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ABSTRACT 

PHYSICALLY EQUIVALENT INTELLIGENT SYSTEMS FOR REASONING 
UNDER UNCERTAINTY AT NANOSCALE 

 SEPTEMBER 2015 

SANTOSH KHASANVIS 

B.TECH., VELLORE INSTITUTE OF TECHNOLOGY UNIVERSITY, VELLORE, 

INDIA 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Csaba Andras Moritz 

Machines today lack the inherent ability to reason and make decisions, or operate in 

the presence of uncertainty. Machine-learning methods such as Bayesian Networks (BNs) 

are widely acknowledged for their ability to uncover relationships and generate causal 

models for complex interactions. However, their massive computational requirement, 

when implemented on conventional computers, hinders their usefulness in many critical 

problem areas e.g., genetic basis of diseases, macro finance, text classification, 

environment monitoring, etc. We propose a new non-von Neumann technology 

framework purposefully architected across all layers for solving these problems 

efficiently through physical equivalence, enabled by emerging nanotechnology. The 

architecture builds on a probabilistic information representation and multi-domain mixed-

signal circuit style, and is tightly coupled to a nanoscale physical layer that spans 

magnetic and electrical domains. Based on bottom-up device-circuit-architecture 

simulations, we show up to four orders of magnitude performance improvement (using 

computational resolution of 0.1) vs. best-of-breed multi-core machines with 100 
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processors, for BNs with about a million variables. Smaller problem sizes of ~100 

variables can be realized at 20 mW power consumption and very low area around a few 

tenths of a mm2. Our vision is to enable solving complex Bayesian problems in real time, 

as well as enable intelligence capabilities at a small scale everywhere, ushering in a new 

era of machine intelligence.  
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CHAPTER 1 

INTRODUCTION 

Machines today lack intelligence, i.e. the inherent ability to reason, make decisions, 

adapt, and in general operate autonomously in the presence of uncertainty. Today, all 

computation occurs on microprocessors based on a stored-program von Neumann 

computing architecture with CMOS technology. This conventional computing paradigm 

necessitates human intervention to “a priori tell the machine what it needs to do in a 

given scenario”, i.e. program its behavior deterministically. We refer to such 

conventional computing machines as abstraction-based engineered systems; capable of 

carrying out any procedure expressed algorithmically and implemented through layers of 

abstraction, and engineered to perform each operation in a procedure as fast as possible 

given current technology. This conventional mindset of abstracted systems, driven by a 

desire for convenience in mapping a wide variety of algorithmically expressible problems 

and to have a reliable machine operation under pre-determined circumstances, has 

resulted in many discoveries and deterministic tasks to be automated by machines. 

However, while computers have evolved into fast number-crunching machines today, 

they are inefficient for supporting machine intelligence that requires operating under non-

deterministic scenarios. Handling any new scenario requires explicit instruction by 

humans for the machine. 

Unconventional computation models that draw inspiration from observations in 

nature such as probabilistic graphical models, neuromorphic computation, hierarchical 

temporal models using sparse data representation, etc. require immense computing 

resources and have orders of magnitude inefficiencies when implemented with 
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conventional abstraction-based engineered systems. This inefficiency spans all layers 

from the Boolean data representation, digital CMOS logic to the underlying 

microarchitecture. This is one key reason why we do not have intelligence in all things 

surrounding us, and why machines cannot easily handle complex decision-making 

problems.  

1.1 Notion of Physical Equivalence 

We believe that in order to kick-start this evolution in machines and harness the full 

benefits of unconventional computing paradigms for artificial intelligence, a change in 

implementation mindset is necessary. We propose a new mindset of architecting 

intelligent systems with physical equivalence; defined as a direct mapping from concept 

to physical layer, where physical implementation operates on principles defined by the 

conceptual framework without any abstraction.  

A given computational framework can be characterized by: 

- quantum of information (or data)  

- interaction that specifies rules to operate on quantum of information (computation 

and communication), and 

- organization/architecture, such as DAG in probabilistic graphical models, that 

governs the temporal/spatial hierarchy of interactions. 

For example, conventional abstraction-based engineered systems operate on symbols 

represented using binary radix representation (quantum of information), where 

interactions occur as per rules of binary logic developed through switching theory 

(interaction), and segregate data storage or memory and computation to enable mapping a 

wide variety of problems (stored-program von Neumann architecture). In this 



 

3 
 

dissertation, we illustrate our physical equivalence approach through the example of 

Bayesian Networks, which is a computational framework using probabilistic graphical 

models for reasoning and decision making under uncertainty. We identify each of the 

aforementioned characteristics for Bayesian Networks and attempt to find physically 

equivalent implementation as close as possible to maximize efficiency. We will show that 

a physically equivalent implementation (with a resolution of 0.1) of Bayesian Networks 

can yield up to 4 orders of magnitude performance (runtime) benefits compared to 

conventional software implementations on state-of-the-art CMOS multicore processors, 

even when considering best-case performance assumptions for conventional approach vs. 

worst-case evaluation for our proposed approach. 

1.2 Conceptual Framework Overview 

Bayesian Networks (BNs) [1]-[3] represent a class of widely successful probabilistic 

formalism capable of modeling causal relationships between random variables in an 

application domain. A BN can be used for expressing the strength of belief in the state of 

a system given some observations on its environment. Its structure is a Directed Acyclic 

Graph (DAG) where every node represents a random variable and every edge is a 

dependency between nodes. These dependencies are quantified through conditional 

probabilities (parameters) associated with every node. The belief in the state of a system, 

specifically the probabilities associated with unobserved variables being in a particular 

state given the state of observed variables, can be obtained through inference.  An 

inference operation is executed following periodic observations on BN variables. Any 

event (observed variable being assigned a state) triggers the calculation of current belief 

of a hypothesis, which is an unobservable system variable. Thus Bayesian Networks 
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operate on probabilities (quantum of information), where interactions occur as per rules 

of probability arithmetic for inference and learning (interaction), and organize knowledge 

as DAGs (organization/architecture). 

   Many problems can be mapped into this formalism.  For example, gene expression 

networks are being studied extensively in order to understand the genetic basis of 

diseases [4][5]. Unfortunately the resulting networks are generally very complex owing 

to random variables representing gene-gene and gene-environment interactions. Other 

complex applications [6]-[9] include text classification, situational awareness for cyber-

security, etc.  

1.3 Limitations of Conventional Implementations 

 The high computational complexity in BNs is a result of learning from data; number 

of candidates is super-exponential in the number of variables. Furthermore, incomplete 

and limited datasets to learn from mandate a large number of inferences, which further 

complicates the choice of a candidate network. Additionally, cost and power efficiency 

aspects make adding BN capabilities impossible in embedded systems. While software 

implementations representing BNs are highly flexible, several limitations crop up as a 

consequence of all the layers of abstractions. The underlying conventional von Neumann 

architectures built with CMOS technology are not well suited to implementing such 

computational frameworks because:  

(i) their emulation of an inherently non-deterministic, non-logical computing model 

on a deterministic Boolean logic framework is inefficient,  

(ii) BN’s structure and parameter learning is super-exponential in the number of 

variables,  
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(iii) conventional architectures incorporate a limited number of multiplication and 

division units (due to high complexity of CMOS logic implementation of 

multipliers and dividers),  

(iv)  the use of a rigid separation between logic and memory is undesirable, and 

(v) the use of a radix-based representation of data is inefficient for probabilistic 

information and incapable of inherently supporting graceful degradation in the 

presence of errors. 

1.4 Proposed Approach to Overcome Deficiencies in Conventional Implementation 

Our objective is to architect an efficient machine implementation for causal learning 

and reasoning framework, given recent developments in nanotechnology. Therefore, our 

goal is to identify representations across all layers that result in physical equivalence with 

the conceptual probabilistic framework. This mindset, extending from the physical layer 

to architecture, can potentially address causal inference and learning problems that are 

computationally infeasible today, and enable such capability at smaller scale in everyday 

embedded systems. In this dissertation, we design a physically equivalent hardware 

architecture and nanoscale technology implementation of BNs based on unique magneto-

electric computations that can efficiently address the aforementioned problems, as an 

illustration of the physical equivalence mindset. It can be extended and applied to other 

unconventional computation frameworks as well. For physical equivalence at all layers, 

we explore a technology implementation that operates directly on probabilities (quantum 

of information) through probability arithmetic without Boolean logic (interactions), and 

physically realizes a reconfigurable DAG where each node has an equivalent physical 

entity and communication links representing edges (organization). 
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At the bottom of the system stack, we use multiferroic straintronic magnetic-

tunneling junctions (S-MTJs) consisting of a single-domain magnetostrictive layer with 

uniaxial shape anisotropy elastically coupled with a piezoelectric layer. A tiny voltage of 

10 – 60 mV applied across the piezoelectric can flip the magnetization in ~1 ns. This is 

achieved with unprecedented energy-efficiency dissipating only 150 – 200 kT at room 

temperature [10]-[14] (three to four orders of magnitude reduction in energy dissipated to 

switch compared to state-of-the-art nanoscale transistors at 1 GHz clock speed). By 

appropriately “shaping” the voltage pulse, the switching error probability in S-MTJs can 

be reduced to ~10-6 in the presence of thermal fluctuations at room temperature. In 

addition, these S-MTJs support non-volatility where the resistance change is persistent, 

which is unique.  

The above-mentioned characteristics of the emerging S-MTJ devices present an 

opportunity for novel physically equivalent technology frameworks that is not supported 

by conventional CMOS technology. In this work, we leverage the physical domains that 

such non-volatile voltage-controlled S-MTJ devices span, for compact and efficient 

realization of magneto-electric computations with probabilities. They are also capable of 

sporting multiple magnetization states, which can enable new multi-valued redundant 

representation of information directly in the physical domain. In this work, we focus on 

two-state S-MTJs. The synergistic non-Boolean circuit style that we present is non-

volatile (enabling no segregation between memory and computation), multi-domain 

(spanning electrical and magnetic), and mixed-signal (with emphasis on analog for 

computation without emulation). This leads to circuits that are self-similar like fractals 

when hierarchically composed. Bayesian structure and parameter learning, inference and 
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adaptation can be supported in a programmable parallel architecture framework that 

enables for direct mapping and adaptation of BNs.  

Key contributions of this dissertation include: 

(i) The idea of physical equivalence for a nanotechnology framework to realize 

unconventional computing models for causal inference and learning problems, 

using Bayesian Networks as an example. 

(ii) A data representation for probabilities that has physical equivalence in 

electrical/magnetic domains and supports graceful degradation in the presence 

of faults. 

(iii)  A new physically equivalent multi-domain mixed-signal Probability 

Arithmetic Composer circuit framework for computation on probabilities, 

which supports memory-in-computing through the use of non-volatile devices 

(S-MTJs).  

(iv)  A reconfigurable parallel architecture based on distributed Bayesian Cell 

framework for implementing any desired Bayesian Network with physical 

equivalence.  

(v) Methodology to estimate runtime performance of Bayesian inference when 

implemented on multi-core processors (up to 100 cores) and comparison with 

the proposed physically equivalent system. 

(vi) A study on the propagation of errors in an example binary tree Bayesian 

Network due to limited numerical precision (rounding) and impact of 

probabilistic switching of S-MTJs on BN accuracy. 
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(vii) Initial projections on impact of improving computational resolution for the 

proposed framework. 

 The rest of this dissertation is organized as follows: Chapter 2 presents a brief 

background on Bayesian Networks. Chapter 3 discusses the S-MTJ device, the proposed 

data representation and Probability Composer framework for implementing Bayesian 

Network operations. Chapter 4 presents a reconfigurable architecture that allows 

implementing any Bayesian Network with the proposed hardware implementation. 

Chapter 5 presents the evaluation methodologies, benchmarking results against a 100-

core processor implementation, and studies on error propagation in example BN. Chapter 

6 concludes this dissertation.   
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CHAPTER 2 

BAYESIAN NETWORKS  

Bayesian Networks (BN) are probabilistic graphical models [1][2] representing 

uncertain domains. A BN’s structure (e.g., a tree) captures qualitative relationships 

between variables. This is attractive because it is a consistent and complete 

representation, in addition to being modular and compact. A typical BN is a directed 

acyclic graph, with individual nodes representing knowledge about variables in a system. 

