side of the equations.

To verify the parity-check equations, the N hard-decision decoded bits, zj, generated at the

CHECK output of the FUs are inserted into the parity-check equations and if all parity-check

equations are true, i.e. the right hand side of the equations equals to 0, the parity-check

equations are verified. However, since each of the twenty-one different frame and code

rate combinations have different parity-check equations, a PCM that verifies each of them

separately is required. Too many hardware resources are required if each set of parity check

equations for each code rate is implemented separately on the FPGA. The PCM architecture

presented in this section has the ability to verify the parity-check equations for any LDPC

code in the DVB-S2 standard. The design of the PCM is similar to the design of a DVB-S2

LDPC encoder because in both cases, the parity-check equations are implemented, except

the encoder uses the message bits to generate the parity bits and the PCM uses both the

message bits and the parity bits to verify whether or not the parity-check equations are

satisfied. Thus, the architecture of the PCM is based on the DVB-S2 LDPC encoder designed

by Gomes et al. [35]. The algorithm of the PCM is shown in Algorithm 3.

65

Algorithm 3 Algorithm of the Parity Check Module

Initialize S to all 0

Get the first v from the FUs

for each of the rows in Appendix B do

for r = each element in each row do

S(r mod p, :) = S(r mod p, :)⊕ rotr÷p(v)

end for

v = next v from the FUs

end for

Get the first p from the FUs

for i = 0 to p− 1 (each row index of S) do

for j = 0 to 1 do

if i = p− 1 (last row of S) and j = 1 then

S((i+ j) mod p, :) = S((i+ j) mod p, :)⊕ rot1(p)

else

S((i+ j) mod p, :) = S((i+ j) mod p, :)⊕ p

end if

end for

p = next p from the FUs

end for

if number of non-zero values in S ≤ 0 then

PASS PARITY CHECK

else

FAIL PARITY CHECK

end if

Consider the binary matrix S as follows:

S =

S0 Sp S2p · · · S(M−1)p

S1 Sp+1 S2p+1 · · · S(M−1)p+1

S2 Sp+2 S2p+2 · · · S(M−1)p+2

...
...

...
. . .

...

Sp−1 S2p−1 S3p−1 · · · SN−K−1

(3.9)

66

where M = 360 and p is the code rate dependent parameter as shown in Table 2.1. During

the operations of the PCM, each element of S is initialized to 0. Recall from Section 3.3

that the 360 FUs generate 360 CHECK output values of 1 bit each simultaneously, which

are 360 of the zj values in (2.34) and are inputted into the PCM. If these 360 bits of CHECK

output values are corresponds to the message part of the codeword, i.e. they correspond to

zj where 0 ≤ j ≤ K− 1, then they form a vector, v, that is used to update the S matrix as

they get generated using the following equation:

S(r mod p, :) = S(r mod p, :)⊕ rotr÷p(v) (3.10)

where S(x, :) is the 360-bit vector formed by row x of matrix S, roty(v) is the v vector

cyclically right-shifted by y positions, r is a value obtained from Appendix B for a given

code rate and ⊕ is the module-2 addition operator. Lastly, let p be the 360-bit vector formed

by the 360 CHECK output values from the FUs that corresponds zj where K ≤ j ≤ N− 1.

Using the aforementioned notations, the operation of Algorithm 3 is discussed below.

The algorithm initializes all the values in S to 0. As the 360 CHECK output bits are

generated from the FUs and inputted into the PCM, the matrix S is updated according to

equation (3.10). Since the FUs first generate the message part of the potential codeword,

these bits form the v vector and the first for loop is executed. According to Algorithm 3,

each vector v updates as many rows of S as there are elements in the rows in Appendix B,

which is the bit node degree, db, of the bit node group. When all the values in Appendix B

are exhausted, all the CHECK output bits of the message part of the potential codeword are

also exhausted and the first for loop exits. The second for loop begins and the 360 CHECK

output bits correspond to the redundant checking part of the potential codeword and forms

the vector p. During the second for loop, the two consecutive rows of the S are updated for

every p vector using the following equation:

S((i+ j) mod p, :) = S((i+ j) mod p, :)⊕ p (3.11)

Notice that (3.11) is similar to (3.10), except the row indices of S are different and there is no

cyclic right-shift operation on the p vector, except when the last p vector is inputted, in which

case p is cyclically right-shifted by one. Upon the completion of the second for loop, all the

67

Barrel

Shifter

Dual-Port RAM

Ones

Counter

ONE

REG ERR

REG

ADDR

REG

SHIFT

MSG

“00...0”

dina

addra

addrb

doutb

ERR

ADDR

Figure 3.10: Block diagram of parity check module.

360 CHECK outputs from the FUs are also exhausted and the resultant matrix S contains

the result of all the parity-check equations. Each element in the S matrix corresponds to

the result of one parity-check equation in (3.8). Thus, if all the elements in the S matrix

are equal to zero, then the potential codeword is said to pass parity-check verification and

becomes the decoded codeword, otherwise, decoding is not complete and the decoder returns

to the Check Node Update step and iterates.

It is important to note that Algorithm 3 only works with control flow of the decoder

as described in this chapter due to the order that the v and p are generated. In the

decoder presented when the FUs generate the message part of the potential codeword, the

360 CHECK output bits are generated in sequential order, i.e. bits 0→ 359 of the codeword

are generated, followed by bits 360 → 719, and so on. When the redundant checking part

of the potential codeword is generated, the sets of 360 CHECK output bits are generated as

follows: bits 0, p, 2p, · · · , 359p of the redundant check part are generated, followed by bits

1, p+ 1, 2p+ 1, · · · , 359p+ 1, and so on. According to this order of bit generation, after the

first for loop in Algorithm 3, the S matrix contains the ⊕ sum of all ax,yux in equation (3.8).

The second for loop in Algorithm 3 completes the parity check equations by applying ⊕pz
to the values already in S.

The block diagram of the PCM is shown in Figure 3.10. The main components of the

PCM are the barrel shifter (BS), dual-port RAM and the ones counter (OC). The 360

68

input

Stage 4/5

0
1
2
3

0
1
2
3

0
1
2
3

16

16

16

shift(5:4)

:

:

0
1
2
3

8

64

64

shift(8:6)

0
1
2
3
4
5

0
1
2
3
4
5

64
0
1
2
3
4
5

40
0
1
2
3
4
5

:

:

360 360

Stage 6/7/8

360

output

Stage 2/3

0
1
2
3

0
1
2
3

0
1
2
3

4

4

4

shift(3:2)

:

:

0
1
2
3

4

360

Stage 0/1

0
1
2
3

0
1
2
3

0
1
2
3

1

1

1

shift(1:0)

:

:

0
1
2
3

1

360

Figure 3.11: Block diagram of the barrel shifter.

CHECK output bits from the FUs enter the PCM through the MSG input. The MSG

input is shifted by the BS by the number of positions as selected by the SHIFT input. The

values inputted into the SHIFT input of the PCM are the same shift values generated by

Algorithm 2. The BS performs the roty(v) and rot1(p) operations in (3.10) and (3.11),

respectively.

The BS is a cyclic right-shift operation that is able to rotate 360 bits of data by any

number of positions. The BS used in this design is a multi-stage multi-level logarithmic

shifter as discussed by Neto and Vestias [45]. The BS consists of 3 2-stage shifters (i.e. 4:1

multiplexers) and a final stage of 3-stage shifter (i.e. 8:1 multiplexers). The block diagram

is shown in Figure 3.11. The reason for this selection is because recall from Section 2.1 that

the Virtex-II Pro FPGA can realize a 4:1 multiplexer using one slice and 8:1 multiplexers

using two slices. Thus, using 4:1 or 8:1 multiplexers, the BS can be mapped efficiently to

the FPGAs.

The output of the BS goes into one of the inputs of the XOR gate, which performs the

⊕ operation. The other input of the XOR gate is the doutb output of the dual-port RAM,

where the S matrix is stored. The doutb output of the RAM is selected by the addrb input of

the RAM, which is controlled by the ADDR input. The values of the ADDR input are either

69

the values of r mod p, which is stored in the ROM along with the other values mentioned

in Section 3.2.2, or a counter, which outputs (i + j) mod p. The output of the XOR gate

is selected by the multiplexer to be stored back in the RAM through the dina input of the

RAM to complete the assignment of the rows of S in (3.10) and (3.11). The dina input of the

RAM writes into the RAM location selected by the addra input, which is the value of ADDR

delayed by one clock cycle through the ADDR REG register. The delay is added because

the doutb output has a one clock cycle delay, so the dina input value is not computed until

one clock cycle after the ADDR input selects the row in the RAM to output in doutb.

Since the dual-port RAM stores the S matrix in (3.9), its dimensions are p×M bits. In

order to support all the code rates in the DVB-S2 standard, where the maximum p = 135,

the RAM is 135 × 360 bits. A dual port RAM is used since the RAM values are read out

from one port, looped back and XORed with the incoming bits in order to evaluate equations

(3.10) and (3.11). The dual-port RAM is implemented on the FPGA using BRAMs. Recall

from Section 2.1 that the BRAM can have a 512× 36 bit configuration. Thus, the dual-port

RAM is implemented using 10 18 Kb BRAMs on the Virtex-II Pro FPGA.

Notice that during the second for loop, rows 0 and 1 of the S matrix are updated first,

followed by rows 1 and 2. After the PCM updates rows 1 and 2 during the second for loop,

row 1 is never updated again. Thus, after rows 1 and 2 update the contents of row 1 are the

result of the parity-check equations in that row, so row 1 is reset to a vector of zeros through

the multiplexer at the dina input and the contents of row 1, which is at the output of the

XOR gate, are sent to the OC. Subsequently, after rows 2 and 3 are updated, the contents

of row 2 are sent to the OC, after rows 3 and 4 are updated, the contents of row 3 are sent

to the OC, and so on until finally rows p and 0 are updated, the contents of both rows are

sent to the OC and the RAM is completely reset to zeros to prepare for the next iteration.

At the OC, the 360-bit vectors are counted for the number of non-zero elements. After

every 360-bit vector is counted, the 1-bit result is accumulated in the ONE REG register.

The OC does not need to count the exact number of non-zero elements in the 360-bit vector,

instead it simply needs to determine whether or not there are any non-zero elements in

matrix S because the decoder does not require the exact number of parity-check equations

that are not satisfied. Thus, if there are no non-zero elements in the 360-bit vector the

70

.

.

.

.

.

.

.

.

.

90 622

3
6

0
-b

it
 I
n

p
u

t

1
-b

it
 O

u
tp

u
t

Figure 3.12: Block diagram of ones counter.

output of the OC is 0, otherwise it is 1. The OC is designed as a tree of 4-input OR gates,

except for the last stage that has a 6-input OR gate, as shown in Figure 3.12. The use of

4-input OR gates is because recall from Section 2.1 that the Virtex-II Pro FPGA’s slices

have two 4-input LUTs, so the 4-input OR gate maps efficiently to the FPGA. In addition,

the slices have internal circuits that can implement a 6-input function using only one slice,

which means the 6-input OR gate at the final stage only requires one slice. If the final stage

of the OC is implemented as two 3-input OR gates and one 2-input OR gate, then three

LUTs, which is more than one slice, are required.

After the processing of rows p and 0 of the S matrix, the output of the OC bypasses the

storage in the ONE REG register, combines with the value in the ONE REG register and is

stored in the ERR REG register. Thus, when the contents of all the rows in the S matrix

are processed by the OC, the ERR REG register stores the value that indicates whether or

not there any non-zero results among all the parity-check equations and its value is sent out

71

of the PCM through the ERR output to the controller of the decoder. If the ERR output is

0, then all the parity-check equations are satisfied, otherwise the value is 1 and one or more

parity-check equations do not equal to 0. Using the control flow of the PCM as described,

the ERR output is generated 3 clock cycles after the set of 360 MSG input bits of the last

bit node group is inputted.

3.5 Architecture of the LLR and Decoded Message

Buffers

The LLR Buffer and the Decoded Message Buffer are a serial-to-parallel converter and a

parallel-to-serial converter, respectively. Their architectures are based on the deserializer

and serializer designs shown by Defossez and Sawyer [46]. The LLR Buffer is used to store

the incoming LLR values. Since the possible block lengths are N = 16200 and 64800, the

LLR Buffer must be able to store the maximum of the two, which is 64800 values. In

addition, since the FUs access the LLR values in groups of 360, as the 360 FUs operate

simultaneously, the RAM of the LLR Buffer is 360 values wide. Furthermore, as mentioned

in Section 3.1, the LLR values are 6 bits wide, so the dimensions of the RAM of the LLR

Buffer are 180 × 360 × 6 bits. Since the Virtex-II Pro FPGA can use 18 Kb BRAMs for

memory resources, the LLR Buffer uses sixty BRAMs in the 512× 36 bits configuration.

