1,223 research outputs found

    Outage performance analysis of non-orthogonal multiple access with time-switching energy harvesting

    Get PDF
    In recent years, although non-orthogonal multiple access (NOMA) has shown its potentials thanks to its ability to enhance the performance of future wireless communication networks, a number of issues emerge related to the improvement of NOMA systems. In this work, we consider a half-duplex (HD) relaying cooperative NOMA network using decode-and-forward (DF) transmission mode with energy harvesting (Ell) capacity, where we assume the NOMA destination (D) is able to receive two data symbols in two continuous time slots which leads to the higher transmission rate than traditional relaying networks. To analyse EH, we deploy time-switching (TS) architecture to comprehensively study the optimal transmission time and outage performance at D. In particular, we are going to obtain closed-form expressions for outage probability (OP) with optimal TS ratio for both data symbols with both exact and approximate forms. The given simulation results show that the placement of the relay (R) plays an important role in the system performance.Web of Science253918

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems

    Full-duplex wireless communications: challenges, solutions and future research directions

    No full text
    The family of conventional half-duplex (HD) wireless systems relied on transmitting and receiving in different time-slots or frequency sub-bands. Hence the wireless research community aspires to conceive full-duplex (FD) operation for supporting concurrent transmission and reception in a single time/frequency channel, which would improve the attainable spectral efficiency by a factor of two. The main challenge encountered in implementing an FD wireless device is the large power difference between the self-interference (SI) imposed by the device’s own transmissions and the signal of interest received from a remote source. In this survey, we present a comprehensive list of the potential FD techniques and highlight their pros and cons. We classify the SI cancellation techniques into three categories, namely passive suppression, analog cancellation and digital cancellation, with the advantages and disadvantages of each technique compared. Specifically, we analyse the main impairments (e.g. phase noise, power amplifier nonlinearity as well as in-phase and quadrature-phase (I/Q) imbalance, etc.) that degrading the SI cancellation. We then discuss the FD based Media Access Control (MAC)-layer protocol design for the sake of addressing some of the critical issues, such as the problem of hidden terminals, the resultant end-to-end delay and the high packet loss ratio (PLR) due to network congestion. After elaborating on a variety of physical/MAC-layer techniques, we discuss potential solutions conceived for meeting the challenges imposed by the aforementioned techniques. Furthermore, we also discuss a range of critical issues related to the implementation, performance enhancement and optimization of FD systems, including important topics such as hybrid FD/HD scheme, optimal relay selection and optimal power allocation, etc. Finally, a variety of new directions and open problems associated with FD technology are pointed out. Our hope is that this treatise will stimulate future research efforts in the emerging field of FD communication
    corecore