Dependencies between the variables are represented as directed links between the nodes. 

A node is a parent of a child if there exists a directed link from former to the latter. A 

 

Figure 1. Part of a BN with showing node x whose child nodes are y, z and parent 
node is A.  Outcomes of states of child nodes determine likelihood of parent. All 
nodes have four states in this example. Each node maintains likelihood vector (λ), 
prior vector (π), belief vector (BEL), and conditional probability table (CPT). The 
CPT information and messages from child/parent nodes are used to calculate λ, π, and 
BEL vectors during Bayesian inference. 
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node without parents is called a root node, while a node without children is called a leaf 

node. Each node can have several states for its corresponding variable, and a conditional 

probability table (CPT) stores conditional probabilities that quantify the relationship with 

its parents. These CPTs are the parameters of a Bayesian Network. The structure and 

parameters associated with a BN encode a joint probability distribution for all the domain 

variables in an efficient manner. A part of a typical BN is shown in Figure 1 with one 

parent node x and two child nodes y, z. 

Absence of a link between a pair of variables implies conditional independency 

between the variables, given other intermediate variables. Due to this independence 

property, the joint probability distribution can be factorized into local conditional 

probability distributions of variables given their parent variables, using the chain rule as 

follows: 

푝(풙|휽) =  푝(푥 |푝푎(푥 ),휃 ), 
(1) 

where x = {x1, x2, …, xn} are the variables or nodes in the BN and θ = {θ1, θ2, …, θn} are 

the associated parameters. These parameters are CPTs, where each element in a CPT for 

a given node xi holds the following data: 

퐶푃푇 (푥 ) = 휃 =  푝(푥 = 푗|푝푎(푥 ) = 푘). (2) 

The factorization shown in eq. (1) reduces the number of parameters required to specify a 

full joint probability distribution dramatically.  

When constructing a BN for a specific application, hypotheses can be expressed as 

BN variables and a unique probability is assigned to each hypothesis initially (e.g., based 
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on prior knowledge of the domain from an expert). Alternatively, the BN structure and 

parameters can be learned from available data on the domain, without explicit elicitation 

from a domain expert. Given a parameterized BN structure, an inference process requires 

computation of probability of a hypothesis based on current events observed (state of 

observed variables) and corresponding conditional probability distributions. Several 

algorithms exist to perform inference (both exact and approximate) and each algorithm 

has certain restrictions or trade-offs. We look at one algorithm to illustrate our mindset, 

which was proposed by Judea Pearl who invented the BN framework. This algorithm, 

called Belief Propagation [1], is applicable to trees and poly trees, which do not include 

any loops.  

A belief is the probability of an unobserved variable given other observed variables 

and the BN. Inference is performed via belief update and message propagation through 

the network. The key operations in this algorithm are likelihood/prior estimation to 

generate these messages, belief update and diagnostic/prior support message generation. 

Each of these operations involves arithmetic on probabilities.  

2.1 BN Inference using Pearl’s Belief Propagation 

Inference in a BN requires belief updates at all unobserved nodes based on current 

events observed (evidence), and is performed via message propagation (likelihoods λ and 

priors π [1] which are essentially probabilities) in the network. Belief update refers to 

estimating the probability that a node is in a particular state based on the states of its 

children/parents and current observations. The key operations at each node during 

inference are likelihood/prior estimation to generate messages and belief update. For 
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example assuming every node has four states in Figure 1, likelihood messages 

(흀풀(푿),흀풁(푿)) from the child nodes are composed at node X to calculate the likelihood 

vector λ(X) as shown in eq. (3). Here symbols in bold type indicate vectors/matrices, 

asterisk symbol (*) represents element-wise multiplication between vectors, and ⊗ 

operator indicates vector/matrix multiplication. 

흀(푿) = (휆 (푋), 휆 (푋), 휆 (푋), 휆 (푋)) =  흀풀(푿) ∗ 흀풁(푿) (3)  

where 휆 (푋) = 휆 (푋) ⋅ 휆 (푋); 푖 = {1,2,3,4}. 

With the likelihood vector being computed, the node then generates messages to send to 

its parent node as follows: 

흀푿 푷풂(푿) = 휆 푃푎(푋) , 휆 푃푎(푋) , 휆 푃푎(푋) , 휆 푃푎(푋)
=   푪푷푻 푿 푷풂(푿) ⨂흀(푿). 

(4)  

Priors computation π(X) is performed at the node X based on prior support messages 

흅푿(푷풂(푿)) received from its parent as follows: 

흅(푿) = 휋 (푋),휋 (푋),휋 (푋),휋 (푋) =  흅푿(푷풂(푿))⨂ 푪푷푻 푿 푷풂(푿) . (5)  

The current belief at node X BEL(X) is updated as follows using computed likelihood 

λ(X) and prior π(X) vectors: 

푩푬푳(푿) = 훼흅(푿) ∗ 흀(푿) (6)  

                         where 퐵퐸퐿 (푋) = 훼휋 (푋)휆 (푋),  ; 푖 = {1,2,3,4}. 

Finally, the prior support messages to be sent to its child nodes is computed as follows: 

흅풀(푿) = 휋 (푋),휋 (푋),휋 (푋),휋 (푋) =
푩푬푳(푿)
흀풀(푿) , 푎푛푑 

(7)  
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흅풁(푿) = 휋 (푋),휋 (푋),휋 (푋),휋 (푋) =
푩푬푳(푿)
흀풁(푿) . 

2.2 BN Learning 

Search-and-score technique [3] is one of 

the methods used for learning a BN structure 

and parameters (CPTs) from observed data, 

even if the dataset is incomplete or has 

missing values. Since the search space for all 

possible graphs is super-exponential in the 

number of variables it is typically narrowed 

down by using heuristic techniques. Hill-

Climbing (HC) algorithm is a typical 

heuristic approach used where a given 

structure is perturbed (by adding, removing 

or reversing edges) and a score is assigned to 

푚 = 푃(푋 = 푗 , 푝푎(푋 ) = 푘|퐷  ,푇  ) 

Expectation-Maximization Algorithm: 
Initialize 푇  
For t=0 until termination  

E-step: 
Compute 푃(푋  , 푝푎(푋  )|퐷  ,푇  ) for all 푋  and 퐷  
Compute the sufficient statistics, for all i, j, k 

M-step:  

Compute 푇 =
∑

 for all i, j, k 

Return푇  

Figure 3. Pseudo-code for BN CPT Estimation with Expectation-Maximization 
Algorithm. 

Hill-Climbing Algorithm: 
E ← ϕ ; Start with either null set or 
random network 
T ← EM_Probability_Tables(E,D) 
B← 〈푈,퐸,푇〉 
Score ← -∞ 
Do: Maxscore ← Score 
For each node pair (X,Y) do 

For each E’ {E (X→Y), E–
(X→Y), E–(X→Y) (Y→X)}, 
T’ ← 
EM_Probability_Tables(E’,D) 
B’← 〈푈,퐸′,푇′〉 

 Newscore ← AIC(B’,D) 
If Newscore> Score then 

 B ← B’ 
 Score ← Newscore 
WhileScore>Maxscore 
Return B 

Figure 2. Pseudo-code for BN 
Structure Search with Hill-Climbing 
Algorithm. 
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the new structure (Figure 2). Different scoring metrics (e.g. AIC scoring) are available to 

determine the quality of the current BN with respect to observed data. At the end of the 

process, the graph with maximum score is selected.  

As a part of the learning algorithm, the conditional probability tables (CPTs) also 

need to be estimated from data. For the general case of incomplete data, Estimation-

Maximization (EM) algorithm is used to learn the CPTs [3] (Figure 3). EM involves 

performing iterative inference operations, and computation on conditional probabilities to 

estimate CPTs until convergence.  

2.3 BN Adaptation 

 A BN will need to be able to adapt by reinforcing its parameters (CPTs) based on 

winning hypothesis at the root node. Reinforcement of a single hypothesis (that wins) can 

be performed by adjusting the corresponding row of the CPT at each child node slightly 

in the direction of the likelihood (λ) at that node for current observation. One possible 

scheme to compute new CPT values (for a child node j) is to use the count of number of 

times a hypothesis (node i) was observed as a past weight for the adjustment [7], using 

eq. (8). This update is performed for every element j in the row i of the CPT.  

퐶푃푇 =
푐표푢푛푡 .퐶푃푇 +  휆

∑ 푐표푢푛푡 .퐶푃푇 +  휆
 

(8)  

2.4 Summary 

In this chapter, we presented a brief overview of the Bayesian Network formalism for 

representing knowledge, and the operations involved in inference and learning. The next 
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chapter presents our approach towards a physically equivalent implementation of 

Bayesian Networks using emerging nanotechnology. 
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CHAPTER 3 

PHYSICALLY EQUIVALENT DATA REPRESENTATION AND PROBABILITY 

COMPOSER CIRCUIT FRAMEWORK 

 Our objective is to architect an efficient machine for the Bayesian Network 

framework. Therefore, our goal is to identify representations resulting in physical 

equivalency with the conceptual probabilistic framework, across all layers.  

3.1 Data Representation 

The first critical element in our approach is the underlying data representation. Since 

Bayesian Networks (BNs) operate on probabilities, we represent probability as a non-

Boolean multi-valued flat probabilistic vector tightly tied to the physical layer. We define 

n spatially distributed digits (p1, p2, … , pn) such that each digit pi can take any one of k 

values, where k is the number states supported by the underlying physical device (e.g., for 

devices with 4-states, k = 4 and a given digit pi ∈ {0,1,2,3}). As opposed to conventional 

number systems (e.g. binary, HEX etc.), in this representation all digits carry equal 

weight irrespective of position, which implies inherent redundancy and better error 

resilience through graceful degradation. The probability value P, the basis for our 

architecture and the inspiration for the physical implementation, represented by an n-digit 

probability vector is given by: 

푷 =
∑ 푝
푛(푘 − 1). (9) 

In this representation, the resolution is defined as the unit probability at output that 

can be represented in this format. It is determined by number of digits n and the number 
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of states of each digit k, and is given by 1/[n(k-1)]. A higher resolution can be achieved 

either by having more states per device (k) or by increasing the number of digits (n). Here 

it is to be noted that precision in BNs has a different interpretation: it is the precision of 

learning and expressing the problem through supporting a large number of variables and 

relationships, rather than numerical precision alone. This representation also yields fault 

resilience supporting graceful degradation in case of faults.  

3.2 Technology Overview: Straintronic MTJs 

In this work, we use straintronic MTJs (S-MTJs) as the underlying physical 

technology for hardware implementation. But the proposed scheme may be implemented 

with any emerging non-volatile device for physical equivalence.  

 

Figure 4. (a) Volatile S-MTJ device configuration: Voltage input induces strain in 
soft-layer layer adjusting magnetization orientation; a reference terminal (Ref.) is 
used for resistance readout; and (b) Non-volatile S-MTJ device: The MTJ stack is 
placed in between two pairs of electrode pads such that the line joining each 
electrodes subtends an angle of 150 and 1650 respectively with the major axis of soft 
magnetic layer. A magnetic field B is applied along the minor axis of the soft 
magnetic layer. Voltage input persistently changes magnetization. 
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The concept of straintronics, where the bistable magnetization of a shape anisotropic 

multiferroic nanomagnet is switched with electrically generated mechanical strain, is 

attractive due to its extreme low energy of switching. A straintronic MTJ (S-MTJ) device 

is shown in Figure 4a. It consists of three layers - a "hard" ferromagnetic layer with a 

fixed magnetization orientation, an ultrathin spacer layer, and a "soft" ferromagnetic layer 

with variable magnetization orientation. The three-layered stack is fabricated on a thin 

piezoelectric film grown on an n+-Si substrate.  

Because of dipole coupling between the hard and soft layers, they tend to have 

mutually anti-parallel magnetizations (see Figure 4a) and in that configuration, the 

resistance of the S-MTJ measured between the two ferromagnetic layers is high. 