The values stored in the LLR Buffer are 6-bit two’s complement values to facilitate the

summation that takes place inside the FUs. The 6-bit LLR values use the fixed point 3.3

format, where the MSB is the sign bit followed by two bits to form the integer portion

and the least significant three bits form the fractional portion. There is one exception to

the two’s complement value, where the value 100.000 in binary is interpreted as −0.0d in

decimal instead of −4.0. This special consideration is used to improve the performance of

the decoder. During the truncation or rounding of the LLR values to 6-bit two’s complement

values, there are cases where negative values with a small magnitude are quantized to 0, in

which case it would be treated as a positive value. During the Initialization step of the SPA,

the LLR values are stored in the RAM after being compressed in the FUs, yet the sign bit

72

remains intact. If the sign of one LLR value is inverted because of quantization, during the

Check Node Update step, the product of the signs in (2.30) becomes inverted, which affects

signs of the output of the FUs for every step thereafter. Thus, in order to avoid the effect

of the sign inversion during quantization, the LLR values use 100.000 in binary to represent

−0 in decimal during the Initialization step, which after the compression in the FU, stores

11100 instead of 01100 in the RAM.

The Decoded Message Buffer is used to store the potential outgoing decoded message

during every iteration. If the PCM asserts that all parity-check equations are verified, then

the Decoded Message Buffer outputs the decoded message serially. Furthermore, since the

LDPC codes in the DVB-S2 standard are systematic and only the message part of the

decoded codeword is outputted of the decoder, the RAM of the Decoded Message Buffer

only needs to store the message part of the potential codeword for any code rate. The

largest number of bits in the message part of the LDPC codes in the DVB-S2 standard is

when the code rate is 9/10 in normal frames, where K = 58320. In addition, 360 decoded

message bits are generated at a time by the CHECK outputs of the 360 FUs, so the RAM

size of the Decoded Message Buffer is 162 × 360 bits, which is implemented on the FPGA

using ten 18 Kb BRAMs using the 512× 36 bits configuration.

The decoder design assumes that the LLR values are streamed in serially, where one LLR

value is inputted per clock cycle. Thus, the LLR Buffer is designed to read one LLR value at

a time. However, if the module external to the decoder that generates the LLR values has

the ability to output more than one LLR value at a time, the LLR Buffer may be modified

to accommodate the change. Similarly, the Decoded Message Buffer may also be modified

to stream out more than one bit of decoded message bits at a time. These modifications are

not discussed because they are beyond the scope of this thesis.

73

3.6 Architecture of the 180-FU and Hybrid 360/180-

FU Decoders

In order to reduce hardware resource utilization, Gomes et al. [18] propose a method to

systematically reducing the number of FUs from 360 to any factor, L, of 360, by essentially

subsampling the RAM data. The method divides the columns of the RAM into L groups

and process M
L

columns one after another. In other words, columns 0, L, 2L, 3L, · · · are

processed together by M
L

FUs, then columns 1, 1 +L, 1 + 2L, 1 + 3L, · · · are processed, then

2, 2 + L, 2 + 2L, 2 + 3L, · · · , and so on.

By using a similar method, the LDPC decoder presented in the previous sections is

reduced from 360 FUs to 180 FUs, which reduces the hardware resource utilization by almost

half. The trade-off from the hardware resource reduction is that the throughput is also

reduced by half. Since only 180 FUs are used, the RAM is changed to only have 180 values

per row. Furthermore, the RAMs in the PCM, LLR Buffer, Decoded Message Buffer are also

changed to have 180 values per row. These changes split the original RAMs in the 360-FU

version of the decoder into two RAMs. The RAM generated by columns 0, 2, 4, 6, · · · , 358 of

the original RAM is labelled even half and the RAM generated by columns 1, 3, 5, 7, · · · , 359

of the original RAM is labelled odd half. Figure 3.13 shows a diagram of how the RAM is

divided.

When the RAM is accessed in the 180-FU decoder, the even and odd halves are accessed

one after another. In the 360-FU decoder, each FU processes the values in one column of the

RAM, so in the 180-FU decoder, each FU processes one column from the even half and one

column from the odd half. Thus, it may seem like two sets of row, shift and ishift coefficients

are required to be stored in the ROM, one set for the RAM access of each half. However,

Gomes et al. [18] suggest that the ROM size does not have to be increased because all

the row and shift coefficients used in the 180-FU decoder can be calculated from the ROM

coefficients of the 360-FU decoder. Nevertheless, the formula presented by Gomes et al. [18],

does not clearly explain the necessary calculations. Furthermore, the given formula is not

completely applicable to the decoder described in the previous sections because the decoder

74

0 2 4 M-4 M-2

1 3 5 M-3 M-1

E
v
e

n
 H

a
lf

O
d

d
 H

a
lf

Figure 3.13: Diagram of splitting the RAM for 180 FU implementation.

by Gomes et al. [18] accesses the RAM sequentially during the Bit Node Update step, as

opposed to accessing the RAM sequentially during the Check Node Update step. Thus,

Algorithm 4 and Algorithm 5 have been devised to compute the shift and ishift coefficients

for the 180-FU decoder using the same shift and ishift coefficients stored in the ROM. The

new shift180 and ishift180 coefficients, which the coefficients used by the 180-FU decoder,

are not stored in the ROM, instead they are computed in real-time from shift and ishift

coefficients that are stored in the ROM, respectively. In Algorithm 4 and Algorithm 5, the

First Pass refers to the FUs accessing half of the rows in the RAM and Second Pass refers

to the FUs accessing the other half of the rows in the RAM.

Since the calculations to obtain the new shift180 and ishift180 coefficients only require

division by 2 or ±1 followed by a division by 2, these operations are implemented on the

75

Algorithm 4 shift180 Coefficients for the 180-FU Decoder

Used during the Initialization and Bit Node Update steps:

if First Pass then

if shift is even then

even odd = even // Read from and write to even half

shift180 = shift
2

else

even odd = even // Read from and write to odd half

shift180 = shift−1
2

end if

else // Second Pass

if shift is even then

even odd = odd // Read from and write to odd half

shift180 = shift
2

else

even odd = even // Read from and write to even half

shift180 = shift+1
2

end if

end if

FPGA as a truncation of the least significant bit (LSB) or a sum of the truncated value

and the LSB. In other words, if the shift coefficient is even, then shift
2

is implemented as the

truncation of the LSB of shift. If the shift coefficient is odd, then shift−1
2

is also implemented

as the truncation of the LSB of shift and shift+1
2

is implemented as the shift coefficient with

the LSB truncated added to the LSB value, which is always 1.

The row coefficients for the 180-FU decoder do not need to be modified from the ones used

for the 360-FU decoder because in the 180-FU decoder, the structure of the RAM is divided

into an even and an odd half, so FUs access the same rows as they do in the 360-FU decoder.

However, the controller needs to select which half of the RAM to be accessed depending on

the shift and ishift coefficients and which Pass is occurring. In Algorithm 4 and Algorithm 5,

76

Algorithm 5 ishift180 Coefficients for the 180-FU Decoder

Used during the Check Node Update step:

if First Pass then

even odd = even // Read from and write to even half

if ishift is even then

ishift180 = ishift
2

else

ishift180 = ishift−1
2

end if

else // Second Pass

even odd = odd // Read from and write to odd half

if ishift is even then

ishift180 = ishift
2

else

ishift180 = ishift+1
2

end if

end if

the even odd parameter indicates whether the controller reads the rows from the even or odd

half of the RAM for the FUs. Furthermore, in the 180-FU decoder, the architecture of the

Shuffle Network, the BS, and the OC are also modified. The Shuffle Network and BS are

modified to cyclically right-shift 0 to 179 positions and the OC is modified to only have a

180-bit input and counts the number of non-zero elements in the 180-bit vector.

From the architectures of the 360-FU and the 180-FU decoders of the DVB-S2 LDPC

decoder, one can notice that the two have almost identical structures. The only difference is

the RAM structure, which does not change in the number of cells but only the organization

of the columns. The top RAM changes from pq × 360 to 2pq × 180 and the bottom RAM

changes from 2p× 360 to 4p× 180. Thus, the same number of BRAMs can be used for both

the 360-FU and 180-FU decoders. The same can be said about the BRAMs in the LLR

Buffer, Decoded Message Buffer and the PCM. Thus, a hybrid 360/180-FU LDPC decoder

77

is implemented based on those observation.

The difference between the 360-FU decoder and the hybrid decoder is in the controller.

When the hybrid implementation is in 360-FU mode, all FUs are processing values from

the RAM and the control flow of the decoder is as described in Section 3.1. In the 180-FU

mode, the output of half of the FUs are discarded and the RAM inputs and outputs are

controlled by multiplexers to select whether the even of odd half of the RAM are accessed

for the FUs to process. Even though the hybrid decoder has a similar hardware resource

utilization compared to the 360-FU decoder, depending on the application, the decoder

might be required to reduce the throughput, for example, if the device connected to the

downstream side of the decoder cannot handle a high throughput. Thus, the hybrid decoder

has the ability to reduce the throughput in real-time without the need for a different decoder.

78

Chapter 4

Results and Discussion

4.1 Synthesis Results

The DVB-S2 LDPC decoder is synthesized using the Xilinx ISE 10.1 software package for

use in the Xilinx Virtex-II Pro XC2VP100 FPGA, which is the same FPGA used by Gomes

et al. [18]. The synthesis results for the 360-FU, 180-FU and hybrid decoders along with the

synthesis results of the 180-FU decoder by Gomes et al. [18] are presented in Table 4.1. For

simplicity, in the remainder of this chapter and the next, the decoders presented in Chapter 3

are referred to as the 360-FU decoder, 180-FU decoder and hybrid decoder, and the 180-FU

decoder by Gomes et al. [18] is referred to as the Gomes decoder.

In Table 4.1, the resource utilizations of the slices, slices FFs, slice LUTs and BRAM are

given as percentages of the maximum number of available hardware resources as shown in

Section 2.1. Furthermore, notice that for the hybrid and 360-FU decoders, using the Xilinx

Table 4.1: Synthesis results and comparison

FPGA XC2VP100 XC6VLX240T

of FUs hybrid 360 180 180 [18] hybrid 360 180

Slices (%) 154* 140* 79 88

Slice FFs (%) 58 58 30 23 17 17 9

Slice LUTs (%) 150* 137* 76 80 67 60 34

BRAM (%) 43 43 43 50 31 31 31

fmax (MHz) 76.9 87.1 83.4 73.2 190.3 214.5 209.6

Estimated Power Consumption (W) 2.202 2.209 2.187

79

XC2VP100 FPGA, the slice and slice LUTs utilizations are above 100%. These results

indicate that these two decoders utilizes more hardware resources than there are available in

the FPGA, which means they cannot be implemented on the target FPGA. Thus, another set

of synthesis results are shown, where the three versions of the LDPC decoder are synthesized

for use on a XIlinx Virtex-6 XC6VLX240T FPGA using the Xilinx ISE Design Suite 11.5

software package. As shown in Table 4.1, none of the decoders exceed the amount of hardware

resources available, which means that all three decoders can be implemented on the target

FPGA. Furthermore, the synthesis results from the Xilinx ISE Design Suite 11.5 does not

provide the slices utilization information. The fmax parameter is the estimated maximum

frequency of the clock input that can be used with the decoder to ensure that the contents of

the registers of the design are valid. The estimated power consumption of the decoders on the

Virtex-6 FPGA using default settings of the Xilinx Power Analyzer software is also shown

in Table 4.1. However, power optimization is not one of the design goals of the decoders,

so these results are not discussed in detail. Nevertheless, the estimated power consumption

information is included for reference.

Since the details of the Gomes decoder are not completely known, the explanation for

the differences in the synthesis results cannot be stated with complete certainty. However,

knowing the general architecture of its components, the comparison analysis in this section

is performed to the best effort given the publications by Gomes et al. [18, 34].

According to the synthesis results on the XC2VP100 FPGA in Table 4.1, the 180-FU

decoder outperforms the Gomes decoder as the 180-FU decoder uses fewer hardware re-

sources, with the only exception in the slice FFs utilization, and has a higher maximum

clock frequency. However, the Gomes decoder only includes the synthesis results of the core

units (i.e., the FUs, the Shuffle Network, the RAM, the ROM and the Controller), yet the

synthesis results of the 180-FU decoder includes the LLR Buffer, Decoded Message Buffer

and the PCM. If the resource utilizations of these units are removed from the synthesis re-

sults of the decoder, the slice FFs utilization would be reduced. Furthermore, all three units

not included in the synthesis results of the Gomes decoder are RAM based units, which are

implemented using BRAM. If the BRAM usage of these three units are also removed from

the synthesis results of the 180-FU decoder, its BRAM utilization would only be 26%, which

80

is almost a 50% reduction in the BRAM utilization from the Gomes decoder.

This reduction is due to the ROM coefficients that have been pre-computed and stored

in the ROM. Gomes et al. [18] indicate that in order to obtain the row and shift coefficients,

every non-zero element in the A submatrix of the parity-check matrix H is mapped in the

ROM. Subsequently, the row and shift coefficients are searched from the ROM during the

Check Node Update step (as mentioned previously in Section 3.6, the Gomes decoder accesses

the RAM sequentially in the Bit Node Update step, and the access of the RAM is indexed

during the Check Node Update step). Another possible explanation for the reduced BRAM

utilization is because the RAM OUT outputs of the FUs are only 5 bits wide, as they are

compressed by the COMP block, as discussed in Section 3.3.1.

