5 research outputs found

    Fast Process Variation Analysis in Nano-Scaled Technologies Using Column-Wise Sparse Parameter Selection

    Get PDF
    With growing concern about process variation in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for design and verification. However, the high dimensionality of parameter space is a serious modeling challenge for emerging VLSI technologies, where the models are increasingly more complex. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. Despite the commonly used methods such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), this method is capable of dealing with mixed Gaussian and non-Gaussian parameters, and performs a parameter selection in the input space rather than creating a new space. By considering non-linear dependencies among input parameters and outputs, the method results in an effective parameter selection. The application of this method is demonstrated in digital circuit timing analysis to effectively reduce the number of simulations. The experimental results on Double-Gate Silicon NanoWire FET (DG-SiNWFET) technology indicate 2.5× speed up in timing variation analysis of the ISCAS89-s27 benchmark with a controlled average error bound of 9.4%

    Low-Power Heterogeneous Graphene Nanoribbon-CMOS Multistate Volatile Memory Circuit

    Get PDF
    Graphene is an emerging nanomaterial believed to be a potential candidate for post-Si nanoelectronics, due to its exotic properties. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR). In this paper, a multi-state memory design is presented that can store multiple bits in a single cell enabled by this xGNR device, called Graphene Nanoribbon Tunneling Random Access Memory (GNTRAM). An approach to increase the number of bits per cell is explored alternative to physical scaling to overcome CMOS SRAM limitations. A comprehensive design for quaternary GNTRAM is presented as a baseline, implemented with a heterogeneous integration between graphene and CMOS. Sources of leakage and approaches to mitigate them are investigated. This design is extensively benchmarked against 16nm CMOS SRAMs and 3T DRAM. The proposed quaternary cell shows up to 2.27x density benefit vs. 16nm CMOS SRAMs and 1.8x vs. 3T DRAM. It has comparable read performance and is power-efficient, up to 1.32x during active period and 818x during stand-by against high performance SRAMs. Multi-state GNTRAM has the potential to realize high-density low-power nanoscale embedded memories. Further improvements may be possible by using graphene more extensively, as graphene transistors become available in future

    Hybrid Graphene Nanoribbon-CMOS tunneling volatile memory fabric

    No full text
    Abstract — Graphene exhibits extraordinary electrical properties and is therefore often envisioned to be the candidate material for post-silicon era as Silicon technology approaches fundamental scaling limits. Various Graphene based electronic devices and interconnects have been proposed in the past. In this paper, we explore the possibility of a hybrid fabric between CMOS and Graphene by implementing a novel Graphene Nanoribbon crossbar (xGNR) based volatile Tunneling RAM (GNT RAM) and integrating it with the 3D CMOS stack and layout. Detailed evaluation of GNT RAM circuits proposed show that they have considerable advantages in terms of power, area and write performance over 16nm CMOS SRAM. This work opens up other possibilities including multi-state memory fabrics and even an all-graphene fabric can be envisioned on the long term
    corecore