Application of an input voltage (Vin) at the two (shorted) contact pads generates a biaxial 

strain in the piezoelectric layer underneath the soft magnet (compression along the major 

axis of the elliptical soft magnet and tension along the minor axis) [22][23], which rotates 

the magnetization of the soft magnet by an angle Θ via the Villari effect, if the soft layer 

is magnetostrictive and has positive magnetostriction. This reduces the angular separation 

between the magnetization orientations of the hard and soft layers, which in turn reduces 

the resistance of the S-MTJ. If the input voltage is withdrawn, the stress in the soft 

magnetic layer relaxes and hence its magnetization will tend to return to its original 

orientation because of dipole coupling with the hard magnetic layer. In this case, the 

operation is volatile. The resistance ratio between the high- and low-resistance states as a 

function of applied voltage v is roughly given by [24], 

푟(푣) = = ( )
( )

=
.  [ ( )]

, (10)  
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where Θ(VON) is the angle by which the magnetization of the soft layer rotates under 

stress generated by input voltage VON, assuming it starts from being exactly anti-parallel 

to the hard layer initially, and η1, η2 are the spin-injection/filtering efficiencies at the 

interfaces between the two ferromagnets and the spacer layer. At room temperature, these 

quantities are roughly 70% [25]. The maximum value of Θ is 900 unless the input voltage 

pulse is timed in a certain way to allow reorientation by 1800 [26]. 

The magnetization rotation can be made persistent through a scheme shown in Figure 

4b, resulting in non-volatile operation. The electrodes A – A’ are shorted to form one 

input terminal, and C – C’ are shorted to form the second terminal. When a voltage is 

applied between these terminals and the n+-substrate, electric fields are generated 

underneath the pads, producing a highly localized strain field in the piezoelectric film 

[22][23]. This results in biaxial strain (compression/tension along the line joining the 

electrodes and tension/compression along the perpendicular direction) since the distance 

between the electrode pairs is approximately equal to the PZT film thickness. This strain 

will then be elastically transferred to the soft layer of the S-MTJ stack despite any 

substrate clamping.  The scheme requires a small in-plane external magnetic field (B) 

along the minor axis of the soft magnet which brings the two stable magnetization states 

out of the soft magnet’s major axis (easy axis) and aligns them along two in-plane 

directions that lie between the major and minor axes with an angular separation of ~1320.  

These two stable orientations (Ψ1 and Ψ0) of magnetization represent the low and high 

resistance states, respectively.  The magnetization of the hard magnetic layer is parallel to 

Ψ1, which is why the low resistance state is visited when the magnetization of the soft 
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magnetic layer is along Ψ1. Since Terfenol-D has a positive magnetostriction coefficient, 

compressive stress along the line joining the electrodes A–A’ will stabilize the 

magnetization at Ψ0, while a compressive stress along C–C’ electrodes will switch the 

magnetization back to Ψ1 [30]. These magnetization orientations are stable, i.e. if the 

magnetization is left in either state it remains there in perpetuity even after power is 

switched off, which makes the device non-volatile. The change in resistance of the S-

MTJ is read by using a reference voltage, which generates an output current. Thus, 

conversion between voltage, magnetic and current domains is achieved.  

The transfer characteristics of the S-MTJ devices (Figure 5b-c and Figure 5e-f) were 

extracted from stochastic Landau-Lifshitz-Gilbert (LLG) simulations performed at 

Virginia Commonwealth University by the research group headed by Prof. Supriyo 

Bandyopadhyay and Prof. Jayasimha Atulasimha, and are described in refs. [14] [27]-

[30]. For the volatile S-MTJ transfer characteristics, a soft layer made of Terfenol-D with 

dimensions 120nm x 105nm x 6.5nm was used, and 110nm x 90nm x 9 nm for non-

volatile S-MTJ. The piezoelectric layer was assumed to be lead-zirconate-titanate (PZT) 

of thickness 100nm. The effect of room-temperature thermal noise was taken into 

account [14] [27]-[30] and the characteristics presented were thermally averaged 

characteristics. Furthermore, although the strain generated in the magnet was biaxial, it 

was approximated with uniaxial strain (which overestimated the voltage needed to 

generate a given strain). This was somewhat compensated by the fact that 100% strain 

transfer from the piezoelectric film to the magnetostrictive layer was assumed, leading to 

an underestimation of the voltage needed to generate a given strain. Every data-point in 

Figure 5b,e was generated by averaging 10,000 simulations. The LLG simulations also 
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yielded the switching time needed for Θ(v) to stabilize to its final value after input 

voltage is abruptly switched on, shown in Figure 5c,f. 

The S-MTJ device can have a number of stable states depending on the cross-

sectional shape of the magnet. For example, if the cross-section is an ellipse the 

magnetization has two stable states. If left in one of those states, the magnetization will 

remain there indefinitely, making the switch non-volatile. If the cross-section is a 

different shape, the number of states can be increased. By orienting the hard magnet in a 

suitable direction, the resistance of the S-MTJ can be made to have as many states as the 

magnet’s orientation. The number of states can be increased further by employing other 

 

Figure 5. (a) Volatile S-MTJ circuit schematic; (b) Simulated DC transfer 
characteristics for volatile S-MTJ showing resistance ratio r(v), as function of input 
voltage Vin; (c) Simulated switching delay characteristics for volatile S-MTJ; (d) Non-
volatile S-MTJ circuit schematic; (e) Simulated DC transfer characteristics for non-
volatile S-MTJ showing resistance ratio r(v), as function of input voltage Vin. 
Hysteresis indicates persistence in resistance state; and (c) Simulated switching delay 
characteristics for non-volatile S-MTJ. 
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polygonal cross-sections, but not indefinitely since increasing them reduces the energy 

barrier between neighboring states, resulting in spontaneous switching and error.  

 3.3 Probability Representation using Straintronic MTJs 

Each of the digits in a probability vector is encoded in the resistance state of a non-

volatile S-MTJ (see Figure 6). For example, in the case where S-MTJs are binary with 

two stable magnetic orientations, the state that leads to a high resistance (ROFF) is used to 

encode probability digit 0, and low resistance (RON) encodes probability digit 1. The 

probabilistic information from magnetization (and thus resistance) domain is converted to 

a condensed equivalent representation in the current/voltage domain (Figure 6b) through 

the S-MTJs for computation. We use an inverse-linear relationship between resistance (ri) 

and the probability digit (pi) being represented as shown in eq. (11).  

푟 =
훽

(푝 + 휀). (11) 

Here, β and ε are constants chosen such that the above relationship holds. For binary 

 

Figure 6. (a) Non-volatile S-MTJ circuit schematic with 2 states showing multi-domain 
representation. Vin switches S-MTJ resistance through change in magnetization and Vref 
is used during readout; and (b) Spatial probabilistic information representation with S-
MTJ with 2 states, and its physical equivalent in resistance, voltage and current 
domains. 
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devices with two resistance states (ri = ROFF corresponding to pi = 0 and ri = RON 

corresponding to pi = 1), by substituting the corresponding ri and pi values we get  

휀 = ; and 

 훽 = 휀.푅  = . 
(12) 

Alternative representations may also be used where the resistance is linear with 

respect to the probability digit. Such alternatives will require changes to the circuit 

implementations accordingly.  

3.4 Resolution Scaling with Probability Composer 

A single S-MTJ with 2 states is very limited since it can only express probability 0 or 

1. In order to increase the resolution, we use a parallel configuration of several S-MTJs to 

be able to express other probability values between 0 and 1 (see Figure 7a).  We call this 

topology as Probability Composer (for scaling resolution), which accepts inputs 

represented in probability vector format of n-digits. The effective resistance (RPC) has 

n+1 discrete states, given by the following expression (see Figure 7b): 

1
푅 =

1
푟 =

(푝 + 휀)
훽 =

1
훽 푝 +

푛휀
훽  . (13) 

In general, if each device in this Probability Composer topology has k states, then the 

effective resistance of the circuit has n(k-1)+1 distinct states with a resolution of 1/[n(k-

1)]. By using a common reference voltage, the probability digits represented by S-MTJ 

resistance are added up in the Probability Composer via the electrical current flowing 
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through each device. Thus, the Probability Composer essentially converts the discrete 

probability vector to a compressed form in analog electric domain.  

When using a load resistance RL much smaller than the S-MTJ resistance connected 

between the output terminal of Probability Composer and ground, the output current 

flowing through this load resistor is given by: 

 

Figure 7. (a) Circuit and schematic representation of Probability Composer element 
using S-MTJs to increase output resolution; and (b) The effective resistance vs. input 
probability value (represented using probability digits and stored in each S-MTJ 
resistance state) of the Probability Composer normalized to its OFF state resistance.  



 

25 
 

퐼 =
푉

(푅 + 푅 ) ≈
푉
푅 =

푉
훽 푝 +

푛휀푉
훽  . (14) 

The term in {.} represents the additional current that needs to be corrected for output 

linearity. This can be done with a Compensation Circuit (see Figure 8a), such that the 

output current is given by: 

퐼 ≈
푉
훽 푝 +

푛휀푉
훽  +

푉
푅 =

푉
훽 푝 =  

푛푉 푷
훽 . (15) 

 

Figure 8. Read-out schemes for Probability Composer Element. (a) Current read-out with 
corresponding output values shown in (b); and (c) Voltage read-out with corresponding 
values shown in (d). 
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Here, VADJ = -VREF, RADJ = β/(nε) and P is the probability value represented by the digital 

probability vector as defined in eq. (1). Thus for every probability value there is a 

corresponding current domain output. 

However, we are interested in a voltage output since S-MTJs are voltage-controlled. 

The current signal can be converted to analog voltage domain by using the resultant 

voltage across the load resistance, given by Vout = Iout.RL = . .푷. However, since the 

value of RL has to be necessarily low relative to S-MTJ resistance for the approximation 

in eq. (13), the range of output voltages using this scheme needs amplification. But, if the 

output voltage non-linearity can be tolerated while read-out, then the analog voltage 

output with a larger range can be obtained by simply eliminating the load resistance RL 

(see Figure 8c). The output voltage is given by the following expression: 

푉 = 푉 .

1
푅 − 1

푅
1
푅 + 1

푅
= 푉 .

∑ 푝
∑ 푝 + 2푛휀 = 푉 .

푷
푷 + 2휀 . (16) 

Here P is the probability value represented by the digital probability vector, defined 

in eq. (9). This topology results in a non-linearity in the output; for probability close to 0 

the output voltage is proportional to sum of individual probability digits, but degrades for 

probability close to 1. As long as different output levels can be differentiated, the above 

topology may be used. This represents a trade-off between using sub-threshold CMOS 

analog support circuits for amplifying the low output voltage range exhibiting linearity as 

in the first case, vs. tolerating non-linearity in output for wider voltage range with a 

potentially simpler circuit implementation. 
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3.5 Decomposer Element 

 We need a way to convert the analog voltage output back to a digital probability 

vector representation. To achieve this we design a Decomposer circuit with volatile S-

MTJs as follows. The Decomposer has the following requirements: 

i) For converting to an n-digit probability vector, it requires n decomposer elements; 

each decomposer element is designed to trigger at a different input voltage value, 

i.e. they have different threshold voltages. 

ii) When triggered, each decomposer element needs to generate a pair of differential 

output voltage signals, so as to switch a non-volatile S-MTJ in the successive 

stage. 

Drawing inspiration from flash analog-to-digital converters, we use a resistive ladder 

(tuned for low-power operation since it does not contribute directly to critical path delay 

after startup) to setup varying threshold voltages for each decomposer element. 

Alternatively, the S-MTJ device may be designed to have varying thresholds by changing 

the device parameters (such as PZT thickness, etc.). Here, the volatile S-MTJs in each 

decomposer element act as a voltage comparator; if the input voltage is below the 

reference voltage (setup with the resistance ladder) the S-MTJ switches its resistance 

state, else it remains in its previous state. To generate differential voltage output when 

triggered, each decomposer element consists of two branches, one with S-MTJ in pull-up 

Table 1. Decomposer Element Operation 
Operating 
Condition 

S-MTJ 
Resistance 

Voltage 
Output1 

Voltage 
Output2 

Probability 
Digit 

Vapp < Vth ROFF 0 VREF/3 0 
Vapp > Vth RON VREF/3 0 1 
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and the other with S-MTJ in pull-down (see Figure 9). The possible states of the S-MTJs 

and the corresponding output voltages are shown in Table 1 for this configuration. 