Additionally, the 4% difference in the LUT utilization may be attributed to the opti-

mization of the FUs. As discussed in Section 3.3.1, the Gomes decoder uses the boxplus and

boxminus blocks in the FU design. These two units are made up of adders, comparators,

multiplexers, LUTs, etc., as shown in Figure 3.7 and Figure 3.8. Compared to the ψ block,

COMP block and adder/subtractors used in their places, the boxplus and boxminus blocks

are more complex and utilize more hardware resources. This difference is also likely to be

the reason for the 14% increase in the maximum clock frequency from the Gomes decoder.

4.2 Throughput Comparison

Gomes et al. [18] present that the minimum throughput of the Gomes decoder is given by:

throughput ≥ frame length× fop
(2×W + wj − 3)×max iter× L

(4.1)

where frame length is equivalent to N, fop is the maximum operating frequency which is set

to fmax in the calculation, W is equivalent to pq, where p and q are given in Table 3.2, wj

is the bit node degree of bit node groups in the A submatrix that has a bit node degree not

equal to 3, max iter is the maximum number of iterations, and L is the reduction factor of

FUs which is 2 in the case of the 180-FU implementation.

For the decoder of this project, the following equations demonstrate the derivation process

81

of the minimum throughput equations:

throughput ≥ frame length

max num clock cycle
× fop

≥ frame length× fop
(max clock cycle per iter)×max iter

≥ frame length× fop
(CNUP + BNUP + FU delay + PCM delay)× L×max iter

≥ frame length× fop
((pq + 2p) + (pq + 2p) + (wj + 3) + 3)× L×max iter

throughput ≥ frame length× fop
(2× (pq + 2p) + wj + 6)×max iter× L

(4.2)

where the variables have the same meaning as described before and L = 1 for the 360-FU

implementation and L = 2 for the 180-FU implementation. Note that the difference between

equations (4.1) and (4.2) is that W , which is equivalent to pq, is replaced by pq + 2p, and

wj−3 is replaced by wj +6, which means that the Gomes decoder requires fewer clock cycles

per iteration. The derivation of equation (4.2) is explained in the next paragraph.

The throughput is given by the frame length, frame length or N, divided by the maximum

number of clock cycles spent to decode one frame multiplied by the maximum operating

frequency. The maximum number of decoding clock cycles is given by the maximum number

of iterations multiplied by the number of clock cycles per iteration. The number of clock

cycles per iteration is equal to the number of clock cycles to process Check Node Update

plus the number of clock cycles to process the Bit Node Update plus the delay of the FUs

plus the delay of the PCM, all multiplied by the reduction factor of FUs. The number of

clock cycles to process the Check Node Update and Bit Node Update steps are both equal

to the number of rows in the top and the bottom RAMs, which is pq + 2p, the delay of the

FUs is wj + 3 and the delay of the PCM is 3 clock cycles as mentioned in Section 3.4. Notice

that the number of clock cycles for inputting the LLR values and outputting the decoded

message is not included in the calculation of the throughput. The throughput calculation

of the Gomes decoder also leaves out these delays. As mentioned in Section 3.5, the LLR

Buffer is designed for serial input of the LLR values, yet the architecture can be changed to

accept more than one LLR value simultaneously. Thus, the throughput calculation presented

here only includes the processing times of the core units of the decoder relative to the frame

length.

82

Using equations (4.1) and (4.2), Table 4.2 is generated to show the minimum throughput

comparison between the two decoder designs. The maximum number of iterations is chosen

to be 15 as selected by Gomes et al. [18].

Even though the maximum number of clock cycles per iteration is higher for the decoder

presented in Chapter 3 compared to the Gomes decoder, the maximum frequency, fmax, of the

180-FU decoder is higher than the fmax of the Gomes decoder, according to Table 4.1. Thus,

the two variables offset each other in the minimum throughput equations (4.1) and (4.2).

As a result, the minimum throughput of the Gomes decoder is higher for some code rates

and lower in others compared to the 180-FU decoder, as shown in Table 4.2. In particular,

higher code rates perform better in the 180-FU decoder and lower code rates perform better

in the Gomes decoder because the higher the code rate, the smaller the value of 2p, which

makes the pq + 2p part of equation (4.2) closer to W of equation (4.1). Consequently, the

smaller maximum number of clock cycles per iteration and a higher maximum clock frequency

results in a higher throughput in higher code rates. Furthermore, the Gomes decoder does

not include the Hard Decision Making step, which requires 3 clock cycles per iteration in the

180-FU decoder. Thus, depending on the design of the PCM used by Gomes et al., which is

not shown in the publications, the throughput of the Gomes decoder would be reduced.

The minimum throughput of the 360-FU and the hybrid decoders are not shown for the

Virtex-II Pro FPGA because the two decoders cannot be implemented on the FPGA as

discussed in Section 4.1. The minimum throughput values are also shown for the Virtex-6

FPGA in Table 4.2 for reference and they demonstrate the throughput improvement achieved

by using a more modern FPGA. Even though the architecture of the decoders is optimized

for the Virtex-II Pro FPGA, it is not limited to be used only by that family of FPGAs.

By implementing the decoders designed on more modern FPGAs as technology advances,

the decoders are further improved by the technology, without the need to redesign the

components.

83

Table 4.2: Minimum Throughput of the Decoders

Throughput (Mbps)

Block Code XC2VP100 XC6VLX240T

Length Rate 180-FU Gomes hybrid decoder 360-FU 180-FU

Decoder Decoder 360 mode 180 mode Decoder Decoder

1/4 164.1 288.0 748.7 374.4 843.9 412.3

1/3 147.9 216.9 675.0 337.5 760.8 371.7

2/5 137.1 181.1 625.6 312.8 705.2 344.5

1/2 141.4 174.7 645.3 322.6 727.4 355.4

3/5 112.5 121.2 513.2 256.6 578.4 282.6

64800 2/3 147.8 163.0 674.4 337.2 760.2 371.4

3/4 141.0 145.2 643.3 321.6 725.1 354.3

4/5 137.2 136.3 626.1 313.1 705.7 344.8

5/6 134.5 130.7 614.0 307.0 692.0 338.1

8/9 165.3 158.0 754.2 377.1 850.1 415.4

9/10 165.3 156.7 754.2 377.1 850.1 415.4

1/5 156.4 292.8 713.6 356.8 804.4 393.0

1/3 141.6 209.1 646.3 323.2 728.5 355.9

2/5 131.7 175.7 601.0 300.5 677.4 331.0

4/9 158.6 255.9 723.7 361.8 815.7 398.5

16200 3/5 108.8 118.7 496.4 248.2 559.6 273.4

2/3 141.2 158.1 644.3 322.1 726.2 354.8

11/15 159.7 175.7 728.8 364.4 821.5 401.4

7/9 178.0 188.2 812.4 406.2 915.7 447.4

37/49 153.7 156.9 701.5 350.7 790.7 386.3

8/9 160.9 157.5 734.0 367.0 827.4 404.2

84

4.3 Simulation Results

The 360-FU decoder presented in Chapter 3 is verified using a MATLAB testbench script.

The testbench begins by generating a random sequence of bits. The length of the sequence

depends on the number of frames needed and the code rate selected. Every frame of the

sequence is encoded using the MATLAB built-in LDPC encoder to generate frames of N

bits long and subsequently modulated using the BPSK modulation scheme. The BCH outer

encoding specified in the DVB-S2 standard [6] is not used because only the performance

of the LDPC decoder is tested. The DVB-S2 standard [6] also uses quadrature phase-

shift keying (QPSK), 8 phase-shift keying (8PSK), 16 amplitude and phase shift keying

(16APSK) and 32 amplitude and phase-shift keying (32APSK) modulation schemes, but

the simulation testbench uses BPSK modulation scheme to modulate the encoded sequence

for simplicity. Subsequently, the modulated signal passes through a transmission channel,

which is simulated by adding AWGN. The receiving side of the testbench demodulates the

transmitted signal using the MATLAB built-in demodulator, which produces LLR values.

These LLR values are divided into frames of N values and each frame is inputted into the

360-FU decoder. Since the control flow of the three decoders presented in Chapter 3 are

identical, with the only difference being the decoding delay from using 360 FUs or 180 FUs,

the verification of only the 360-FU decoder is necessary. Furthermore, for reducing the

need to interface MATLAB with the FPGA, the 360-FU decoder is also implemented on

MATLAB using finite precision for its calculations and the same control flow as described

in Section 3.1. Finally, the message part of the decoded codeword for each frame from the

360-FU decoder is compared to the frames of the original random sequence generated. If

the two sequences are identical, then the decoding is correct, otherwise, decoding error has

occurred for that particular frame.

For verification, the packet error rate (PER) versus the signal-to-noise ratio (SNR) of

the channel is graphed. The PER is defined by the number of frames that are decoded

erroneously divided by the number of frames processed by the decoder. The SNR is the

characteristic of the AWGN channel in units of decibels (dB), which is defined by the power

of the signal transmitted divided by the power of the noise in the channel. For normal

85

Figure 4.1: PER vs. SNR of the LDPC decoder.

frames, 1000 frames are used and for short frames 4000 frames are used, such that in both

cases, the same number of bits are decoded. The graphs in Figure 4.1 are generated by using

normal frame code rates 1/2 and 2/3 and short frame code rate 4/9 and 2/3.

Compared to the error performance graphs shown in Annex A of the user guidelines of

the DVB-S2 standard [42], the error performance of the decoders does not seem to perform

well. However, the error performance graphs in the standard include the BCH outer encod-

ing and decoding and may be performed using decoders with higher precision in software.

Nevertheless, Figure 4.1 cannot conclude that the error performance of the three decoders

presented in this thesis is compliant with the DVB-S2 standard, but the graphs do indicate

that the LDPC decoders work with the codes given in the DVB-S2 standard. Moreover, the

error performance of the decoders can be improved with an improved ψ function approxi-

mation and by testing the usage of different number of bits for the LLR and RAM values

in the decoding process. In addition, Figure 4.1 shows that the special case code rates can

be handled using the method described in Section 3.2.4, as the graph shows that the short

frame 4/9 code rate can be decoded using the 360-FU decoder.

86

Chapter 5

Conclusion

In this thesis, detailed FPGA designs of a LDPC decoder for the DVB-S2 standard

are presented. The decoders presented are modifications and improvements of the DVB-S2

LDPC decoders published in current literature. The resultant decoder is able to decode all

code rates in both normal frames and short frames of the DVB-S2 standard.

The memory mapping scheme proposed by Eroz et al. [8] does not include an algorithm

that maps each of the non-zero element in the A submatrix to the RAM, so a novel algorithm

is devised and given in Algorithm 1 to perform such mapping. Furthermore, another novel

algorithm, Algorithm 2, is devised to eliminate the need to locate all the non-zero elements

in the A submatrix in order to generate the coefficients that need to be stored in the ROM.

Algorithm 2 uses the values given in the standard, which are also shown in Appendix B,

and directly generates the coefficients stored in the ROM from them. By using this memory

mapping scheme, the decoders presented in this thesis are implemented using 360 FUs or

180 FUs.

The details of the FUs are shown in Section 3.3. Each FU is implemented using the

serial architecture as presented by Gomes et al. [34], but the architecture of the components

used are less complex, which reduces the hardware resource utilization on the FPGA. The

FUs presented in this thesis use the ψ function along with adder/subtractor modules instead

of the boxplus and boxminus modules used by the Gomes decoder, as described in Sec-

tion 3.3.1. The ψ function is approximated by combining the variable precision quantization

scheme presented by Zhang et al. [20] and the LUT reduction technique presented by Oh

and Parhi [21] to generate a LUT that only has 24 × 6-bit entries. Furthermore, the LUT

reduction also results in fewer BRAM memory resources used by the decoder allowing for

the decoder to be implemented in FPGA devices with fewer BRAMs available. The details

87

of the FU implementation, as presented in Section 3.3, have been published [47].

The architecture of the PCM is novel, as DVB-S2 LDPC decoder designs reviewed in

Section 1.1 do not present any module that verifies the parity-check equations to perform

the Hard Decision Making step in the SPA. The PCM architecture is based on the encoder

architecture by Gomes et al. [35]. Nevertheless, a novel algorithm, Algorithm 3, is devised

to verify the parity-check equations efficiently and using only a small amount of hardware

resources.

Section 3.2.4 presents five short frame code rates that have a characteristic that differs

from all the other codes in the DVB-S2 standard. The codes of these code rates do not have

the same row weight on every row of the A submatrices. Some of the publications reviewed

in Section 1.1 do not handle short frames. The ones that do handle short frames do not

address this characteristic of these code rates and assumes that all the row weights of the

A matrix are constant. In this thesis, a novel workaround for these special code rates is

presented, which modifies Algorithm 2 to generate the coefficients stored in the ROM. These

code rates also have a different RAM access order compared to the other code rates, which

are also presented in Section 3.2.4.

In order to further reduce hardware resource utilization, the 360-FU decoder reduced

to only use 180 FUs. The trade-off of the change is a reduced throughput. On the other

hand, the hybrid decoder is implemented to increase the flexibility of the decoder, since the

throughput of the decoder can be changed in real-time. The synthesis results in Section 4.1

show that only the 180-FU decoder can be implemented using the Virtex-II Pro XC2VP100

FPGA because the other two decoders requires more than the available hardware resources

on the FPGA. Thus, the decoders are re-synthesized for the Virtex-6 XC6VLX240T FPGA,

which can implement all three decoders. Comparing the 180-FU decoder to the Gomes

decoder, the 180-FU decoder uses fewer slices, slice LUTs and BRAMs, and has a higher

maximum frequency. In addition, the 180-FU decoder implements the PCM, LLR Buffer

and Decoded Message Buffer that are not implemented in the Gomes decoder.

