207 research outputs found

    Self-supervised Interest Point Detection and Description for Fisheye and Perspective Images

    Full text link
    Keypoint detection and matching is a fundamental task in many computer vision problems, from shape reconstruction, to structure from motion, to AR/VR applications and robotics. It is a well-studied problem with remarkable successes such as SIFT, and more recent deep learning approaches. While great robustness is exhibited by these techniques with respect to noise, illumination variation, and rigid motion transformations, less attention has been placed on image distortion sensitivity. In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition, and consider the keypoint detection and matching problem between the hybrid scenario of a fisheye and a projective image. We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network. We also collected two new datasets for additional training and testing in this unexplored scenario, and we demonstrate that current approaches are suboptimal because they are designed to work in traditional projective conditions, while the proposed approach turns out to be the most effective.Comment: CVPR Workshop on Omnidirectional Computer Vision, 202

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    Vanishing Point Estimation in Uncalibrated Images with Prior Gravity Direction

    Full text link
    We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal vanishing points, and the unknown focal length of the camera, leveraging a prior vertical direction. The direction can come from an Inertial Measurement Unit that is a standard component of recent consumer devices, e.g., smartphones. We provide an exhaustive analysis of minimal line configurations and derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers. Additionally, we design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization. Combining all solvers in a hybrid robust estimator, our method achieves increased accuracy even with a rough prior. Experiments on synthetic and real-world datasets demonstrate the superior accuracy of our method compared to the state of the art, while having comparable runtimes. We further demonstrate the applicability of our solvers for relative rotation estimation. The code is available at https://github.com/cvg/VP-Estimation-with-Prior-Gravity.Comment: Accepted at ICCV 202

    Body-relative navigation guidance using uncalibrated cameras

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-97) and index.The ability to navigate through the world is an essential capability to humans. In a variety of situations, people do not have the time, the opportunity or the capability to learn the layout of the environment before visiting an area. Examples include soldiers in the field entering an unknown building, firefighters responding to an emergency, or a visually impaired person walking through the city. In absence of external source of localization (such as GPS), the system must rely on internal sensing to provide navigation guidance to the user. In order to address real-world situations, the method must provide spatially extended, temporally consistent navigation guidance, through cluttered and dynamic environments. While recent research has largely focused on metric methods based on calibrated cameras, the work presented in this thesis demonstrates a novel approach to navigation using uncalibrated cameras. During the first visit of the environment, the method builds a topological representation of the user's exploration path, which we refer to as the place graph. The method then provides navigation guidance from any place to any other in the explored environment. On one hand, a localization algorithm determines the location of the user in the graph. On the other hand, a rotation guidance algorithm provides a directional cue towards the next graph node in the user's body frame. Our method makes little assumption about the environment except that it contains descriptive visual features. It requires no intrinsic or extrinsic camera calibration, and relies instead on a method that learns the correlation between user rotation and feature correspondence across cameras. We validate our approach using several ground truth datasets. In addition, we show that our approach is capable of guiding a robot equipped with a local obstacle avoidance capability through real, cluttered environments. Finally, we validate our system with nine untrained users through several kilometers of indoor environments.by Olivier Koch.Ph.D

    New Results on Triangulation, Polynomial Equation Solving and Their Application in Global Localization

    Get PDF
    This thesis addresses the problem of global localization from images. The overall goal is to find the location and the direction of a camera given an image taken with the camera relative a 3D world model. In order to solve the problem several subproblems have to be handled. The two main steps for constructing a system for global localization consist of model building and localization. For the model construction phase we give a new method for triangulation that guarantees that the globally optimal position is attained under the assumption of Gaussian noise in the image measurements. A common framework for the triangulation of points, lines and conics is presented. The second contribution of the thesis is in the field of solving systems of polynomial equations. Many problems in geometrical computer vision lead to computing the real roots of a system of polynomial equations, and several such geometry problems appear in the localization problem. The method presented in the thesis gives a significant improvement in the numerics when Gröbner basis methods are applied. Such methods are often plagued by numerical problems, but by using the fact that the complete Gröbner basis is not needed, the numerics can be improved. In the final part of the thesis we present several new minimal, geometric problems that have not been solved previously. These minimal cases make use of both two and three dimensional correspondences at the same time. The solutions to these minimal problems form the basis of a localization system which aims at improving robustness compared to the state of the art
    • 

    corecore