3.6 Fault Resilience (Supporting Graceful Degradation) 

Information representation is inherently fault resilient in both electrical and magnetic 

domains. Consider two possible single-fault scenarios: (i) an input voltage at any position 

is shifted by a single level, and (ii) a magnetization vector in an S-MTJ is offset to a 

neighboring state of the ‘intended’ value. Given that the representation is redundant with 

all digits carrying equal weight, either fault would cause the overall value to be erroneous 

by 1/[n(k-1)], i.e., the resolution of the computation. This is in direct contrast to 

conventional m-digit radix-based representations (e.g., binary, HEX) where a single fault 

 

Figure 9. Decomposer Circuit Design: (a) Decomposer Element used to generate 
differential digital voltages based on analog input voltage for a given threshold 
voltage; and (b) Full Decomposer circuit consisting of n Decomposer Elements to 
convert analog voltage signal to n-digit probability vector using discrete voltage 
representation. Here, Vctl-i controls the threshold voltage for the i-th element and is 
determined by the resistance ladder network. 
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can cause up to a 2m-1 error in the value being stored/computed based on the position. The 

proposed approach thus supports a graceful degradation, which is linear with increasing 

number of faults. Furthermore, the number of digits used (n) can be adjusted depending 

on the precision and fault-resilience required by the application.  

3.7 Probability Arithmetic Composer Circuit Framework 

The proposed circuit framework achieves physical equivalence by directly 

implementing arithmetic functions operating on probabilities, rather than emulating with 

Boolean logic functions. An Arithmetic Composer can be recursively defined as a 

hierarchical instantiation of other Arithmetic Composer functions until Elementary 

Arithmetic Composer functions with S-MTJs are reached, as shown in Figure 10. To this 

end, we defined four Elementary Composers: ‘+’, ‘–‘, ‘x’, ‘÷’. Details on circuit designs 

are presented in the subsequent section. Thus, an Arithmetic Composer f n consisting of n 

levels of operations to be performed can be recursively expressed as:  

푓표푟 푛 > 1,          풇풏 = 푓 푓 ,푓 ,푓 , … , 푓  (17) 

 

Figure 10. Probability Composer Circuit Framework 
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푓표푟 푛 = 1,          푓 = 푓 (푝푟푖푚푎푟푦 푖푛푝푢푡푠);           푤ℎ푒푟푒푓  푖푠 푎푛 퐸푙푒푚푒푛푡푎푟푦 퐶표푚푝표푠푒푟. 

The top-level operation to be performed (f n-1) is called the Dominator Composer 

since it determines the overall Composer circuit structure, where each node is either 

another Arithmetic Composer or an Elementary Composer. This approach is easily 

scalable since any function can be hierarchically built by plugging Arithmetic Composer 

nodes in a Dominator Composer, without changing the circuit style. For example, a 

function F = (Pa.Pb)+(Pc.Pd) can be hierarchically represented as  

 F = 풇ퟐ = 푓 (푓 , 푓 ) = SUM[MUL(P푎, P푏), MUL(P푐, P푑)].   (18) 

Here n = 2 since there are two levels of operations to be performed, f 1=SUM and 

f0=MUL. Thus, at any given level, the Arithmetic Composer is Self-Similar to its 

corresponding Elementary Composer, exhibiting fractal-like behavior. 

3.8 Elementary Arithmetic Composers 

The Composers at the lowest level of hierarchy perform fundamental arithmetic 

operations on probabilities, and are called Elementary Arithmetic Composers. Three of 

the four fundamental arithmetic operations, viz. multiplication, addition, subtraction, are 

physically realized based on fundamental laws of circuit physics. While division 

operation may also be envisioned for physically equivalent implementation, the S-MTJ 

device limitations (particularly the low ROFF/RON) preclude S-MTJ based direct divider 

implementation. Hence, we use a physically equivalent circuit based on approximation 

with addition, subtraction and multiplication with correction techniques to implement a 

probability divider for our framework. However, a different non-volatile device that does 

not have S-MTJ limitations may enable a direct physical divider implementation. 
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Kirchhoff’s current law enables elegant physically equivalent implementation for 

addition and subtraction operations. This is well known in analog CMOS circuits. Here, 

we illustrate how to implement non-volatile probability adders and subtractors using S-

MTJs. Current addition can be implemented by using a parallel configuration of 

 

Figure 11. (a) Elementary addition composer using voltage mode read-out; and (b) 
Corresponding output voltage vs. probability characteristics as calculated by eq. (19) 
after correction, and validated using HSPICE simulations for all possible input 
combinations. 
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Probability Composer elements, as shown in Figure 11a. This is an extension of the 

Probability Composer element itself where each S-MTJ was arranged in parallel to be 

able to sum the probability digits represented using the resistance states. By using a 

single reference voltage VREF and load resistor RL (of the order of 10-100KOhms) with 

value much smaller than Probability Composer element resistance (in the order of tens of 

MOhms), the parallel topology of two n-digit Probability Composer elements produces 

an output current as follows: 

퐼 =
푉

푅 .푅
푅 + 푅 + 푅

≈ 푉
1

푅 +
1

푅  

=
푉
훽 푝 + 푝 +

2푛휀푉
훽   

=
푛푉
훽

[푷푨 + 푷푩] +
2푛휀푉

훽 . 

(19) 

Correction Circuits (CC) can be used as before in Probability Composer element to 

extract the current given by the term in {.} in eq. (19). To get a voltage output, we use the 

voltage across the load resistor (see Figure 11b), which can be amplified using CMOS 

op-amps. Alternatively, we can simply use the same topology with correction circuits, 

while removing the resistor RL (if the non-linearity in output can be tolerated) for larger 

voltage range as follows: 

푉 = 푉 .

1
푅 + 1

푅 − 2
푅

1
푅 + 1

푅 + 2
푅

= 푉 .
푷푨 + 푷푩

푷푨 + 푷푩 + 4휀 . 

(20) 
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Output Decomposers can be designed to differentiate the voltage levels such that output 

non-linearity is tolerated.  

Subtraction is achieved by reversing one of the branches such that it supplies a –VREF 

to the Probability Composer Element, as shown in Figure 12. The voltage output is given 

by: 

푉 = 퐼 푅 =
푛푉
훽

[푷풂 − 푷풃],  푅 ≪ 푅 .  (21) 

We implement multiplication based on Ohm’s law, V = I.R, rewritten as I = V/R. By 

representing one of the inputs as voltage V, and the other as resistance of Probability 

Composer Element, we directly implement a multiplication operation.  The circuit 

topology is shown in Figure 13a. The first Probability Composer element converts the 

digital probability vector from magnetic (resistance) domain to analog voltage domain. 

This voltage needs to be adjusted so that the loss in the first stage is compensated through 

 

Figure 12. (a) Elementary subtraction composer using voltage mode read-out; and (b) 
Corresponding output voltage vs. probability characteristics for Pa > Pb as calculated 
by eq. (21), and validated using HSPICE simulations for all possible input 
combinations. 
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amplification using CMOS support circuits (such as op-amps). The amplified voltage is 

used as an input voltage to the next Probability Composer element, whose resistance is 

inversely related to the encoded probability value. The current through the second 

Probability Composer element achieves multiplication of the two probabilities (with 

Correction Circuits), given by: 

 

Figure 13. (a) Elementary multiplication composer topology; and (b) Output 
probability vs. voltage characteristics in continuous analog domain validated using 
HSPICE simulations for all possible input combinations. 
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퐼 ≈  
푛
훽

[푉 .푷푩] =  
푛
훽 .푔.푅 .푉 . (푷푨푷푩), 푅 ≪ 푅 . 

(22) 

The current output can be converted to voltage mode by simply using the voltage across 

the load resistance RL (see Figure 13a). Alternatively, voltage domain output with larger 

range can also be obtained by simply removing the load resistance RL, given by: 

푉 = 푔.푉 .
푷푨.푷푩

(푷푨 + 2휀)(푷푩 + 2휀) . (23) 

Similar to previous case, the denominator causes non-linearity in the output, and is 

affected when PA or PB takes a value close to 1. As long as a Decomposer can be 

designed to tolerate this non-linearity, this topology may be used. 

 A direct division may be implemented based on the above mindset, through Ohm’s 

law. However, the limited ROFF/RON for the S-MTJ devices means that such topologies 

will have error factors which are difficult to eliminate. A different non-volatile device 

with a higher ROFF/RON may enable such circuit implementations. Hence, in this work we 

attempt to implement a physically equivalent division through approximation using 

multiplication, addition and subtraction. We use the following expression using addition, 

subtraction and multiplication based on assumptions to be stated in the following: 

푷풐풖풕 = 푷풂
푷풃

≈ [푘 .푷풂 + 푘 .푷풃 + 푘 ] + 푓 (푷풂,푷풃), (24) 

where k0, k1, and k2 are constants between -1 and 1 with a resolution of 0.1, and fc is a 

correction factor as a function of the two input arguments. The square brackets [.] in eq. 

(24) indicate rounding function. The assumptions here are: 
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i) The output of a division will always result in a valid probability as per the 

algorithm being used. This implies Pa < Pb. 

ii) The probability Pb will never take a value 0. Control circuits may be designed 

to detect a violation of this condition. 

iii) Computational resolution is 0.1. 

Based on the conditions above, we evaluated all possible combinations of constants 

k0, k1 and k2 that result in the best fit for equation (24) (see Figure 14, Figure 15, Figure 

16). Expressions resulting in least number of unique error cases were selected as 

candidate solutions. We found two expressions that resulted in a minimum of 4 unique 

error cases to be corrected (see Figure 14). Ideally, the final expression would be chosen 

based on ease of implementation. In our case, we found that both expressions had similar 

complexity of implementation and any one of the two expressions could be used. The 

 

Figure 14. Contour plots showing the count of unique error cases, which is equal to the 
number of correction circuits required, for division implementation through 
approximation using eq. (24). All possible combinations with resolution of 0.1 for 
coefficients k0, k1, and k2 were tested and the best results are shown here. The 
minimum number of correction circuits (indicated by blue color) required were found 
to be 4, for two expressions with coefficients (a) k0 = 0.9, k1 = -0.5, k2 = 0.5; and (b) k0 
= 1.0, k1 = -0.6, k2 = 0.5. Here, negative coefficients indicate the use of subtraction. 
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values used were k0 = 0.9, k1 = -0.5 and k2 = 0.5. 

The correction factor was determined by taking every possible input combination, and 

hard-wiring the required corrections for cases where the relationship in eq. (24) causes 

error. For each correction case, we used an enable logic circuit that switched the 

correction term ON based on the input values. This was a logic-based implementation 

and used S-MTJs in conjunction with digital CMOS logic circuits in our approach (see 

Figure 17).  

 

 

Figure 15. Contour plots showing the count of unique error cases, which is equal to 
the number of correction circuits required, for division implementation through 
approximation using eq. (24). Coefficient k0 ranges from 0 to 0.8. 
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A more complex arithmetic operation such as sum-of-products (used frequently in 

BN inference) can be composed using these Elementary Addition and Multiplication 

Composers. We illustrate an example to compose an operation of the form 

(PA.PB)+(PC.PD). One way to implement it is to use Elementary Addition and 

Multiplication Composers and connect them serially. However, the Probability 

 

Figure 16. Contour plots showing the count of unique error cases, which is equal to 
the number of correction circuits required, for division implementation through 
approximation using eq. (24). Coefficient k0 ranges from -1.0 to -0.1. 
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Arithmetic Composer framework allows us to implement it efficiently for parallel 

computation by hierarchically composing an Add-Multiply composer as follows.  