The throughput results in Table 4.2 show that the minimum throughput of the 180-FU

decoder is better than minimum throughput of the Gomes decoder in higher code rates.

Furthermore, the throughput of the three decoders implemented on the Virtex-6 FPGA are

88

even more superior than the decoders implemented on the Virtex-II Pro FPGA because of

the higher maximum clock frequencies. The error performance graphs in Figure 4.1 indicate

that the three decoders might not perform up to the error performance requirements desired

by the DVB-S2 standard. However, the graphs do demonstrate that the decoders successfully

handle the special code rates as previously mentioned and the decoder works properly.

For future work, different ψ function approximations can be tested to find the optimal

trade-off between the hardware complexity of implementing the ψ function and performance.

Furthermore, the different decoding algorithms presented by Papaharalabos et al. [23] can be

implemented on the FUs to improve the error performance of the LDPC decoder implemented

on the FPGA in hopes of satisfying the error performance required by the DVB-S2 standard.

The comparison of these decoding algorithms can also be revisited from a FPGA design point

of view by evaluating the FPGA hardware resource utilization and throughput of the decoder.

The error performance can also be improved by using more bits to represent the LLR and

RAM values.

Recall that the design of some of the components of the decoder are customized for

Virtex-II Pro FPGAs, and not the Virtex-6 FPGA. Thus, in order to further reduce hardware

resource utilization when using the Virtex-6 FPGA, the architecture of these components

can be re-designed and be customized for the Virtex-6 FPGA CLB and slice architecture.

Another potential platform for the DVB-S2 LDPC decoder is to implement the decoder

using a graphics processing unit (GPU). Modern GPUs are known for their high number

of processors dedicated for arithmetic calculations [48]. Since the decoding of the DVB-S2

LDPC codes are also highly parallel and requires a large number of FUs, the GPU platform

is very suitable for the implementation of the DVB-S2 LDPC decoders. Since the GPU is

programmed in a software environment, it has a similar flexibility that FPGAs can provide

because the GPU programs can be easily re-compiled for use in a different GPU. In addition,

GPUs have built-in floating point arithmetic units in each processor, so they can perform

the Check Node Update and Bit Node Update calculations with higher precision than the

FPGA designs, which would improve the error performance of the decoder.

89

References

[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell system Technical
Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.

[2] R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, MIT, Cambridge,
MA, 1963.

[3] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit Performance of Low Density
Parity Check Codes,” Electronics Letters, vol. 32, no. 18, pp. 1645–1646, August 1996.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correction
coding and decoding: Turbo-codes,” in IEEE International Conference on Communi-
cations, 1993, vol. 2, May 1993, pp. 1064–1070.

[5] DVB. [Online]. Available: http://www.dvb.org

[6] ETSI, “Digital Video Broadcasting (DVB): Second generation framing structure, chan-
nel coding and modulation systems for Broadcasting, Interactive Services, News Gather-
ing and other broadband satellite applications (DVB-S2), EN 302 307 V 1.2.1.” August
2009.

[7] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-
check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404–412,
March 2002.

[8] M. Eroz, F.-W. Sun, , and L.-N. Lee, “An Innovative Low-Density Parity-Check
Code Design With near-Shannon-limit Performance and Simple Implementation,” IEEE
Transactions on Communications, vol. 54, no. 1, pp. 13–17, January 2006.

[9] F. Kienle, T. Brack, and N. Wehn, “A synthesizable IP Core for DVB-S2 LDPC Code
Decoding,” in Proceedings of the Design, Automation and Test in Europe, 2005, vol. 3,
March 2005, pp. 100–105.

[10] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebards, E. Lantreibecq, and
G. Gupta, “A 135Mb/s DVB-S2 compliant codec based on 64800b LDPC and BCH
codes,” in IEEE International Solid-State Circuits Conference, 2005, vol. 1, February
2005, pp. 446–609.

[11] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for DVB-S2,” in Design,
Automation and Test in Europe, 2006, vol. 2, March 2006, pp. 1–6.

90

http://www.dvb.org

[12] A. Segard, F. Verdier, D. Declercq, and P. Urard, “A DVB-S2 compliant LDPC de-
coder integrating the Horizontal Shuffle Scheduling,” in International Symposium on
Intelligent Signal Processing and Communications, December 2006, pp. 1013–1016.

[13] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a Flexible LDPC Decoder,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 6, pp. 542–
546, June 2007.

[14] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. L’Insalata, F. Rossi,
M. Rovini, and L. Fanucci, “Low Complexity LDPC Code Decoders for Next Generation
Standards,” in Design, Automation and Test in Europe Conference and Exhibition,
2007, April 2007, pp. 1–6.

[15] B. Zhang, H. Liu, X. Chen, D. Liu, and X. Yi, “Low Complexity DVB-S2 LDPC
Decoder,” in IEEE 69th Vehicular Technology Conference, 2009, April 2009, pp. 1–5.

[16] Y. Ying, D. Bo, S. Huang, B. Xiang, Y. Chen, and X. Zeng, “A cost efficient LDPC
decoder for DVB-S2,” in IEEE 8th International Conference on ASIC, 2009, October
2009, pp. 1007–1010.

[17] M. K. Yadav and K. K. Parhi, “Design and implementation of LDPC Codes for DVB-
S2,” in Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems
and Computers, 2005, November 2005, pp. 723–728.

[18] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao, “Flexible Par-
allel Architecture for DVB-S2 LDPC Decoders,” in IEEE Global Telecommunications
Conference, 2007, November 2007, pp. 3265–3269.

[19] C. Beuschel and H.-J. Pfleiderer, “FPGA implementation of a flexible decoder for long
LDPC codes,” in International Conference on Field Programmable Logic and Applica-
tions, 2008, September 2008, pp. 185–190.

[20] T. Zhang, Z. Wang, and K. K. Parhi, “On Finite Precision Implementation of Low
Density Parity Check Codes Decoder,” in IEEE International Symposium on Circuits
and Systems, 2001, vol. 4, May 2001, pp. 202–205.

[21] D. Oh and K. K. Parhi, “Low Complexity Implementations of Sum-Product Algorithm
for Decoding Low-Density Parity-Check Codes,” in IEEE Workshop on Signal Process-
ing Systems Design and Implementation, 2006, October 2006, pp. 262–267.

[22] G. Masera, F. Quaglio, and F. Vacca, “Finite precision implementation of LDPC de-
coders,” IEE Proceedings – Communications, vol. 152, no. 6, pp. 1098–1102, December
2005.

[23] S. Papahralabos, M. Papaleo, P. T. Mathiopoulos, M. Neri, A. Vanelli-Coralli, and
G. Corazza, “DVB-S2 LDPC Decoding Using Robust Check Node Update Approxima-
tions,” IEEE Transactions on Broadcasting, vol. 54, no. 1, pp. 120–126, March 2008.

91

[24] ViaSat, “SkyPHYTM DVB-S2 Receiver ASIC(ECC3100).” [Online]. Avail-
able: http://www.viasat.com/files/assets/web/datasheets/ecc3100 skyphy receiver
asic datasheet 104.pdf

[25] ——, “DVB-S2 Mini Receiver.” [Online]. Available: http://www.viasat.com/files/
assets/web/datasheets/DVB S2 mini receiver military 110 lores.pdf

[26] ——, “MIRD-S2: DVB-S2 Receiver Decoder.” [Online]. Available: http://www.viasat.
com/files/assets/web/datasheets/MIRD-S2 104.pdf

[27] MATLAB, “dvbs2ldpc.” [Online]. Available: http://www.mathworks.com/help/
toolbox/comm/ref/dvbs2ldpc.html

[28] ——, “fec.ldpcdec.” [Online]. Available: http://www.mathworks.com/help/toolbox/
comm/ref/fec.ldpcdec.html

[29] Xilinx. [Online]. Available: http://www.xilinx.org

[30] Altera. [Online]. Available: http://www.altera.org

[31] N. Systems, “DVB-S2 LDPC Decoder.” [Online]. Available: http://www.navtelsystems.
com/pdf/DatasheetLDPCDVBS2.pdf

[32] SoftJin, “LDPC Decoder for DVB-S2.” [Online]. Available: http://www.softjin.com/
IP Datasheet PDF version/LDPC Decoder datasheet.pdf

[33] R. Communications, “Product Brief: DVB-S2 LDPC Decoder.” [Online]. Available:
http://www.rad3comm.com/uploads/DVB-S2 LDPC.pdf

[34] M. Gomes, G. Falcao, J. Goncalves, V. Silva, M. Falcao, and P. Faia, “HDL Library of
Processing Units for Generic and DVB-S2 LDPC Decoding,” in International Confer-
ence on Signal Processing and Multimedia Applications, August 2006.

[35] M. Gomes, G. Falcao, A. Sengo, V. Ferreira, V. Silva, and M. Falcao, “High throughput
encoder architecture for DVB-S2 LDPC-IRA codes,” in International Conference on
Microelectronics, 2007. ICM 2007, December 2007, pp. 271–274.

[36] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,”
November 2007. [Online]. Available: http://www.xilinx.com/support/documentation/
data sheets/ds083.pdf

[37] ——, “Virtex-6 FPGA Configurable Logic Block: User Guide,” September 2009. [On-
line]. Available: http://www.xilinx.com/support/documentation/user guides/ug364.
pdf

[38] ——, “Virtex-6 Family Overview,” January 2010. [Online]. Available: http:
//www.xilinx.com/support/documentation/data sheets/ds150.pdf

[39] ——, “Virtex-6 FPGA Memory Resources: User Guide,” August 2010. [Online].
Available: http://www.xilinx.com/support/documentation/user guides/ug363.pdf

92

http://www.viasat.com/files/assets/web/datasheets/ecc3100_skyphy_receiver_asic_datasheet_104.pdf
http://www.viasat.com/files/assets/web/datasheets/ecc3100_skyphy_receiver_asic_datasheet_104.pdf
http://www.viasat.com/files/assets/web/datasheets/DVB_S2_mini_receiver_military_110_lores.pdf
http://www.viasat.com/files/assets/web/datasheets/DVB_S2_mini_receiver_military_110_lores.pdf
http://www.viasat.com/files/assets/web/datasheets/MIRD-S2_104.pdf
http://www.viasat.com/files/assets/web/datasheets/MIRD-S2_104.pdf
http://www.mathworks.com/help/toolbox/comm/ref/dvbs2ldpc.html
http://www.mathworks.com/help/toolbox/comm/ref/dvbs2ldpc.html
http://www.mathworks.com/help/toolbox/comm/ref/fec.ldpcdec.html
http://www.mathworks.com/help/toolbox/comm/ref/fec.ldpcdec.html
http://www.xilinx.org
http://www.altera.org
http://www.navtelsystems.com/pdf/DatasheetLDPCDVBS2.pdf
http://www.navtelsystems.com/pdf/DatasheetLDPCDVBS2.pdf
http://www.softjin.com/IP_Datasheet_PDF_version/LDPC_Decoder_datasheet.pdf
http://www.softjin.com/IP_Datasheet_PDF_version/LDPC_Decoder_datasheet.pdf
http://www.rad3comm.com/uploads/DVB-S2_LDPC.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf

[40] S. Lin and D. J. C. Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ, USA:
Pearson Prentice Hall, 2004.

[41] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in 2nd
International Symposium on Turbo Codes and Related Topics, September 2000.

[42] ETSI, “Digital Video Broadcasting (DVB): User guidelines for the second generation
system for Broadcasting, Interactive Services, News Gathering and other broadband
satellite applications (DVB-S2), TR 102 376 V 1.1.1.” February 2005.

[43] R. M. Tanner, “Recursive Approach to Low Complexity Codes,” IEEE Transactions on
Information Theory, vol. 27, no. 5, pp. 533–547, September 1981.

[44] M. Eroz, F.-W. Sun, and L.-N. Lee, “DVB-S2 Low Density Parity Check Codes with
Near Shannon Limit Performance,” International Journal of Satellite Communications
and Networking, vol. 22, no. 3, pp. 269–279, June 2004.

[45] H. C. Neto and M. P. Vestias, “Architectural Tradeoffs in the Design of Barrel Shifters
for Reconfigurable Computing,” in 4th Southern Conference on Programmable Logic,
2008, March 2008, pp. 31–36.

[46] M. Defossez and N. Sawyer, “Xilinx Application Note: Using Block SelectRAM Memo-
ries as Serializers or Deserializers, XAPP690 (v1.0),” October 2003. [Online]. Available:
http://www.xilinx.com/support/documentation/application notes/xapp690.pdf

[47] K. C. C. Loi, S.-B. Ko, and D. Armstrong, “Optimizations and Improvements of the
DVB-S2 LDPC Decoder Functional Unit,” in 12th International Workshop on Multi-
media Signal Processing and Transmission, September 2009, pp. 114–118.

[48] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface, 4th ed. Burlington, MA, USA: Morgan Kaufmann, 2009.

93

http://www.xilinx.com/support/documentation/application_notes/xapp690.pdf

Appendix A

The Encoding and Decoding of a Simple Lin-

ear Systematic Block Code

In this appendix, the encoding and decoding of a linear systematic block code is shown
using a simple example. The code used for the remainder of this appendix has a codeword
length of N = 7, and the number of information bits, K = 4. The code can also be expressed
as a (7,4) linear systematic block code. The examples shown here are based on chapter 3 of
Lin and Costello’s book [40].

Consider a (7,4) linear systematic block code that has the following generator matrix:

G =

g0

g1

g2

g3

 =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

The generator matrix has the form G = [PIK] as discussed in Section 2.2 so the code is a
systematic code. Using the generator matrix, the 7-bit codewords can be generated from any
4-bit message by using equation (2.2) from Section 2.2. For example, consider the message
u = (1 1 0 1) and the encoding is performed as follows:

v = u ·G
= 1 · g0 + 1 · g1 + 0 · g2 + 1 · g3

= (1101000) + (0110100) + (1010001)

= (0001101)

Using the same technique, the other fifteen codewords can also be generated, and the
result is shown in Table A.1. It can be seen that the code is systematic because the rightmost
four bits of the codeword is identical to the original message, so they make up the message
part of the codeword. The remaining three leftmost bits are the redundant checking part.

Encoding can be simplified from the systematic property of the code by using the parity-

94

Table A.1: Example of a (7,4) Linear Systematic Block Code

Messages Codewords
(0 0 0 0) (0 0 0 0 0 0 0)
(1 0 0 0) (1 1 0 1 0 0 0)
(0 1 0 0) (0 1 1 0 1 0 0)
(1 1 0 0) (1 0 1 1 1 0 0)
(0 0 1 0) (1 1 1 0 0 1 0)
(1 0 1 0) (0 0 1 1 0 1 0)
(0 1 1 0) (1 0 0 0 1 1 0)
(1 1 1 0) (0 1 0 1 1 1 0)
(0 0 0 1) (1 0 1 0 0 0 1)
(1 0 0 1) (0 1 1 1 0 0 1)
(0 1 0 1) (1 1 0 0 1 0 1)
(1 1 0 1) (0 0 0 1 1 0 1)
(0 0 1 1) (0 1 0 0 0 1 1)
(1 0 1 1) (1 0 0 1 0 1 1)
(0 1 1 1) (0 0 1 0 1 1 1)
(1 1 1 1) (1 1 1 1 1 1 1)

check equations generated as follows:

v = (u0, u1, u2, u3) ·

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

v6 = u3

v5 = u2

v4 = u1

v3 = u0

v2 = u1 + u2 + u3

v1 = u0 + u1 + u2

v0 = u0 + u2 + u3

Using the parity-check equations, the encoder can be implemented as a set of shift reg-
isters for the message bits, three 3-input modulo-2 adders and a set of shift registers for the
parity-check bits. An encoder block diagram for this (7,4) linear systematic block code is
shown in Figure A.1.

The parity-check matrix, H, of this code can be obtained as follows:

H = [IN−KPT] =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

95

Figure A.1: An example encoder for the (7,4) linear systematic block code.

Let the received vector from the output of the channel be r = (r0, r1, r2, r3, r4, r5, r6).
Using the parity-check matrix, the equation for each bit in the syndrome, s = (s0, s1, s2),
can be computed as follows:

s = r ·HT

= (r0, r1, r2, r3, r4, r5, r6) ·

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

s0 = r0 + r3 + r5 + r6

s1 = r1 + r3 + r4 + r5

s2 = r2 + r4 + r5 + r6

These syndrome computations can be implemented using 4-input modulo-2 adders. In
order to implement the decoder using syndrome decoding, the standard array needs to be

96

Table A.2: Decoding table for the (7,4) linear systematic block code

Syndrome Coset leaders
(1 0 0) (1 0 0 0 0 0 0)
(0 1 0) (0 1 0 0 0 0 0)
(0 0 1) (0 0 1 0 0 0 0)
(1 1 0) (0 0 0 1 0 0 0)
(0 1 1) (0 0 0 0 1 0 0)
(1 1 1) (0 0 0 0 0 1 0)
(1 0 1) (0 0 0 0 0 0 1)

built first. By using the steps in Section 2.2 the following standard array can be built:

0000000 1101000 0110100 1011100 1110010 0011010 1000110 0101110 1010001
1000000 0101000 1110100 0011100 0110010 1011010 0000110 1101110 0010001
0100000 1001000 0010100 1111100 1010010 0111010 1100110 0001110 1110001
0010000 1111000 0100100 1001100 1100010 0011010 1010110 0111110 1000001
0001000 1100000 0111100 1010100 1111010 0010010 1001110 0100110 1011001
0000100 1101100 0110000 1011000 1110110 0011110 1000010 0101010 1010101
0000010 1101010 0110110 1011110 1110000 0011000 1000100 0101100 1010011
0000001 1101001 0110101 1011101 1110011 0011011 1000111 0101111 1010000

0000000 0111001 1100101 0001101 0100011 1001011 0010111 1111111
1000000 1111001 0100101 1001101 1100011 0001011 1010111 0111111
0100000 0011001 1000101 0101101 0000011 1101011 0110111 1011111
0010000 0101001 1110101 0011101 0110011 1011011 0000111 1101111
0001000 0110001 1101101 0000101 0101011 1000011 0011111 1110111
0000100 0111101 1100001 0001001 0100111 1001111 0010011 1111011
0000010 0111011 1100111 0001111 0100001 1001001 0010101 1111101
0000001 0111000 1100100 0001100 0100010 1001010 0010110 1111110

From the standard array, the coset leaders can be found on the leftmost column. For
each coset leader, using the equation s = el ·HT , the respective syndromes can be found for
each coset leader. The resultant decoding table is shown in Table A.2.

Let the original message be u = (1 1 0 1). As shown above, the codeword generated
by the encoder is v = (0 0 0 1 1 0 1). Assume the received vector from the output of the
channel is r = (0 1 0 1 1 0 1). The decoding process begins with computing the syndrome,
s:

s = (0101101) ·

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

= (010)

97

Figure A.2: An example decoder for the (7,4) linear systematic block code.

Subsequently, using Table A.2, find the syndrome and decode it into its respective coset
leader, el = (0 1 0 0 0 0 0). Finally, add the coset leader to the received vector, r, to obtain
the decoded codeword:

v∗ = el + r

= (0100000) + (0101101)

= (0001101)

Since the code is systematic, the original message can be retrieved from the message part
of the decoded codeword. Thus, the decoded message is u∗ = (1 1 0 1), which is the original
message that was encoded.

In terms of implementation, the decoder can be implemented using a set of shift registers
for the received vector from the channel, a syndrome calculation circuit using modulo-2
adders, a combinational logic circuit that realizes the decoding table and a set of modulo-
2 adders to combine the error vector with the received vector. An example of a decoder
implemented for the (7,4) code discussed is shown in Figure A.2.

98

Appendix B

Values from Annex B and C of the DVB-S2

Standard

In this Appendix, the values from Annex B and C of the DVB-S2 standard [6] are
reproduced. The values for the normal frames are shown first, followed by the values for
short frames.

Table B.1: N = 64800, Code Rate = 1/4

23606 36098 1140 28859 18148 18510 6226 540 42014 20879 23802 47088 36046 32914 11836
16419 24928 16609 17248 7693 24997 42587 16858 34921 21042 37024 20692 7304 39782 33721
1874 40094 18704 14474 14004 11519 13106 28826 38669 22363 30255 31105 16905 29962 12980
22254 40564 22645 22532 6134 9176 39998 23892 8937 15608 16854 31009 11171 23709 22460
8037 40401 13550 19526 41902 28782 13304 32796 24679 27140 45980 10021 34541 9937 44500
40540 44498 13911 22435 32701 18405 39929 25521 12497 9851 39223 34823 14035 47316 8815
15233 45333 5041 44979 45710 42150 19416 1892 23121 15860 8832 10308 15057 45482 24461
10468 44296 3611 1480 37581 32254 13817 6883 32892 40258 46538 11940 30518 36877 879
6705 21634 28150 43757 895 6547 20970 28914 30117 25736 41734 11392 7583 13364 24332
22002 5739 27210 27828 34192 37992 10915 6998 3824 42130 4494 35739 448 27056 4682
8515 1191 13642 30950 25943 12673 16726 34261 31828 3340 8747 39225 12083 31378 21670
18979 17058 43130 4246 4793 44030 19454 29511 47929 15174 24333 19354 1159 18031 2221
16694 8381 29642 46516 32224 26344 9405 18292 12437 27316 35466 41992 17028 38715 9350
15642 5871 46489 26723 23396 7257 8974 3156 37420 44823 35423 13541 17343 24530 29574
42858 32008 41282 38773 26570 2702 27260 46974 1469 20887 27426 38553 46128 31039 32818
22152 24261 8297 20373 36967 18345
19347 9978 27802 46685 20622 32806
34991 6354 33561
29782 30875 29523
9278 48512 14349
38061 4165 43878
8548 33172 34410
22535 28811 23950
20439 4027 24186
38618 8187 30947
35538 43880 21459
7091 45616 15063
5505 9315 21908

99

Table B.2: N = 64800, Code Rate = 1/3

34903 20927 32093 1052 25611 16093 16454 5520 506 37399 18518 21120 29094 5357 19224
11636 14594 22158 14763 15333 6838 22222 37856 14985 31041 18704 32910 9562 24436 28637
17449 1665 35639 16624 12867 12449 10241 11650 25622 34372 19878 26894 40177 2326 13504
29235 19780 36056 20129 20029 5457 8157 35554 21237 7943 13873 14980 6834 21583 42516
9912 7143 35911 12043 17360 37253 25588 11827 29152 21936 24125 40870 40651 42810 25709
40701 36035 39556 12366 19946 29072 16365 35495 22686 11106 8756 34863 31557 32138 38142
19165 15702 13536 40238 4465 40034 40590 37540 17162 1712 20577 14138 18624 41867 39296
31338 19342 9301 39375 3211 1316 33409 28670 12282 6118 29236 35787 37560 14295 16245
11504 30506 19558 5100 24188 24738 30397 33775 9699 6215 3397 37451 6821 21679 31570
34689 23126 7571 1058 12127 27518 23064 11265 14867 30451 28289 2966 25339 25083 22081
11660 15334 16867 15160 38343 3778 4265 39139 17293 26229 42604 13486 8047 697 35268
31497 1365 14828 7453 26350 41346 28643 23421 8354 16255 11055 24279 9884 17073 19995
15687 12467 13906 5215 41328 23755 20800 6447 7970 2803 33262 39843 26848 35245 8390
5363 22469 38091 28457 36696 34471 23619 2404 24229 41754 1297 18563 18658 16134 14807
3673 39070 14480 30279 37483 7580 29519 30519 39831 20252 18132 20010 12201 32944 5035
34386 7252 27526 12950 6875 43020 31566 39069 18985 15541 40020 16715 25236 1216 38986
1721 37332 39953 17430 32134 29162 10490 12971 28581 29331 6489 35383 42994 24782 8681
736 7022 42349 8783 6767 11871 21675 10325 11548 25978 431 24085 28321 4932 34249
1925 10602 28585 12170 15156 34404 8351 13273 20208 5800 15367 21764 4107 29382 32124
16279 37832 34792 21250 34192 7406 41488 18346 29227 26127 25493 7048 22157 2624 14468
39948 28229 24899 38788 27081 7936
17408 14274 38993 4368 26148 10578
38774 15968 28459 25353 4122 39751
41404 27249 27425
41229 6082 43114
13957 4979 40654
3093 3438 34992
34082 6172 28760
42210 34141 41021
14705 17783 10134
41755 39884 22773
14615 15593 1642
29111 37061 39860
9579 33552 633
12951 21137 39608
38244 27361 29417
2939 10172 36479