Each product term implemented with an elementary Multiplication Composer is 

arranged in a topology of the Addition Composer (see Figure 18a). Thus the Dominator 

Composer structure is that of the adder, which uses elementary Multiplication Composers 

 

Figure 17. (a) Division schematic (through approximation using addition, 
multiplication and subtraction Composers and correction circuits); (b) Conditions for 
enabling correction circuits; (c) Test cascade for functional validation using HSPICE; 
and (d) HSPICE simulation output. 
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as the basic building blocks. This topology realizes the add-multiply operation in a single 

step (simulated output characteristics in Figure 18b). 

In addition to these basic arithmetic operations on probabilities, normalization 

operation is used after computing updated beliefs at every node to ensure that resulting 

 

 

Figure 18. (a) Add-Multiply Composer for calculating sum-of-products on input 
probabilities. The output is in analog current-domain, and corresponds to the function, 
PA.PB+PC.PD. The voltage adjusters are used to amplify the voltage from first 
Probability Composer stage, which is then used as input voltage for read-out at the 
second stage. These adjusters and other support circuits such as the inverting 
amplifiers can be implemented using CMOS analog circuits (e.g. op-amps); and (b) 
Output characteristics showing probability output for all possible input combinations 
and the corresponding output current value, which are obtained using HSPICE 
simulations. 
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beliefs are probabilities. This can be implemented using current-mode CMOS analog 

circuits based on Gilbert normalizer circuit [15], as shown in Figure 19. If the input 

currents Iin-1, Iin-2, etc. are in sub-threshold region of the MOSFET, then 

퐼 = 퐼 푒  

퐼 = 퐼 푒  

(25) 

 where i is the index of the input cell (i ∈ {1, 2, …, n} in this example), VT is thermal 

voltage and 휅 is the subthreshold slope coefficient of the MOSFETs. Using Kirchhoff’s 

current law at the common node VC, we get 

퐼 = 퐼  (26) 

 

Figure 19. Normalization circuit for n inputs using MOSFETs. 
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where Ib is the constant current set by the reference voltage Vb. Substituting eq. (26) in 

(25) gives us the following relation, which is a normalization operation of the input 

currents. The input currents can be set using S-MTJ based Probability Composers. 

퐼 = 퐼
퐼

∑ 퐼  (27) 

3.9 Summary 

In this chapter, we presented our approach towards using physically equivalent data 

representation for probabilities in the case of Bayesian Networks computing framework. 

We also discussed implementing elementary arithmetic operations on probabilities using 

physical laws in keeping with the mindset of physical equivalence for circuit 

implementation, through the Probability Arithmetic Composer framework. In the next 

chapter, we will introduce a physically equivalent architecture for Bayesian Networks. 
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CHAPTER 4 

PHYSICALLY EQUIVALENT ARCHITECTURE FOR REASONING UNDER 

UNCERTAINTY 

In keeping with the overarching philosophy of physical equivalence, the proposed 

architecture is designed such that it supports BNs intrinsically; i.e. there is a direct 

relationship to the structure of a BN graph and its physical implementation. Drawing 

inspiration from Field-Programmable Gate Arrays (FPGAs) that provide a reconfigurable 

hardware platform for mapping any digital Boolean logic function, we propose a 

Table 2.  Comparison: von Neumann Approach vs. Physical Equivalence Approach 

 von Neumann Computing Physical Equivalence Paradigm 

Information 
Representation Radix Boolean (Voltage) Flat Probability Vectors (Resistance, 

voltage, current) 

Approach 
Digital Logic, Pipelines, 

Arithmetic, Memory 
Hierarchy, Multi Core 

Non-volatile Probability Arithmetic 
Composer Circuits (memory-in-

computing), Programmable Switch Boxes 

Architectural 
State Registers, Memory 

Probability Tables, Beliefs, Likelihoods, 
Priors incorporated into non-volatile 

Composer Circuits; Network structure in 
switch-boxes 

Operations 
Defined by 

Instruction Set Architecture 
(ISA) Roles – Learning, Inference, Adaptation 

Plasticity Explicit software update Autonomous learned behavior, 
reconfigurability 

Machine 
Execution 

Explicitly timed instruction 
execution, data sharing 

Event-based message propagation in 
network 

Failure 
Tolerance 

None – Susceptible to 
single fault Graceful degradation with faults 

Technology / 
Primary Device 

CMOS (charge-based) / 
MOSFET 

Hybrid of CMOS and S-MTJs (charge, 
magnetic)/ 

S-MTJ: Voltage controlled rotation of 
magnetization; Resistance change is 

persistent and can be readout 

Target 
Applications 

High precision arithmetic, 
interactive applications, 
deterministic behavior 

Applications requiring causal learning 
and inference in various domains, under 

uncertainty 
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reconfigurable distributed Bayesian Cell architecture to map any given Bayesian Network 

structure (see Figure 20). This is a significant departure from conventional von Neumann 

architecture (Table 2). Each Bayesian Cell (or a cluster of multiple Bayesian Cells) 

implements computation for BN operations in a node. The network consists of several 

such Bayesian Cells interconnected in a mesh network, through a heterogeneous 

integration with CMOS metal routing stack for message propagation. 

Each Bayesian Cell incorporates state information and conditional probability tables 

(CPT) intrinsically within non-volatile Probability Composer circuits, for inference and 

learning operations. Updates to the CPTs can be performed during learning and 

adaptation, by changing the resistance state of corresponding S-MTJs in the Probability 

 

Figure 20. Proposed Reconfigurable Bayesian-Cell (BC) architecture. Each module in a 
BC is implemented with non-volatile Probability Composers (no separate memory 
needed). Routing tracks implemented with CMOS metal stack. 
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Composers. An incoming message would trigger an Activity Controller to power up the 

Bayesian Cell. This mesh network can scale to large problem sizes since message 

propagation is near neighbor in BNs. I/O requirements would be typically sparse since 

not all evidence variables need to be observed simultaneously; even single evidence 

triggers inference. 

4.1 Bayesian Cell Description 

A Bayesian Cell is designed to be capable of implementing all operations required for 

BN inference (see Figure 21). The main operational component is the Inference Engine. 

Architectural support components include Activity Monitor, Role Management Unit, and 

Switch Box Interfacing. The Inference Engine incorporates all operations occuring during 

 

Figure 21. Bayesian Cell architectural schematic showing modules for inference and 
learning operations. Each module is implemented with non-volatile Probability 
Composers. 
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a Bayesian Inference process. Several algorithms exist in literature for Bayesian 

Inference [16]. As a starting point, we use Pearl’s Belief Propagation algorithm that is 

amenable for local message passing impementations using a Bayesian Cell based 

architecture. While this algorithm performs exact inference in trees and polytrees, it is not 

applicable to networks where the graphs incorporate loops. For more general networks, 

approximate algorithms have been developed such as the loopy Belief Propagation 

algorithm. Future work will investigate implementing such generalized algorithms 

applicable for any given Bayesian Network structure. 

The Inference Engine implements the Bayesian Inference operations using 

physically-equivalent Probability Arithmetic Composers, described in the previous 

chapter. In addition, non-volatility in resistance state of the S-MTJs implies all required 

arguments/parameters for Bayesian computations are stored locally within the Composers 

themselves. In stark contrast to von Neumann architecture, there is no separate memory 

store to read data from, thus leading to a memory-in-computing architecture. Future work 

can extend this architecture to support leanrning and adaptation as well. 

We describe the inference operations and their corresponding Composer 

implementations next. We use an example scenario where each node has one parent node 

and two child nodes to illustrate the approach. In addition, each node is assumed to 

support a maximum of four states. This can be extended to accommodate more states and 

parents/children per node as defined by the underlying computations. The complete 

schematic for the Inference Engine is shown in Figure 22.   
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A BN inference process using Pearl’s Belief propagation is iterative. The key 

operations at each node during inference are (i) likelihood/prior estimation for the current 

node based on messages received from child/parent nodes, (ii) belief update to estimate 

the probability of each state of the current node given the observed evidence, and (iii) 

diagnostic/prior support to generate messages for communicating with child/parent 

nodes. 

Consider a node X with parent node A and child nodes Y and Z (see Figure 1). 

Messages are received at node X either from parent A (top-down), or child nodes 

(bottom-up), or both depending on where the evidence is observed. When evidence is 

observed in a node that is a descendent of node X, a bottom-up message propagation is 

triggered in the network form the evidence node and messages eventually reach node X 

through its children Y and Z. These messages are called diagnostic support messages. On 

 

Figure 22. Inference Engine schematic showing various modules and CMOS analog 
support circuits involved during Bayesian Inference operation. 
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the other hand, evidence observed at a node that is an ascendant of node X, top-down 

messages are triggered that eventually reach X through A. These are called prior support 

messages to node X. Evidence may be observed in both directions as well, triggering both 

kinds of message propagation. All these messages are assimilated at node X through the 

computations defined by Pearl’s belief propagation algorithm, and updates to the 

probability of each state of node X are performed. After this, prior and diagnostic support 

messages are triggered from node X to other neighboring nodes that communicate the 

changes due to observed evidence. 

The following operations occur at node X when diagnostic support messages 

(bottom-up propagation) are received from its child nodes Y and Z: 

 (a) Diagnostic support messages from the child nodes are composed to calculate the 

likelihood vector λ(X)  for node X. This operation requires 4 multiplications as follows – 

흀(푿) =  흀풀(푿) ∗ 흀풁(푿), (28) 

where each element in 흀(푿) is given by 

휆 (푋) = 휆 (푋) ⋅ 휆 (푋); 푖 = {1,2,3,4}.  
(29) 

This is implemented with multiplication composers discussed in the previous chapter. 

 

Figure 23. Probability Composers for Likelihood Estimation for Bayesian Inference. 
Amplifiers are implemented with analog CMOS circuits. 
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The corresponding circuit is shown in Figure 23. 

(b) Diagnostic support to parent of node X (say node A) is computed based on λ(X) 

and the CPT. This requires 16 multiplications and 12 additions as follows –    

흀푿(푨) =  푪푷푻(푿|푨)⨂흀(푿) (30) 

where each element in 흀푿(푨) is given by 

휆 (퐴) = 퐶푃푇 (푋|퐴) ⋅ 휆 (푋) ; 푖 = {1,2,3,4}. 

 

 

(31) 

This is a composed arithmetic operation. One way to implement it is to use elementary 

addition and multiplication Composers and connect them serially. However, the 

Probability Composer framework allows us to implement it efficiently for parallel 

computation by hierarchically composing an add-multiply composer as follows. Each 

product term implemented with an elementary multiplication Composer is arranged in a 

topology of the addition Composer. Thus the dominator Composer structure is that of the 

adder, which uses elementary multiplication composer blocks. This topology realizes the 

add-multiply operation in a single step. The corresponding circuit is shown in Figure 24. 

Prior Estimation is similar and shown in Figure 25. 

(c) Based on new evidence, a belief update is performed at node X using likelihood 

and prior vectors. Computing the elements of the belief vector involves 4 multiplications, 

3 additions and 4 divisions as follows –  

푩푬푳(푿) =  훼흅(푿) ∗ 흀(푿) (32) 
where each element in 푩푬푳(푿)is given by  

퐵퐸퐿 (푋) =  
휋 (푋) ⋅ 휆 (푋)

∑ 휋 (푋) ⋅ 휆 (푋) ; 푖 = {1,2,3,4}.  (33) 
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This represents a normalization operation performed after multiplication. Again, while 

 

Figure 24. Module for diagnostic support to parent node during Bayesian Inference. 
All composers are implemented with non-volatile S-MTJs and do not require a 
separate memory store. The CPT entries are stored in the resistance states of the S-
MTJs. 
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this may be achieved with elementary Arithmetic Composers cascaded in series, a 

parallel implementation is achieved through the hierarchical Composer framework. 

 (d) Predictive support to each child of node X is computed based on computed belief 

BEL(X) and the likelihood support from the child node. This requires 4 division 

operations per child node as follows –    

흅풀(푿) = 푩푬푳(푿)
흀풚(푿)

, 푎푛푑 흅풁(푿) = 푩푬푳(푿)
흀풁(푿)

. 

Here, 휋 (푋) = ( )
( )

; 휋 (푋) = ( )
( )

; 푖 = {1,2,3,4}. 