Table B.3: N = 64800, Code Rate = 2/5

31413 18834 28884 947 23050 14484 14809 4968 455 33659 16666 19008 25796 31795 12152 28229 31684 30160
13172 19939 13354 13719 6132 20086 34040 13442 27958 16813 29619 16553 12184 35088 31226 15293 8483 28002
1499 32075 14962 11578 11204 9217 10485 23062 30936 17892 24204 24885 38263 33386 24892 14880 13334 12584
32490 18086 18007 4957 7285 32073 19038 7152 12486 13483 24808 21759 23114 37995 29796 28646 2558 19687
32321 10839 15620 33521 23030 10646 26236 19744 21713 36784 8016 12869 34336 10551 36245 6259 4499 26336
35597 11129 17948 26160 14729 31943 20416 10000 7882 31380 27858 33356 35407 175 7203 11952 28386 8405
14125 12131 36199 4058 35992 36594 33698 15475 1566 18498 12725 7067 14654 38201 22605 10609 961 7582
17406 8372 35437 2888 1184 30068 25802 11056 5507 26313 32205 37232 28404 6595 1018 10423 13191 26818
15254 5365 17308 22519 35009 718 5240 16778 23131 24092 20587 33385 19932 3524 29305 15922 36654 21450
27455 17602 4590 21767 22266 27357 30400 8732 5596 3060 33703 3596 31749 20247 8128 10492 1532 1205
6882 873 10997 24738 20770 10067 13379 27409 25463 2673 6998 31378 18026 36357 26735 30551 36482 22153
15181 13645 34501 3393 3840 35227 15562 23615 38342 12139 19471 15483 7543 29767 13588 5156 11330 34243
13350 6707 23709 37204 25778 21082 7511 14588 10010 21854 28375 33591 13333 25965 8463 28616 35369 13322
12514 4695 37190 21379 18723 5802 7182 2529 29936 35860 28338 10835 14504 36796 19710 8962 1485 21186
34283 25610 33026 31017 21259 2165 21807 37578 1175 16710 21939 30841 4528 25299 7318 23541 17445 35561
27292 33730 6836 26476 27539 35784 18245 16394 17939 23094 19216 17432 35091 25550 14798 33133 11593 19895
11655 6183 38708 28408 35157 17089 13998 36029 15052 16617 5638 36464 7824 215 1248 33917 7863 33651
15693 28923 26245 9432 11675 25720 26405 5838 31851 26898 8090 37037 30848 5362 17291 20063 28331 10702
24418 27583 7959 35562 37771 17784 11382 11156 37855 7073 21685 34515 28932 30249 27073 13195 21107 21859
10977 13633 30969 7516 11943 18199 5231 13825 19589 23661 11150 35602 13062 2103 16206 4364 31137 4804
19124 30774 6670 37344 16510 26317 23518 22957 6348 34069 8845 20175 7129 32062 19612 5585 2037 4830
34985 14441 25668 4116 3019 21049 37308 24551 24727 20104 24850 12114 9512 21936 38833 30672 16927 14800
38187 28527 13108 13985 1425 21477 30807 8613 26241 33368 35913 32477 35849 33754 23450
5903 34390 24641 26556 23007 27305 38247 2621 9122 32806 21554 18685 18705 28656 18111
17287 27292 19033 22749 27456 32187

100

Table B.4: N = 64800, Code Rate = 1/2

54 9318 14392 27561 26909 10219 2534 8597 40 30051 30426
55 7263 4635 2530 28130 3033 23830 3651 41 1335 15424
56 24731 23583 26036 17299 5750 792 9169 42 6865 17742
57 5811 26154 18653 11551 15447 13685 16264 43 31779 12489
58 12610 11347 28768 2792 3174 29371 12997 44 32120 21001
59 16789 16018 21449 6165 21202 15850 3186 45 14508 6996
60 31016 21449 17618 6213 12166 8334 18212 46 979 25024
61 22836 14213 11327 5896 718 11727 9308 47 4554 21896
62 2091 24941 29966 23634 9013 15587 5444 48 7989 21777
63 22207 3983 16904 28534 21415 27524 25912 49 4972 20661
64 25687 4501 22193 14665 14798 16158 5491 50 6612 2730
65 4520 17094 23397 4264 22370 16941 21526 51 12742 4418
66 10490 6182 32370 9597 30841 25954 2762 52 29194 595
67 22120 22865 29870 15147 13668 14955 19235 53 19267 20113
68 6689 18408 18346 9918 25746 5443 20645
69 29982 12529 13858 4746 30370 10023 24828
70 1262 28032 29888 13063 24033 21951 7863
71 6594 29642 31451 14831 9509 9335 31552
72 1358 6454 16633 20354 24598 624 5265
73 19529 295 18011 3080 13364 8032 15323
74 11981 1510 7960 21462 9129 11370 25741
75 9276 29656 4543 30699 20646 21921 28050
76 15975 25634 5520 31119 13715 21949 19605
77 18688 4608 31755 30165 13103 10706 29224
78 21514 23117 12245 26035 31656 25631 30699
79 9674 24966 31285 29908 17042 24588 31857
80 21856 27777 29919 27000 14897 11409 7122
81 29773 23310 263 4877 28622 20545 22092
82 15605 5651 21864 3967 14419 22757 15896
83 30145 1759 10139 29223 26086 10556 5098
84 18815 16575 2936 24457 26738 6030 505
85 30326 22298 27562 20131 26390 6247 24791
86 928 29246 21246 12400 15311 32309 18608
87 20314 6025 26689 16302 2296 3244 19613
88 6237 11943 22851 15642 23857 15112 20947
89 26403 25168 19038 18384 8882 12719 7093
0 14567 24965
1 3908 100
2 10279 240
3 24102 764
4 12383 4173
5 13861 15918
6 21327 1046
7 5288 14579
8 28158 8069
9 16583 11098
10 16681 28363
11 13980 24725
12 32169 17989
13 10907 2767
14 21557 3818
15 26676 12422
16 7676 8754
17 14905 20232
18 15719 24646
19 31942 8589
20 19978 27197
21 27060 15071
22 6071 26649
23 10393 11176
24 9597 13370
25 7081 17677
26 1433 19513
27 26925 9014
28 19202 8900
29 18152 30647
30 20803 1737
31 11804 25221
32 31683 17783
33 29694 9345
34 12280 26611
35 6526 26122
36 26165 11241
37 7666 26962
38 16290 8480
39 11774 10120

101

Table B.5: N = 64800, Code Rate = 3/5

22422 10282 11626 19997 11161 2922 3122 99 5625 17064 8270 179 25 6393 3725
25087 16218 17015 828 20041 25656 4186 11629 22599 17305 22515 6463 26 597 19968
11049 22853 25706 14388 5500 19245 8732 2177 13555 11346 17265 3069 27 5743 8084
16581 22225 12563 19717 23577 11555 25496 6853 25403 5218 15925 21766 28 6770 9548
16529 14487 7643 10715 17442 11119 5679 14155 24213 21000 1116 15620 29 4285 17542
5340 8636 16693 1434 5635 6516 9482 20189 1066 15013 25361 14243 30 13568 22599
18506 22236 20912 8952 5421 15691 6126 21595 500 6904 13059 6802 31 1786 4617
8433 4694 5524 14216 3685 19721 25420 9937 23813 9047 25651 16826 32 23238 11648
21500 24814 6344 17382 7064 13929 4004 16552 12818 8720 5286 2206 33 19627 2030
22517 2429 19065 2921 21611 1873 7507 5661 23006 23128 20543 19777 34 13601 13458
1770 4636 20900 14931 9247 12340 11008 12966 4471 2731 16445 791 35 13740 17328
6635 14556 18865 22421 22124 12697 9803 25485 7744 18254 11313 9004 36 25012 13944
19982 23963 18912 7206 12500 4382 20067 6177 21007 1195 23547 24837 37 22513 6687
756 11158 14646 20534 3647 17728 11676 11843 12937 4402 8261 22944 38 4934 12587
9306 24009 10012 11081 3746 24325 8060 19826 842 8836 2898 5019 39 21197 5133
7575 7455 25244 4736 14400 22981 5543 8006 24203 13053 1120 5128 40 22705 6938
3482 9270 13059 15825 7453 23747 3656 24585 16542 17507 22462 14670 41 7534 24633
15627 15290 4198 22748 5842 13395 23918 16985 14929 3726 25350 24157 42 24400 12797
24896 16365 16423 13461 16615 8107 24741 3604 25904 8716 9604 20365 43 21911 25712
3729 17245 18448 9862 20831 25326 20517 24618 13282 5099 14183 8804 44 12039 1140
16455 17646 15376 18194 25528 1777 6066 21855 14372 12517 4488 17490 45 24306 1021
1400 8135 23375 20879 8476 4084 12936 25536 22309 16582 6402 24360 46 14012 20747
25119 23586 128 4761 10443 22536 8607 9752 25446 15053 1856 4040 47 11265 15219
377 21160 13474 5451 17170 5938 10256 11972 24210 17833 22047 16108 48 4670 15531
13075 9648 24546 13150 23867 7309 19798 2988 16858 4825 23950 15125 49 9417 14359
20526 3553 11525 23366 2452 17626 19265 20172 18060 24593 13255 1552 50 2415 6504
18839 21132 20119 15214 14705 7096 10174 5663 18651 19700 12524 14033 51 24964 24690
4127 2971 17499 16287 22368 21463 7943 18880 5567 8047 23363 6797 52 14443 8816
10651 24471 14325 4081 7258 4949 7044 1078 797 22910 20474 4318 53 6926 1291
21374 13231 22985 5056 3821 23718 14178 9978 19030 23594 8895 25358 54 6209 20806
6199 22056 7749 13310 3999 23697 16445 22636 5225 22437 24153 9442 55 13915 4079
7978 12177 2893 20778 3175 8645 11863 24623 10311 25767 17057 3691 56 24410 13196
20473 11294 9914 22815 2574 8439 3699 5431 24840 21908 16088 18244 57 13505 6117
8208 5755 19059 8541 24924 6454 11234 10492 16406 10831 11436 9649 58 9869 8220
16264 11275 24953 2347 12667 19190 7257 7174 24819 2938 2522 11749 59 1570 6044
3627 5969 13862 1538 23176 6353 2855 17720 2472 7428 573 15036 60 25780 17387
0 18539 18661 61 20671 24913
1 10502 3002 62 24558 20591
2 9368 10761 63 12402 3702
3 12299 7828 64 8314 1357
4 15048 13362 65 20071 14616
5 18444 24640 66 17014 3688
6 20775 19175 67 19837 946
7 18970 10971 68 15195 12136
8 5329 19982 69 7758 22808
9 11296 18655 70 3564 2925
10 15046 20659 71 3434 7769
11 7300 22140
12 22029 14477
13 11129 742
14 13254 13813
15 19234 13273
16 6079 21122
17 22782 5828
18 19775 4247
19 1660 19413
20 4403 3649
21 13371 25851
22 22770 21784
23 10757 14131
24 16071 21617

102

Table B.6: N = 64800, Code Rate = 2/3

0 10491 16043 506 12826 8065 8226 2767 240 18673 9279 10579 20928 4 9161 15642
1 17819 8313 6433 6224 5120 5824 12812 17187 9940 13447 13825 18483 5 10714 10153
2 17957 6024 8681 18628 12794 5915 14576 10970 12064 20437 4455 7151 6 11585 9078
3 19777 6183 9972 14536 8182 17749 11341 5556 4379 17434 15477 18532 7 5359 9418
4 4651 19689 1608 659 16707 14335 6143 3058 14618 17894 20684 5306 8 9024 9515
5 9778 2552 12096 12369 15198 16890 4851 3109 1700 18725 1997 15882 9 1206 16354
6 486 6111 13743 11537 5591 7433 15227 14145 1483 3887 17431 12430 10 14994 1102
7 20647 14311 11734 4180 8110 5525 12141 15761 18661 18441 10569 8192 11 9375 20796
8 3791 14759 15264 19918 10132 9062 10010 12786 10675 9682 19246 5454 12 15964 6027
9 19525 9485 7777 19999 8378 9209 3163 20232 6690 16518 716 7353 13 14789 6452
10 4588 6709 20202 10905 915 4317 11073 13576 16433 368 3508 21171 14 8002 18591
11 14072 4033 19959 12608 631 19494 14160 8249 10223 21504 12395 4322 15 14742 14089
12 13800 14161 16 253 3045
13 2948 9647 17 1274 19286
14 14693 16027 18 14777 2044
15 20506 11082 19 13920 9900
16 1143 9020 20 452 7374
17 13501 4014 21 18206 9921
18 1548 2190 22 6131 5414
19 12216 21556 23 10077 9726
20 2095 19897 24 12045 5479
21 4189 7958 25 4322 7990
22 15940 10048 26 15616 5550
23 515 12614 27 15561 10661
24 8501 8450 28 20718 7387
25 17595 16784 29 2518 18804
26 5913 8495 30 8984 2600
27 16394 10423 31 6516 17909
28 7409 6981 32 11148 98
29 6678 15939 33 20559 3704
30 20344 12987 34 7510 1569
31 2510 14588 35 16000 11692
32 17918 6655 36 9147 10303
33 6703 19451 37 16650 191
34 496 4217 38 15577 18685
35 7290 5766 39 17167 20917
36 10521 8925 40 4256 3391
37 20379 11905 41 20092 17219
38 4090 5838 42 9218 5056
39 19082 17040 43 18429 8472
40 20233 12352 44 12093 20753
41 19365 19546 45 16345 12748
42 6249 19030 46 16023 11095
43 11037 19193 47 5048 17595
44 19760 11772 48 18995 4817
45 19644 7428 49 16483 3536
46 16076 3521 50 1439 16148
47 11779 21062 51 3661 3039
48 13062 9682 52 19010 18121
49 8934 5217 53 8968 11793
50 11087 3319 54 13427 18003
51 18892 4356 55 5303 3083
52 7894 3898 56 531 16668
53 5963 4360 57 4771 6722
54 7346 11726 58 5695 7960
55 5182 5609 59 3589 14630
56 2412 17295
57 9845 20494
58 6687 1864
59 20564 5216
0 18226 17207
1 9380 8266
2 7073 3065
3 18252 13437

103

Table B.7: N = 64800, Code Rate = 3/4

0 6385 7901 14611 13389 11200 3252 5243 2504 2722 821 7374 24 2655 14957
1 11359 2698 357 13824 12772 7244 6752 15310 852 2001 11417 25 5565 6332
2 7862 7977 6321 13612 12197 14449 15137 13860 1708 6399 13444 26 4303 12631
3 1560 11804 6975 13292 3646 3812 8772 7306 5795 14327 7866 27 11653 12236
4 7626 11407 14599 9689 1628 2113 10809 9283 1230 15241 4870 28 16025 7632
5 1610 5699 15876 9446 12515 1400 6303 5411 14181 13925 7358 29 4655 14128
6 4059 8836 3405 7853 7992 15336 5970 10368 10278 9675 4651 30 9584 13123
7 4441 3963 9153 2109 12683 7459 12030 12221 629 15212 406 31 13987 9597
8 6007 8411 5771 3497 543 14202 875 9186 6235 13908 3563 32 15409 12110
9 3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652 33 8754 15490
10 8820 10088 11090 7069 6585 13134 10158 7183 488 7455 9238 34 7416 15325
11 1903 10818 119 215 7558 11046 10615 11545 14784 7961 15619 35 2909 15549
12 3655 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469 36 2995 8257
13 8316 3820 505 8923 6757 806 7957 4216 15589 13244 2622 37 9406 4791
14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108 8758 38 11111 4854
15 3149 11981 39 2812 8521
16 13416 6906 40 8476 14717
17 13098 13352 41 7820 15360
18 2009 14460 42 1179 7939
19 7207 4314 43 2357 8678
20 3312 3945 44 7703 6216
21 4418 6248 0 3477 7067
22 2669 13975 1 3931 13845
23 7571 9023 2 7675 12899
24 14172 2967 3 1754 8187
25 7271 7138 4 7785 1400
26 6135 13670 5 9213 5891
27 7490 14559 6 2494 7703
28 8657 2466 7 2576 7902
29 8599 12834 8 4821 15682
30 3470 3152 9 10426 11935
31 13917 4365 10 1810 904
32 6024 13730 11 11332 9264
33 10973 14182 12 11312 3570
34 2464 13167 13 14916 2650
35 5281 15049 14 7679 7842
36 1103 1849 15 6089 13084
37 2058 1069 16 3938 2751
38 9654 6095 17 8509 4648
39 14311 7667 18 12204 8917
40 15617 8146 19 5749 12443
41 4588 11218 20 12613 4431
42 13660 6243 21 1344 4014
43 8578 7874 22 8488 13850
44 11741 2686 23 1730 14896
0 1022 1264 24 14942 7126
1 12604 9965 25 14983 8863
2 8217 2707 26 6578 8564
3 3156 11793 27 4947 396
4 354 1514 28 297 12805
5 6978 14058 29 13878 6692
6 7922 16079 30 11857 11186
7 15087 12138 31 14395 11493
8 5053 6470 32 16145 12251
9 12687 14932 33 13462 7428
10 15458 1763 34 14526 13119
11 8121 1721 35 2535 11243
12 12431 549 36 6465 12690
13 4129 7091 37 6872 9334
14 1426 8415 38 15371 14023
15 9783 7604 39 8101 10187
16 6295 11329 40 11963 4848
17 1409 12061 41 15125 6119
18 8065 9087 42 8051 14465
19 2918 8438 43 11139 5167
20 1293 14115 44 2883 14521
21 3922 13851
22 3851 4000
23 5865 1768

104

Table B.8: N = 64800, Code Rate = 4/5

0 149 11212 5575 6360 12559 8108 8505 408 10026 12828 3 6970 5447
1 5237 490 10677 4998 3869 3734 3092 3509 7703 10305 4 3217 5638
2 8742 5553 2820 7085 12116 10485 564 7795 2972 2157 5 8972 669
3 2699 4304 8350 712 2841 3250 4731 10105 517 7516 6 5618 12472
4 12067 1351 11992 12191 11267 5161 537 6166 4246 2363 7 1457 1280
5 6828 7107 2127 3724 5743 11040 10756 4073 1011 3422 8 8868 3883
6 11259 1216 9526 1466 10816 940 3744 2815 11506 11573 9 8866 1224
7 4549 11507 1118 1274 11751 5207 7854 12803 4047 6484 10 8371 5972
8 8430 4115 9440 413 4455 2262 7915 12402 8579 7052 11 266 4405
9 3885 9126 5665 4505 2343 253 4707 3742 4166 1556 12 3706 3244
10 1704 8936 6775 8639 8179 7954 8234 7850 8883 8713 13 6039 5844
11 11716 4344 9087 11264 2274 8832 9147 11930 6054 5455 14 7200 3283
12 7323 3970 10329 2170 8262 3854 2087 12899 9497 11700 15 1502 11282
13 4418 1467 2490 5841 817 11453 533 11217 11962 5251 16 12318 2202
14 1541 4525 7976 3457 9536 7725 3788 2982 6307 5997 17 4523 965
15 11484 2739 4023 12107 6516 551 2572 6628 8150 9852 18 9587 7011
16 6070 1761 4627 6534 7913 3730 11866 1813 12306 8249 19 2552 2051
17 12441 5489 8748 7837 7660 2102 11341 2936 6712 11977 20 12045 10306
18 10155 4210 21 11070 5104
19 1010 10483 22 6627 6906
20 8900 10250 23 9889 2121
21 10243 12278 24 829 9701
22 7070 4397 25 2201 1819
23 12271 3887 26 6689 12925
24 11980 6836 27 2139 8757
25 9514 4356 28 12004 5948
26 7137 10281 29 8704 3191
27 11881 2526 30 8171 10933
28 1969 11477 31 6297 7116
29 3044 10921 32 616 7146
30 2236 8724 33 5142 9761
31 9104 6340 34 10377 8138
32 7342 8582 35 7616 5811
33 11675 10405 0 7285 9863
34 6467 12775 1 7764 10867
35 3186 12198 2 12343 9019
0 9621 11445 3 4414 8331
1 7486 5611 4 3464 642
2 4319 4879 5 6960 2039
3 2196 344 6 786 3021
4 7527 6650 7 710 2086
5 10693 2440 8 7423 5601
6 6755 2706 9 8120 4885
7 5144 5998 10 12385 11990
8 11043 8033 11 9739 10034
9 4846 4435 12 424 10162
10 4157 9228 13 1347 7597
11 12270 6562 14 1450 112
12 11954 7592 15 7965 8478
13 7420 2592 16 8945 7397
14 8810 9636 17 6590 8316
15 689 5430 18 6838 9011
16 920 1304 19 6174 9410
17 1253 11934 20 255 113
18 9559 6016 21 6197 5835
19 312 7589 22 12902 3844
20 4439 4197 23 4377 3505
21 4002 9555 24 5478 8672
22 12232 7779 25 4453 2132
23 1494 8782 26 9724 1380
24 10749 3969 27 12131 11526
25 4368 3479 28 12323 9511
26 6316 5342 29 8231 1752
27 2455 3493 30 497 9022
28 12157 7405 31 9288 3080
29 6598 11495 32 2481 7515
30 11805 4455 33 2696 268
31 9625 2090 34 4023 12341
32 4731 2321 35 7108 5553
33 3578 2608
34 8504 1849
35 4027 1151
0 5647 4935
1 4219 1870
2 10968 8054

105

Table B.9: N = 64800, Code Rate = 5/6

0 4362 416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723 14 7067 8878
1 2479 1786 8978 3011 4339 9313 6397 2957 7288 5484 6031 10217 15 9027 3415
2 10175 9009 9889 3091 4985 7267 4092 8874 5671 2777 2189 8716 16 1690 3866
3 9052 4795 3924 3370 10058 1128 9996 1016 5 9360 4297 434 5138 17 2854 8469
4 2379 7834 4835 2327 9843 804 329 8353 7167 3070 1528 7311 18 6206 630
5 3435 7871 348 3693 1876 6585 10340 7144 5870 2084 4052 2780 19 363 5453
6 3917 3111 3476 1304 10331 5939 5199 1611 1991 699 8316 9960 20 4125 7008
7 6883 3237 1717 10752 7891 9764 4745 3888 10009 4176 4614 1567 21 1612 6702
8 10587 2195 1689 2968 5420 2580 2883 6496 111 6023 1024 4449 22 9069 9226
9 3786 8593 2074 3321 5057 1450 3840 5444 6572 3094 9892 1512 23 5767 4060
10 8548 1848 10372 4585 7313 6536 6379 1766 9462 2456 5606 9975 24 3743 9237
11 8204 10593 7935 3636 3882 394 5968 8561 2395 7289 9267 9978 25 7018 5572
12 7795 74 1633 9542 6867 7352 6417 7568 10623 725 2531 9115 26 8892 4536
13 7151 2482 4260 5003 10105 7419 9203 6691 8798 2092 8263 3755 27 853 6064
14 3600 570 4527 200 9718 6771 1995 8902 5446 768 1103 6520 28 8069 5893
15 6304 7621 29 2051 2885
16 6498 9209 0 10691 3153
17 7293 6786 1 3602 4055
18 5950 1708 2 328 1717
19 8521 1793 3 2219 9299
20 6174 7854 4 1939 7898
21 9773 1190 5 617 206
22 9517 10268 6 8544 1374
23 2181 9349 7 10676 3240
24 1949 5560 8 6672 9489
25 1556 555 9 3170 7457
26 8600 3827 10 7868 5731
27 5072 1057 11 6121 10732
28 7928 3542 12 4843 9132
29 3226 3762 13 580 9591
0 7045 2420 14 6267 9290
1 9645 2641 15 3009 2268
2 2774 2452 16 195 2419
3 5331 2031 17 8016 1557
4 9400 7503 18 1516 9195
5 1850 2338 19 8062 9064
6 10456 9774 20 2095 8968
7 1692 9276 21 753 7326
8 10037 4038 22 6291 3833
9 3964 338 23 2614 7844
10 2640 5087 24 2303 646
11 858 3473 25 2075 611
12 5582 5683 26 4687 362
13 9523 916 27 8684 9940
14 4107 1559 28 4830 2065
15 4506 3491 29 7038 1363
16 8191 4182 0 1769 7837
17 10192 6157 1 3801 1689
18 5668 3305 2 10070 2359
19 3449 1540 3 3667 9918
20 4766 2697 4 1914 6920
21 4069 6675 5 4244 5669
22 1117 1016 6 10245 7821
23 5619 3085 7 7648 3944
24 8483 8400 8 3310 5488
25 8255 394 9 6346 9666
26 6338 5042 10 7088 6122
27 6174 5119 11 1291 7827
28 7203 1989 12 10592 8945
29 1781 5174 13 3609 7120
0 1464 3559 14 9168 9112
1 3376 4214 15 6203 8052
2 7238 67 16 3330 2895
3 10595 8831 17 4264 10563
4 1221 6513 18 10556 6496
5 5300 4652 19 8807 7645
6 1429 9749 20 1999 4530
7 7878 5131 21 9202 6818
8 4435 10284 22 3403 1734
9 6331 5507 23 2106 9023
10 6662 4941 24 6881 3883
11 9614 10238 25 3895 2171
12 8400 8025 26 4062 6424
13 9156 5630 27 3755 9536

106

Table B.10: N = 64800, Code Rate = 8/9

0 6235 2848 3222 13 1969 3869 6 5821 4932 19 5736 1399 12 2644 5073
1 5800 3492 5348 14 3571 2420 7 6356 4756 0 970 2572 13 4212 5088
2 2757 927 90 15 4632 981 8 3930 418 1 2062 6599 14 3463 3889
3 6961 4516 4739 16 3215 4163 9 211 3094 2 4597 4870 15 5306 478
4 1172 3237 6264 17 973 3117 10 1007 4928 3 1228 6913 16 4320 6121
5 1927 2425 3683 18 3802 6198 11 3584 1235 4 4159 1037 17 3961 1125
6 3714 6309 2495 19 3794 3948 12 6982 2869 5 2916 2362 18 5699 1195
7 3070 6342 7154 0 3196 6126 13 1612 1013 6 395 1226 19 6511 792
8 2428 613 3761 1 573 1909 14 953 4964 7 6911 4548 0 3934 2778
9 2906 264 5927 2 850 4034 15 4555 4410 8 4618 2241 1 3238 6587
10 1716 1950 4273 3 5622 1601 16 4925 4842 9 4120 4280 2 1111 6596
11 4613 6179 3491 4 6005 524 17 5778 600 10 5825 474 3 1457 6226
12 4865 3286 6005 5 5251 5783 18 6509 2417 11 2154 5558 4 1446 3885
13 1343 5923 3529 6 172 2032 19 1260 4903 12 3793 5471 5 3907 4043
14 4589 4035 2132 7 1875 2475 0 3369 3031 13 5707 1595 6 6839 2873
15 1579 3920 6737 8 497 1291 1 3557 3224 14 1403 325 7 1733 5615
16 1644 1191 5998 9 2566 3430 2 3028 583 15 6601 5183 8 5202 4269
17 1482 2381 4620 10 1249 740 3 3258 440 16 6369 4569 9 3024 4722
18 6791 6014 6596 11 2944 1948 4 6226 6655 17 4846 896 10 5445 6372
19 2738 5918 3786 12 6528 2899 5 4895 1094 18 7092 6184 11 370 1828
0 5156 6166 13 2243 3616 6 1481 6847 19 6764 7127 12 4695 1600
1 1504 4356 14 867 3733 7 4433 1932 0 6358 1951 13 680 2074
2 130 1904 15 1374 4702 8 2107 1649 1 3117 6960 14 1801 6690
3 6027 3187 16 4698 2285 9 2119 2065 2 2710 7062 15 2669 1377
4 6718 759 17 4760 3917 10 4003 6388 3 1133 3604 16 2463 1681
5 6240 2870 18 1859 4058 11 6720 3622 4 3694 657 17 5972 5171
6 2343 1311 19 6141 3527 12 3694 4521 5 1355 110 18 5728 4284
7 1039 5465 0 2148 5066 13 1164 7050 6 3329 6736 19 1696 1459
8 6617 2513 1 1306 145 14 1965 3613 7 2505 3407
9 1588 5222 2 2319 871 15 4331 66 8 2462 4806
10 6561 535 3 3463 1061 16 2970 1796 9 4216 214
11 4765 2054 4 5554 6647 17 4652 3218 10 5348 5619
12 5966 6892 5 5837 339 18 1762 4777 11 6627 6243