(34) 

This is implemented with division composers described in the previous chapter. 

For a given node X, the following operations occur when predictive support message 

is received from its parent node A: 

(a) Based on new predictive support, the prior vector for node X is calculated as 

follows –  

흅(푿) =  흅푿(푨)⨂푪푷푻(푿|푨) (35) 

The circuit implementation is based on add-multiply composers (see Figure 25). 

(b) Belief update is performed at node X involving 4 multiplications, 3 additions and 

4 divisions as follows –  

푩푬푳(푿) =  훼흅(푿) ∗ 흀(푿) (36) 
where each element in 푩푬푳(푿)is given by  

퐵퐸퐿 (푋) =  
휋 (푋) ⋅ 휆 (푋)

∑ 휋 (푋) ⋅ 휆 (푋) ; 푖 = {1,2,3,4}.  (37) 
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 (c) Predictive support to each child of node X is computed based on computed belief 

 

Figure 25. Composer implementation for estimating priors based on support received 
from parent node during Bayesian Inference. 
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BEL(X) and the likelihood support from the child node. This requires 4 division 

operations as discussed earlier.  

4.3 Switch Box Description 

The BN structure consists of links that describes dependencies between variables. In 

our approach, we use direct physical connections between Bayesian Cells to encode the 

links between nodes with physical equivalence. These connections are made 

reconfigurable through the use of Switch Boxes (see Figure 26), similar to those used for 

programmable routing in FPGAs. The reconfigurability allows adding/removing 

connections as required for adaptability, as well as the capability to map any given BN in 

 

Figure 26. Programmable switch box schematic showing routing tracks and switch 
points. Routing tracks are implemented using conventional CMOS metal routing 
layers. 
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hardware. Here we implement the switch boxes using non-volatile S-MTJs, which makes 

it persistent. 

The programmable switch-box provides a pathway to connect Bayesian Cells in a 

reconfigurable manner, and has the ability to route signals from a given input to any of 

three outgoing directions through programmable switch-points. Each switchpoint 

connects one incoming wire to three outgoing wires, through six pass transistors. This is 

similar to FPGAs. However, the connection in our approach is made persistent through 

the use of non-volatile S-MTJ for state storage (see Figure 27). Since it is capable of 

holding two states; low resistance representing ON and high resistance representing OFF, 

it can be programmed to enable or disable a particular link simply by storing the 

corresponding data in the S-MTJ resistance.  

 

Figure 27. Switch-point schematic showing pass-transistors gated by S-MTJs. The 
pass-transistors enable/disable a particular connection between two points, controlled 
by the voltage output of the S-MTJs. Since the resistance state of the S-MTJs is non-
volatile, the pass-transistors are programmed persistently. 
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The messages through the network are sets of probability vectors associated with 

diagnostic support for bottom-up and prior support for top-down messages and the 

propagation supported is through switch-boxes. In our example, if each node supports 4 

states, then each of these messages contains 4 sets of probability vectors. Thus each 

switch-box has to accommodate sufficient switchpoints to allow transmission of all the 

elements of probability vector sets in parallel. Alternatively, a serial implementation can 

be realized with a narrow bus sending single probability vectors at a given time. The 

trade-off involved depends on the area requirement for a switch-box and the resolution 

requirement of data representation (number of probability digits) vs. performance 

(latency in communication). 

4.3 Summary 

In this chapter, we introduced a programmable Bayesian Cell-based architecture for 

physically implementing Bayesian Networks. Each Bayesian Cell directly implements a 

node in the network, and the links between nodes are physically implemented using 

physical connections. These connections are made programmable through the use of 

reconfigurable switch-boxes. All modules in the Bayesian Cell and Switch Box are 

implemented using non-volatile S-MTJs, leading to persistent circuits without the need 

for a separate memory store. In the next chapter, we evaluate the proposed architecture 

and benchmark against software implementations running on CMOS multicore 

processors. 
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CHAPTER 5 

EVALUATION AND BENCHMARKING 

5.1 HSPICE Device Models 

 We use HSPICE circuit simulations for validating and evaluating the proposed 

approach. In order to do this, we first develop HSPICE behavioral device macromodels 

for the volatile and non-volatile S-MTJ devices. Such macromodels have been used 

before for other emerging non-volatile resistive devices such as those based on phase-

change materials [17]. These macromodels essentially describe the static and dynamic 

electrical characteristics of the device. Binary S-MTJ devices were used for evaluation in 

this dissertation. Device characteristics, such as resistance vs. input voltage and switching 

delay, were extracted with extensive macrospin simulations at room temperature (when 

thermal noise can disrupt magnetization dynamics) using the stochastic Landau-Lifshitz-

Gilbert equation treating thermal agitation as a Gaussian magnetic field by VCU group 

[10][13]. The behavioral macromodels need to capture the change in S-MTJ resistance 

for a given range of input programming voltages, as well as the switching delay 

associated with a given input voltage. For the non-volatile S-MTJs, they need to simulate 

the persistence in resistance state as well. In the following subsections, we describe our 

macromodels used to meet these requirements. 

5.1.1 Volatile S-MTJ HSPICE Macromodel 

 The DC characteristics of the volatile S-MTJ showing resistance vs. input voltage are 

shown in Figure 28a. The switching delay vs. input voltage is shown in Figure 28b. 

HSPICE offers several behavioral constructs to model these characteristics, such as 
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voltage/current controlled sources (voltage as well as current sources), voltage controlled 

resistances, etc. Since we are developing macromodels for voltage-controlled S-MTJs, 

we use voltage-controlled resistors (VCR) in HSPICE through the use of G-elements 

[18]. 

 

Figure 28. Simulated DC characteristics for volatile S-MTJ device [13]. (a) Resistance vs. 
input voltage showing two resistance states; and (b) Switching delay vs. input voltage. 

 



 

58 
 

 The VCR is a behavioral description (in our case, a tabular description) that assigns a 

resistance value for a given input voltage, in order to model the MTJ resistance. HSPICE 

then uses a piece-wise linear approximation between the data points provided in the table 

to complete the behavior for the full voltage range. In order to model the variable 

switching delay, we define a custom voltage-controlled delay element (VC-Delay) 

inserted between the input terminals and the control terminal for VCR, using HSPICE 

voltage-controlled current sources (VCCS) and fixed capacitances as shown in Figure 29. 

The VCCSs are described using a table that assigns a current value for a given input 

voltage. The load capacitance at the control node through which this current flows is 

fixed. Thus the rise-time (delay) of voltage at the control node is linear in relation to the 

amount of current flowing through the capacitor, which is in turn a function of the 

applied input voltage. 

 

Figure 29. HSPICE behavioral macromodel describing volatile S-MTJ device 
characteristics for circuit simulation. 
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퐶.
푑푣
푑푡 =  퐼 

⟹ 푇 =  퐶푉/퐼 
(38) 

Ideal switches (not shown) are used to control the flow of currents as required. Finally, 

the parasitic capacitances at the input and between output terminals are added to 

complete the device macromodel. 

5.1.2 Non-volatile S-MTJ HSPICE Macromodel 

 

Figure 30. Simulated DC characteristics for non-volatile S-MTJ device [14]. (a) 
Resistance vs. input voltage showing two stable resistance states and switching 
threshold voltages; and (b) Switching delay vs. input voltage. 
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The non-volatile S-MTJ device characteristics are shown in Figure 30. While the 

resistance and switching delay are similar to volatile device, we need to model the 

persistence in resistance state (DC curve for resistance vs. input voltage shows hysteresis 

in Figure 30a). We include this behavior in the behavioral macromodel through several 

custom constructs described next.  

 The non-volatile S-MTJ HSPICE macromodel is shown in Figure 31 schematically. 

First, the resistance vs. input voltage is modeled using two VCRs: the first one models 

the curve that tracks the switching behavior from high resistance to low resistance state, 

given that the initial state was high resistance (i.e. when applied input voltage is 

increasing), and the second VCR models the other case. Each VCR is controlled by a 

node connected to the output of a voltage controlled delay element, described previously 

 

Figure 31. HSPICE behavioral macromodel describing non-volatile S-MTJ device 
characteristics for circuit simulation. 
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for volatile device model. In addition, each VCR is connected in series with ideal 

switches; only one of them is active at any given time and the active switch selects the 

VCR for the given operating condition. 

 A decision circuit that incorporates a flip-flop to store the previous state of the device 

controls these ideal switches. The decision logic takes the current set of program inputs 

and previous state of the device as inputs, and determines based on these if the state of 

the device should switch. If the conditions do not meet the switching criteria, the 

resistance of the S-MTJ does not change, thus showing persistent behavior maintained 

through the flip-flop. The switching criteria are shown in Table 3. If the conditions allow 

resistance switching, then the decision logic outputs a switch signal that passes through a 

voltage-controlled delay element to the flip-flop for state retention. The delay element is 

Table 3. Switching Criteria Encoded in Decision Circuit for HSPICE 
Macromodeling of Non-Volatile S-MTJ 

Input Voltage 
Vin = (V1 – V2) 

Previous S-MTJ Resistance 
State 

Current S-MTJ Resistance 
State 

0 < Vin < Vth 
RON RON 

ROFF ROFF 

Vth < Vin  < Vset 
RON 

RON 
ROFF 

-Vth < Vin < 0 
RON RON 

ROFF ROFF 

Vreset < Vin  < Vth 
RON 

ROFF 
ROFF 
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used to synchronize the VCR element switch with the dynamic change in resistance of 

the S-MTJ. Finally, the flip-flop stores the new resistance state. Adding the parasitic 

capacitances at input and output terminals completes the behavioral model. 

5.2 Evaluation of Composers used in Bayesian Inference Operations 

We use the HSPICE S-MTJ macromodels to validate the functionality and evaluate 

the proposed Composers (using computational resolution of 0.1) for Bayesian inference 

operations in terms of power dissipation and latency. The evaluation results are shown in 

Table 4. For each Composer, we evaluate the worst-case latency that occurs during 

largest output voltage swing. Using HSPICE simulations, we measure the total settling 

time at the output as the latency. This is the time measured from the instant the input 

finishes 90% of its switching transition, to the instant when output settles to within 10% 

of its final voltage value. For the analog CMOS support circuits, we estimate the delay 

based on the maximum delay of a minimum-sized voltage follower driving a load of 

20pF (equivalent to a Decomposer circuit with 10 digit representation). For cascaded data 

paths, these latencies are then added up to estimate the total latency for a given path. We 

estimate the worst-case latencies for all possible paths in a Bayesian Cell, and consider 

the largest latency as the total delay of a Bayesian Cell. For switchbox, we evaluate the 

delay of communication through a pass transistor driving a 2fF load (Decomposer input 

capacitance) through HSPICE simulations. 

 For area estimation, we use magnet dimensions of 100nm x 90nm to find the area of a 

single S-MTJ. In order to magnetically isolate neighboring S-MTJs, we include a spacing 

of 410nm along the minor axis and 400nm along the major axis. These numbers were 
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derived from micromagnetic simulations at VCU that showed the distance at which 

magnetic interaction is low enough to be ignored for neighboring S-MTJs. This gives us 

an area of 500nmx500nm for one S-MTJ accounting for spacing requirements as well. 

The area of CMOS analog support circuits were estimated based on the number of 

transistors required and the area of a single CMOS transistor in 45nm technology node, 

accounting for spacing requirements between transistors. Similarly, the area of switch 

box is estimated based on the number of switch-points and the area of each switch-point 

(6 S-MTJs + 6 MOSFETs). The total number of switch-points required to accommodate 

10 digit messages with 4 states per node was estimated to be 240 per switch-box. 