107

Table B.11: N = 64800, Code Rate = 9/10

0 5611 2563 2900 17 3216 2178 16 6296 2583 15 1263 293 14 3267 649
1 5220 3143 4813 0 4165 884 17 1457 903 16 5949 4665 15 6236 593
2 2481 834 81 1 2896 3744 0 855 4475 17 4548 6380 16 646 2948
3 6265 4064 4265 2 874 2801 1 4097 3970 0 3171 4690 17 4213 1442
4 1055 2914 5638 3 3423 5579 2 4433 4361 1 5204 2114 0 5779 1596
5 1734 2182 3315 4 3404 3552 3 5198 541 2 6384 5565 1 2403 1237
6 3342 5678 2246 5 2876 5515 4 1146 4426 3 5722 1757 2 2217 1514
7 2185 552 3385 6 516 1719 5 3202 2902 4 2805 6264 3 5609 716
8 2615 236 5334 7 765 3631 6 2724 525 5 1202 2616 4 5155 3858
9 1546 1755 3846 8 5059 1441 7 1083 4124 6 1018 3244 5 1517 1312
10 4154 5561 3142 9 5629 598 8 2326 6003 7 4018 5289 6 2554 3158
11 4382 2957 5400 10 5405 473 9 5605 5990 8 2257 3067 7 5280 2643
12 1209 5329 3179 11 4724 5210 10 4376 1579 9 2483 3073 8 4990 1353
13 1421 3528 6063 12 155 1832 11 4407 984 10 1196 5329 9 5648 1170
14 1480 1072 5398 13 1689 2229 12 1332 6163 11 649 3918 10 1152 4366
15 3843 1777 4369 14 449 1164 13 5359 3975 12 3791 4581 11 3561 5368
16 1334 2145 4163 15 2308 3088 14 1907 1854 13 5028 3803 12 3581 1411
17 2368 5055 260 16 1122 669 15 3601 5748 14 3119 3506 13 5647 4661
0 6118 5405 17 2268 5758 16 6056 3266 15 4779 431 14 1542 5401
1 2994 4370 0 5878 2609 17 3322 4085 16 3888 5510 15 5078 2687
2 3405 1669 1 782 3359 0 1768 3244 17 4387 4084 16 316 1755
3 4640 5550 2 1231 4231 1 2149 144 0 5836 1692 17 3392 1991
4 1354 3921 3 4225 2052 2 1589 4291 1 5126 1078
5 117 1713 4 4286 3517 3 5154 1252 2 5721 6165
6 5425 2866 5 5531 3184 4 1855 5939 3 3540 2499
7 6047 683 6 1935 4560 5 4820 2706 4 2225 6348
8 5616 2582 7 1174 131 6 1475 3360 5 1044 1484
9 2108 1179 8 3115 956 7 4266 693 6 6323 4042
10 933 4921 9 3129 1088 8 4156 2018 7 1313 5603
11 5953 2261 10 5238 4440 9 2103 752 8 1303 3496
12 1430 4699 11 5722 4280 10 3710 3853 9 3516 3639
13 5905 480 12 3540 375 11 5123 931 10 5161 2293
14 4289 1846 13 191 2782 12 6146 3323 11 4682 3845
15 5374 6208 14 906 4432 13 1939 5002 12 3045 643
16 1775 3476 15 3225 1111 14 5140 1437 13 2818 2616

Table B.12: N = 16200, Code Rate = 1/5

6295 9626 304 7695 4839 4936 1660 144 11203 5567 6347 12557
10691 4988 3859 3734 3071 3494 7687 10313 5964 8069 8296 11090
10774 3613 5208 11177 7676 3549 8746 6583 7239 12265 2674 4292
11869 3708 5981 8718 4908 10650 6805 3334 2627 10461 9285 11120
7844 3079 10773
3385 10854 5747
1360 12010 12202
6189 4241 2343
9840 12726 4977

Table B.13: N = 16200, Code Rate = 1/3

416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723 6912
8978 3011 4339 9312 6396 2957 7288 5485 6031 10218 2226 3575
3383 10059 1114 10008 10147 9384 4290 434 5139 3536 1965 2291
2797 3693 7615 7077 743 1941 8716 6215 3840 5140 4582 5420
6110 8551 1515 7404 4879 4946 5383 1831 3441 9569 10472 4306
1505 5682 7778
7172 6830 6623
7281 3941 3505
10270 8669 914
3622 7563 9388
9930 5058 4554
4844 9609 2707
6883 3237 1714
4768 3878 10017
10127 3334 8267

108

Table B.14: N = 16200, Code Rate = 2/5

5650 4143 8750 583 6720 8071 635 1767 1344 6922 738 6658
5696 1685 3207 415 7019 5023 5608 2605 857 6915 1770 8016
3992 771 2190 7258 8970 7792 1802 1866 6137 8841 886 1931
4108 3781 7577 6810 9322 8226 5396 5867 4428 8827 7766 2254
4247 888 4367 8821 9660 324 5864 4774 227 7889 6405 8963
9693 500 2520 2227 1811 9330 1928 5140 4030 4824 806 3134
1652 8171 1435
3366 6543 3745
9286 8509 4645
7397 5790 8972
6597 4422 1799
9276 4041 3847
8683 7378 4946
5348 1993 9186
6724 9015 5646
4502 4439 8474
5107 7342 9442
1387 8910 2660

Table B.15: N = 16200, Code Rate = 4/9

20 712 2386 6354 4061 1062 5045 5158 11 8935 4996
21 2543 5748 4822 2348 3089 6328 5876 12 3028 764
22 926 5701 269 3693 2438 3190 3507 13 5988 1057
23 2802 4520 3577 5324 1091 4667 4449 14 7411 3450
24 5140 2003 1263 4742 6497 1185 6202
0 4046 6934
1 2855 66
2 6694 212
3 3439 1158
4 3850 4422
5 5924 290
6 1467 4049
7 7820 2242
8 4606 3080
9 4633 7877
10 3884 6868

Table B.16: N = 16200, Code Rate = 3/5

2765 5713 6426 3596 1374 4811 2182 544 3394 2840 4310 771 5 1733 6028
4951 211 2208 723 1246 2928 398 5739 265 5601 5993 2615 6 3786 1936
210 4730 5777 3096 4282 6238 4939 1119 6463 5298 6320 4016 7 4292 956
4167 2063 4757 3157 5664 3956 6045 563 4284 2441 3412 6334 8 5692 3417
4201 2428 4474 59 1721 736 2997 428 3807 1513 4732 6195 9 266 4878
2670 3081 5139 3736 1999 5889 4362 3806 4534 5409 6384 5809 10 4913 3247
5516 1622 2906 3285 1257 5797 3816 817 875 2311 3543 1205 11 4763 3937
4244 2184 5415 1705 5642 4886 2333 287 1848 1121 3595 6022 12 3590 2903
2142 2830 4069 5654 1295 2951 3919 1356 884 1786 396 4738 13 2566 4215
0 2161 2653 14 5208 4707
1 1380 1461 15 3940 3388
2 2502 3707 16 5109 4556
3 3971 1057 17 4908 4177
4 5985 6062

109

Table B.17: N = 16200, Code Rate = 2/3

0 2084 1613 1548 1286 1460 3196 4297 2481 3369 3451 4620 2622 1 2583 1180
1 122 1516 3448 2880 1407 1847 3799 3529 373 971 4358 3108 2 1542 509
2 259 3399 929 2650 864 3996 3833 107 5287 164 3125 2350 3 4418 1005
3 342 3529 4 5212 5117
4 4198 2147 5 2155 2922
5 1880 4836 6 347 2696
6 3864 4910 7 226 4296
7 243 1542 8 1560 487
8 3011 1436 9 3926 1640
9 2167 2512 10 149 2928
10 4606 1003 11 2364 563
11 2835 705 12 635 688
12 3426 2365 13 231 1684
13 3848 2474 14 1129 3894
14 1360 1743
0 163 2536

Table B.18: N = 16200, Code Rate = 11/15

3 3198 478 4207 1481 1009 2616 1924 3437 554 683 1801 8 1015 1945
4 2681 2135 9 1948 412
5 3107 4027 10 995 2238
6 2637 3373 11 4141 1907
7 3830 3449 0 2480 3079
8 4129 2060 1 3021 1088
9 4184 2742 2 713 1379
10 3946 1070 3 997 3903
11 2239 984 4 2323 3361
0 1458 3031 5 1110 986
1 3003 1328 6 2532 142
2 1137 1716 7 1690 2405
3 132 3725 8 1298 1881
4 1817 638 9 615 174
5 1774 3447 10 1648 3112
6 3632 1257 11 1415 2808
7 542 3694

Table B.19: N = 16200, Code Rate = 7/9

5 896 1565 7 951 2068 9 2116 1855
6 2493 184 8 3108 3542 0 722 1584
7 212 3210 9 307 1421 1 2767 1881
8 727 1339 0 2272 1197 2 2701 1610
9 3428 612 1 1800 3280 3 3283 1732
0 2663 1947 2 331 2308 4 168 1099
1 230 2695 3 465 2552 5 3074 243
2 2025 2794 4 1038 2479 6 3460 945
3 3039 283 5 1383 343 7 2049 1746
4 862 2889 6 94 236 8 566 1427
5 376 2110 7 2619 121 9 3545 1168
6 2034 2286 8 1497 277

110

Table B.20: N = 16200, Code Rate = 37/49

3 2409 499 1481 908 559 716 1270 333 2508 2264 1702 2805 6 497 2228
4 2447 1926 7 2326 1579
5 414 1224 0 2482 256
6 2114 842 1 1117 1261
7 212 573 2 1257 1658
0 2383 2112 3 1478 1225
1 2286 2348 4 2511 980
2 545 819 5 2320 2675
3 1264 143 6 435 1278
4 1701 2258 7 228 503
5 964 166 0 1885 2369
6 114 2413 1 57 483
7 2243 81 2 838 1050
0 1245 1581 3 1231 1990
1 775 169 4 1738 68
2 1696 1104 5 2392 951
3 1914 2831 6 163 645
4 532 1450 7 2644 1704
5 91 974

Table B.21: N = 16200, Code Rate = 8/9

0 1558 712 805 4 1496 502 3 544 1190
1 1450 873 1337 0 1006 1701 4 1472 1246
2 1741 1129 1184 1 1155 97 0 508 630
3 294 806 1566 2 657 1403 1 421 1704
4 482 605 923 3 1453 624 2 284 898
0 926 1578 4 429 1495 3 392 577
1 777 1374 0 809 385 4 1155 556
2 608 151 1 367 151 0 631 1000
3 1195 210 2 1323 202 1 732 1368
4 1484 692 3 960 318 2 1328 329
0 427 488 4 1451 1039 3 1515 506
1 828 1124 0 1098 1722 4 1104 1172
2 874 1366 1 1015 1428
3 1500 835 2 1261 1564

111

	Field-Programmable Gate-Array (FPGA) Implementation of Low-Density Parity-Check (LDPC) Decoder in Digital Video Broadcasting – Second Generation Satellite (DVB-S2)
	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Literature Review of DVB-S2 LDPC Decoders
	Motivation
	Description of the Problem and Major Contributions
	Organization of Thesis

	Background Information
	Architecture of Target FPGA
	Review of Linear Block Codes
	LDPC Codes in DVB-S2 Standard

	Architecture of DVB-S2 LDPC Decoder
	Architecture of the Decoder
	Architecture of the RAM and the ROM
	Memory Mapping Scheme
	Generation of ROM Coefficient
	Function and Architecture of the Shuffle Network
	Special Case of Code Rates in Short Frames

	Architecture of the Functional Units
	Implementation of the PSI Function
	Usage and Design of the SUM FIFO
	LLR Value Update
	The Initialization Step

	Architecture of the Parity Check Module
	Architecture of the LLR and Decoded Message Buffers
	Architecture of the 180-FU and Hybrid 360/180-FU Decoders

	Results and Discussion
	Synthesis Results
	Throughput Comparison
	Simulation Results

	Conclusion
	References
	The Encoding and Decoding of a Simple Linear Systematic Block Code
	Values from Annex B and C of the DVB-S2 Standard