Table 4. Evaluation of Composer Circuits for Bayesian Inference (Resolution is 0.1) 

Module Critical Path 
Delay (ns) Area (μm

2
) 

Worst-case Power 
(μW) 

Likelihood 
Estimation 

(Multiplication 
Composers x4) 

144 20 4.57 

Belief Update 
(Multiplication 
Composers x4) 

144 20 4.57 

Prior Estimation 
(Add-multiply 
Composers x4) 

137 50 11.24 

Diagnostic Support 
(Add-multiply 
Composers x4) 

137 50 11.24 

Prior Support 
(Division Composers 

x8) 
541.86 316 90.36 

Decomposer (x60) 132.9 240 11.37 
CMOS Op-Amp 

(x176) 100 95.4 89.32 

Bayesian Cell 
(Critical Path Delay) 1396.06 791.4 222.67 

Switch Box 10 398.8 0.85 
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 For active power estimation, we measure the total power dissipation for all 

Composers in a Bayesian Cell using HSPICE simulations. Static power was found to 

dominate the total power dissipation, since ROFF/RON is very low for S-MTJs and 

switching times are relatively long. The worst-case static power dissipation occurs when 

all S-MTJs are switched ON, also leading to worst-case dynamic power dissipation since 

output voltage swing is the largest. Due to non-volatility of S-MTJs, a Bayesian Cell can 

be switched OFF during inactive periods completely. This means there is no stand-by 

power consumed. 

5.3 Comparison of BN Inference on Physically Equivalent Implementation vs. 
Implementation on Multi-core Processors 

We use an example of a binary tree BN for benchmarking to illustrate the potential 

benefits of physically equivalent implementation for BNs vs. conventional abstraction 

 

Figure 32. Architecture of a Tilera 100-Core Processor [19]. 
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based software implementations on von Neumann machines. The software 

implementation is expected to run on state-of-the-art multi-core CMOS processors, such 

as those designed by Tilera Corp. [19]. These processors represent the cutting-edge trend 

in multi-core processing featuring up to 100 cores on a single chip (see Figure 32), and 

are well suited to leverage the inherent parallelism available in inference applications.  

We estimate the best-case performance of 64-core and 100-core processors for 

Bayesian operations. For a given BN size in terms of variables (or nodes), the runtime of 

an inference operation on CMOS processors is estimated based on hardware 

characteristics and algorithmic requirements (Pearl’s Message Propagation algorithm) for 

computation and memory. Hardware characteristics considered for multi-core processors 

considered in this work are listed in Table 5. Algorithmic computation requirements for 

an inference operation are extracted by considering the total number of arithmetic 

Table 5. Hardware Specifications for CMOS Multi-core Processors* 

 Notation Used Parameter Values 

No. of Cores 퐶 64 100 

Clock Speed 푇  1.33ns 0.67ns 

No. of Arithmetic Pipelines 푝 2 2 

Size of L2 Cache Line 푆 64B 64B 

DRAM Bus Width 퐵 64 Bits 72 Bits 

DRAM Data Rate 푅 51.2Gbps 136.5Gbps 

No. of DRAM Ports 푘 4 4 

Latency of Cache Miss L 80 Clock Cycles 

*Based on data-sheets from Tilera Corp. [19]. 
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operations occurring at a node in the BN, and multiplying by the total number of nodes. 

Operations that can be parallelized are distributed among the cores while the rest of them 

that depend on results of other operations are serialized, to compute the arithmetic 

execution time Tarith. Data memory requirements are identified for each node in the BN 

and total overhead in servicing the memory requirements, Tmem, is estimated. The on-chip 

communication time between cores Tcomm is neglected, thus taking the best-case scenario 

for the CMOS microprocessor implementation. CMOS runtime TCMOS is given by the 

sum of these components. Power and area are taken from datasheets by Tilera [19].  

5.3.1 Example Bayesian Network 

We use a binary tree (shown in Figure 33) for analytical estimation of run time for 

inference. Each node (or variable) in the BN has 4 states, and each child node has a single 

parent. This is selected such that target applications like gene expression networks [20], 

typically requiring 3 states for discrete gene expression levels can be supported. Each 

node maintains a CPT in addition to belief, likelihood and prior vectors. All the leaf 

 

Figure 33. Binary tree with n-levels as an example Bayesian Network used for 
benchmarking proposed physically-equivalent architecture vs. CMOS. Each parent 
node has 2 child nodes and every node can support 4 states. 



 

67 
 

nodes are assumed to be the evidence variables in the BN, such that any new evidence 

triggers an upward propagation of likelihood messages from the leaf nodes all the way to 

the root of the tree for an inference operation. Through the course of the inference, 

several messages are propagated in both bottom-up and top-down directions and every 

node performs several iterations before the process is completed. 

5.3.2 Analytical Model for Runtime Estimation of BN Inference on CMOS 
Multicore Processor 

Arithmetic Computation Requirements 

Our multi-core processor analysis is under ideal assumptions for parallelism, resource 

contention, and performance in general, so it is very optimistic and reflective of best-case 

performance. In a binary tree, the operations occurring in nodes at a given time step can 

be executed in parallel. Operations occurring across different time steps cannot be 

parallelized since belief update at a node depends on the messages propagated from its 

child/parent nodes. Two regions are identified for a given time-step l based on the 

number of active nodes Nl in that time step, and the number of processing cores C. 

Region I: Nl  ≥ C 

All cores are active with multiple BN nodes mapped to each core. Assuming that 

operations are scheduled such that maximum instruction level parallelism is achieved, the 

arithmetic execution time for this level with x operations per node is given by 

푇 =
푥.푁
퐶. 푝 × 푇 . (39) 

Region II: Nl  < C 
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A single BN node is mapped to a core, and the number of active cores is equal to the 

number of nodes at this level. Using same assumptions as before, the arithmetic 

execution time is given by 

푇 =
푥
푝 × 푇 . (40) 

Given the time for execution of arithmetic operations per time-step, we map out 

active levels at every step of the algorithm for the example BN. For example, when levels 

are labeled starting from 1 to n for a binary tree with n levels, at step 1 only the bottom-

most level with leaf nodes (level n) is active assuming all evidence variables are leaf 

nodes. In the second step, level n-1 is active. Third step sees levels n-2 and n as active 

due to both to-down and bottom-up message propagation. This sequence is mapped out 

until new messages cease to propagate. An example of this is shown in Table 6 for a 

binary tree BN with 127 nodes (7 levels; where levels are labeled starting with level 1 at 

root node through level 7 incorporating all leaf nodes). The arithmetic execution time 

across different time steps is additive since operations are serialized in time.  

The number of operations per node is determined by considering the events occurring 

at that node. At each node, there are two scenarios considered: (i) Bottom-up message 

propagation - diagnostic support received from child node(s); and (ii) Top-down message 

propagation - predictive support received from parent node. For a given node X, the 

following operations occur when diagnostic support messages are received from its child 

nodes Y and Z: 
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(a) Diagnostic support messages from the child nodes are composed to calculate the 

likelihood vector λ(X)  for node X. This operation requires 4 multiplications as follows – 

흀(푿) =  흀풀(푿) ∗ 흀풁(푿), (41) 
where each element in 흀(푿) is given by 

휆 (푋) = 휆 (푋) ⋅ 휆 (푋); 푖 = {1,2,3,4}.  
(42) 

Based on new evidence, a belief update is performed at node X using likelihood and 

priors. Computing the elements of the belief vector involves 4 multiplications, 3 additions 

and 4 divisions as follows –   

푩푬푳(푿) =  훼흅(푿) ∗ 흀(푿) (43) 
where each element in 푩푬푳(푿)is given by  

퐵퐸퐿 (푋) =  
휋 (푋) ⋅ 휆 (푋)

∑ 휋 (푋) ⋅ 휆 (푋) ; 푖 = {1,2,3,4}.  
(44) 

Table 6. Sequence of steps for a BN binary tree with 7 levels (127 nodes) 

127 Nodes   
Step Sequence Active Level ID #Active Nodes 

1 7             64 
2 6             32 
3 5 7           80 
4 4 6           40 
5 3 5 7         84 
6 2 4 6         42 
7 1 3 5 7       85 
8   2 4 6       42 
9     3 5 7     84 
10       4 6     40 
11         5 7   80 
12           6   32 
13             7 64 
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(c) Diagnostic support to parent of node X (say node A) is computed based on λ(X) and 

the CPT. This requires 16 multiplications and 12 additions as follows –    

흀푿(푨) =  푪푷푻(푿|푨)⨂흀(푿) (45)  

where each element in 흀푿(푨) is given by 

휆 (퐴) = 퐶푃푇 (푋|퐴) ⋅ 휆 (푋) ; 푖 = {1,2,3,4}. 

 

 

(46)  

(d) Predictive support to each child of node X is computed based on computed belief 

BEL(X) and the likelihood support from the child node. This requires 4 division 

operations per child node as follows –    

흅풀(푿) =
푩푬푳(푿)
흀풚(푿) ;    흅풁(푿) =

푩푬푳(푿)
흀풁(푿) . 

Here, 휋 (푋) = ( )
( )

; 휋 (푋) = ( )
( )

; 푖 = {1,2,3,4}. 

(47) 

For a given node X, the following operations occur when predictive support message 

is received from its parent node A: 

(a) Based on new predictive support, the prior vector for node X is calculated as follows:  

흅(푿) =  흅푿(푨)⨂푪푷푻(푿|푨). (48) 

This involves 16 multiplications and 12 additions similar to diagnostic support 

calculation discussed previously. 

(b) Belief update is performed at node X involving 4 multiplications, 3 additions and 4 

divisions as discussed earlier. 

(c) Predictive support to each child of node X is computed based on computed belief 

BEL(X) and the likelihood support from the child node. This requires 4 division 

operations per child node as discussed earlier. 
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Data Memory Requirements 

In order to execute the operations outlined in previous sub-section, each node requires 

access to data maintained in its CPT, belief vector, likelihood and prior vectors. The data 

memory requirement per node, M (measured in bytes), is then given by 

푀 = 퐸 × 푆 + 퐸 × 푆 + 퐸 × 푆 + 퐸 × 푆 . (49) 

Here, Ei denotes the number of entries and Si denotes the number of bytes per entry 

for component i. Since in our example each node supports 4 states, the CPT has 16 

entries (all possible state combinations of the node and its parent), while the likelihood 

(λ), prior (π) and belief (BEL) vectors have 4 entries each. The size of each entry is 

assumed to be 2 bytes.  

At every time-step in the algorithm, we determine the data memory required for 

computations occurring in that step (see Table 5 for example of BN with 127 nodes). This 

data has to be retrieved from the main memory (DRAM) due to misses in the cache. For 

every cache miss, a cache line (of size S bytes) is brought in from main memory. If 

latency is L cycles, B is the DRAM bus-width in bytes and R is the data rate in bytes per 

second, the time to service a cache miss is given by 

푇 = 퐿 × 푇 +
(푆 − 퐵)

푅 . 
(50) 

Here, the data rate R is given by Min(DRAM_data_rate, Chip_network_data_rate). If 

k cores can be serviced by the main memory in parallel, the total time to service memory 

requests for a given time step is estimated by 

푇 =
1
푘 × 푁표. 표푓 푐푎푐ℎ푒 푚푖푠푠푒푠 × 푇  (51) 
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=
1
푘 ×

푁 ×푀
푆 × 푇 . 

Here Nl is the number of nodes active in a given time-step. Thus total arithmetic 

execution time for a BN with n levels, and 2n-1 time steps is given by 

푇 =  (푇 + 푇 + 푇 ). (52) 

For simplicity, the communication cost of transferring the data over the on-chip 

network is not considered, i.e. Tl
comm = 0. This is a best-case scenario for CMOS 

assuming maximum instruction level parallelism can be achieved and does not take into 

account effects such as network contention, conflict misses, etc. 

5.3.3 Runtime Estimation of Inference on Proposed Physically Equivalent 
Architecture 

For the proposed physically equivalent architecture, runtime estimation for inference 

is based on critical path analysis, and area is estimated based on total number of Bayesian 

Cells and switch boxes for a given size of BN. Worst-case power dissipation is 

determined by the maximum number of active nodes and power dissipated per node. 

We directly implement the BN in hardware and the message propagation algorithm is 

implemented with the Probability Composer framework. Every node is mapped to a 

Bayesian Cell that uses Composers to realize the computations for inference and 

internally maintains the required data using non-volatile S-MTJs. Thus for a binary tree, 

inference proceeds in an event-driven manner; each level executes the required 

operations and propagates messages to the neighboring levels. All the computations 

among nodes at a given time-step are completely parallel. The total number of message 
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propagation steps required by the algorithm determines the total execution time. This is 

given by the maximum diameter of the network in trees [1]. If the number of levels is n 

and execution time per level Tl, the total execution time is then given by 

푇 = (2푛 − 1) × 푇 + 푇 . (53) 

Here, Tcomm is the latency of communicating probability messages between nodes. In 

order to estimate the execution time per level in the binary tree, we look at the critical 

path within a node and consider the worst-case delay for Bayesian Cell (Table 4). 

Propagating the message to a parent/child node is a near-neighbor voltage 

communication event, and is calculated by the switch-box delay, as described Section 

5.2. This determines the communication delay for one step, and total number of message 

propagation events multiplied by this number yields the total communication delay. 

5.4 Benchmarking Results  

Our evaluations (see Figure 34) indicate that PEAR can provide 4 orders of 

magnitude performance speedup over 100-core processors, in supporting BNs with large 

problem sizes involving random variables in the millions. This is considering the best-

case performance scenario for CMOS multi-core processors, and the worst-case delays in 

proposed physically equivalent architecture for a computational resolution of 0.1. 

Furthermore,  it is able to support real-time intelligence capabilities at ~20 mWs power 

consumption and very low die area cost of around a few tenths of a mm2 for problem 

domains in the order of 100 variables. This latter is adequate for many real-world systems 

such as sensors and automation controllers. Our vision is that every embedded 

application could incorporate intelligence capability at this problem scale. Alternative 

implementation using this information representation, probabilistic circuit and 
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architecture framework may be possible with all-spin devices where the charge current’s 

role is replaced with spin current in All-Spin Probabilistic Composers. 

 

 

Figure 34. Comparison of BN implementation on CMOS multicore processors and 
PEAR for Bayesian Inference (Composers use resolution of 0.1). (a) Estimated 
runtime comparison; (b) Estimated worst-case active power dissipation; and (c) 
Estimated area for BN implementations of different network sizes. 
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5.5 Discussion on BN Accuracy 

 In the context of BNs, the definition of accuracy is application-specific. It is 

determined by several factors such as quality of BN structure (variables and relationships 

captured), quality of parameters in the model learned from available data or elicited from 

experts, etc. rather than arithmetic precision alone. It is widely believed in the BN 

community, with empirical support for some example applications, that BN inference is 

tolerant to imprecision in numerical parameters. 

We quote two studies that were performed to analyze the impact of reducing 

numerical precision on BN accuracy. The first study was aimed at analyzing the impact 

of reduced numerical precision of parameters on medical diagnostic systems, conducted 

by Onisko et al. [31]  to study BN sensitivity to numerical precision. The authors use a 

BN model of HAPAR II diagnostic system for liver disease diagnosis, and systematically 

reduce the numerical precision to different resolutions by rounding to coarser scales. For 

each resolution, they determined the percentage of cases from real patient data that were 

correctly diagnosed (most likely disorder among various modeled disorders given patient 

data). They concluded that as long as rounding to zero was avoided (by introducing a 

small error factor), the numerical precision of parameters did not impact the accuracy of 

diagnoses (see Figure 35). They also repeated this process for several other diagnostic 

systems [31] and found the same results in all cases. This anecdote indicates that 

numerical precision alone does not determine the accuracy of BN inference for some of 

the medical diagnostic applications. 
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The second study analyzed the impact of reduced BN numerical precision in image 

classification applications, motivated by the possibility of using reduced precision BN 

implementations in hardware for embedded/low-power applications [32]. The authors 

reduced the bit-width of parameters and studied the impact on classification rate 

(percentage of correct classifications) on real-world datasets. Again, here they observed 

that even when using reduced bit-width of 3 to 4 bits for parameters, the classification 

rate was close to optimal (i.e. with full precision) (see Figure 36).  

These empirical studies indicate that there are applications that are not sensitive to 

numerical precision of BNs for accuracy. In fact, capturing as many variables and 

relationships as possible for a given problem domain may be more important than 

supporting full numerical precision. With our proposed approach, we believe that we can 

 

Figure 35. Diagnostic Accuracy vs. Numerical Precision in HEPAR II Bayesian 
Network for diagnosis of liver diseases. Here, ε represents an error factor added to 
prevent rounding to zeroes. This figure is adapted from ref. [31]. 
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do just that by incorporating variables in the order of a million, and still achieve orders of 

magnitude performance benefits over conventional microprocessors. This could enable 

learning more complex networks from data than what is possible today, and allow 

reasoning in real-time. 

5.5.1 Study on Error Propagation due to Rounding in Binary Tree 

In addition to the above studies, we investigate the propagation of errors in an 

example BN (binary tree that we used to project benefits of our approach) due to 

rounding of calculated results. Our aim is to identify the degradation in belief values 

(which is the result of inference) with respect to number of propagation levels in the tree. 

Given that the resolution of the machine we evaluated in the previous section is 0.1, we 

 

Figure 36. Classification rates for Bayesian Network Classifiers with reduced 
precision vs. number of bits used to represent parameters, adapted from ref. [32]. 
Different dataset samples were used in these experiments, as described in ref. [32].  
USPS Data: This dataset contains 11000 uniformly distributed handwritten digit 
images from zip codes of mail envelopes. Each digit is represented as a 16x16 
grayscale image, where each pixel is considered as feature. MNIST Data: This dataset 
contains 70000 samples of handwritten digits, i.e. 7000 samples of each digit. DC-
Mall Data: This dataset contains a hyperspectral remote sensing image of the 
Washington D.C. Mall area. In total, there are 1280x307 hyper-spectral pixels, each 
containing 191 spectral bands. From these spectral bands, individual pixels are to be 
classified to one of 7 classes (roof, road, grass, trees, trail, water, or shadow).  
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assume that an error of +0.1 can be tolerated. We built a BN behavioral simulator using 

C++ for Pearl’s belief propagation algorithm based on our proposed implementation. It 

performs inference calculations for each level in the tree by modeling Composer circuit 

behavior with resolution of 0.1, and compares against full numerical resolution to 

compute the error due to rounding at every propagation step. 

We take an example BN, which is a binary tree with each variable having two states. 

Starting from the leaf nodes, we apply all possible combinations of observed states and 

propagate the evidence in the tree as per Pearl’s Belief Propagation algorithm. The inputs 

at the leaf nodes (evidence) are assumed to be error-free, and any error observed in 

successive calculations is purely due to numerical rounding of results to a resolution of 

0.1. Output statistics are collected at every level, which includes the output combinations 

with their statistical frequencies of occurrence, and the errors in belief values. We bin the 

errors into multiple intervals (see Figure 37) to get the distribution for errors in belief at 

each level. 

We perform full simulation of all possible input combinations for levels 0-2 in Figure 

38. Due to the explosion in the number of combinations as we go higher up the tree, it 

becomes infeasible to continue full simulation of all input combinations. After level 3 

from the bottom (Figure 38) we use a million different input combinations (limited by the 

computing resources), selected randomly from the list of input combinations, for every 

succesive level. Each combination is weighted as per the statistical distribution obtained 

from the preceeding level, and multiple trials (in this case 12, limited by computing 

resources) are performed.  
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Figure 37. Methodology for study of propagation of errors due to rounding: (a) Figure 
showing a part of the binary tree BN. Leaf nodes are evidence variables and are 
assumed to have no errors in observations. Rounding errors start occurring from level 1 
in belief calculations for each node and diagnostic support messages at the output of 
each node. (b) Rounding error statistics for belief at node X in (a). (c) Error statistics 
for diagnostic support message from node X to node A. (d), (e) Error statistics for belief 
and diagnostic support respectively at node A. 
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At each level, we calculate the percentage of belief values that lie within an error of 

+0.1.  For the levels where inputs were randomly sampled, we calculate the average value 

from all trials and measure the sample standard deviation. From Figure 38, we see that 

even at level 6 (which is up to 127 nodes in BN), the % of cases with errors in belief 

values within +0.1 is 94.8%. Further levels show increasing standard deviation, 

indicating that the samples used are not sufficient. This study shows that atleast for a BN 

with about 100 nodes, the error propagation in belief values due to rounding is not severe. 

As discussed earlier, applications exist where a resolution of 0.1 is tolerable and provides 

an accuracy that is close to optimal. However, for larger networks with more than 10000 

nodes, the accuracy rate falls to about 60%. Due to increasing standard deviation, it is 

difficult to conclusively state the accuracy rate for these large networks. Further study 

guided by application context is required to understand the impact on BNs with larger 

 

Figure 38. Results of error propagation study: (left) Binary tree BN considered; and 
(right) Error statistics for each level showing % of cases with errors in belief values 
within +0.1 (resolution of the example circuits used in this work). From level 7 
onwards, increasing standard deviation indicates more samples are required. 
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number of variables.  

It should be noted that the benefits of the proposed approach highlighted in the 

Section 5.4 are valid as long as applications can tolerate a resolution of 0.1 for Bayesian 

inference. While some applications have been shown to be amenable to the proposed 

implementation, problem domains with large number of variables (several tens of 

thousands to million) would need to exercise caution when using reduced numerical 

resolution. Depending on the application requirements, different hybrid schemes may be 

implemented where critical variables or inference paths use higher computational 

resolution than others (discussed in a subsequent section). These schemes would incur a 

trade-off between computational resolution and area/power impact on each BC, and thus 

may limit the maximum number of variables that can be supported using the proposed 

approach. Alternatively, each BC may implement all computations in the analog domain 

with decomposers only at the output interface between BCs to maintain computational 

resolution. This would, however, depend on the noise sources for magneto-electric 

devices and available noise margins to be identified as research on these unconventional 

devices progresses. 

5.5.2 Effect of Errors due to Probabilistic Switching of S-MTJs 

 When an input is applied to a S-MTJ for switching, there is a finite probability of 

switching failure associated with it due to random thermal fluctuations [14]. Ths S-MTJ 

can be designed to minimize this switching probability, and it has been shown that 

switching error probability is as low as 10-6 [14]. We analyze the impact of switching 

failures on BN accuracy in this section. 



 

82 
 

We follow a similar mindset as before, used for evaluating impact of reduced 

numerical precision on example BN binary tree. Here, we extend the simulation 

framework to include errors due to switching failure for every S-MTJ in Probability 

Arithmetic Composers associated with BN inference. We model an S-MTJ switching 

event as a binary random variable with two states (switching is true or false) using a 

Bernoulli distribution, which takes the probability of correct switching as a parameter. 

For each Composer, the number of S-MTJs that need to switch is a function of the 

applied input probability value. For every S-MTJ that is required to switch, we sample 

the switching event from the parameterized Bernoulli distribution. In case of switching 

failure, we add an error to the computation result that is proportional to the number of S-

MTJs that failed to switch (for a computational resolution of 0.1, every S-MTJ switching 

failure results in an error of 0.1).  

We analyze the impact of error propagation due to both rounding and S-MTJ 

switching failures in a BN binary tree, for a range of S-MTJ switching error probabilities 

 

Figure 39. Methodology for analyzing error propagation due to conjunction of 
rounding errors and S-MTJ switching failures. The impact of switching failures starts 
to appear in the leaf nodes, even with the assumption that input observations are error-
free. 
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from 10-3 to 10-6. For the leaf nodes, the inputs are considered to be error-free assuming 

that observations on the state of these variables is error-free. However S-MTJ switching 

failures can introduce errors even in the leaf nodes, which is taken into account (Figure 

39). Then every successive computation takes S-MTJ switching errors into account in 

addition to rounding and propagates the result. The results for levels 0 to 1 are shown in 

Table 7. We see that for the target error probability of 10-6, the impact due to S-MTJ 

switching failures is minial when compared to impact due to rounding errors. As the 

switching error rate increases, it introduces a more significant degradation in error 

accumulation. 

5.6 Improving Computational Resolution for Probability Composers and 
Decomposers 

In this work, we used Composers with a resolution of 0.1 as an example, since 

applications exist as mentioned in earlier sections that can tolerate this resolution. 

However, the resolution for computation can be improved further by increasing the 

number of S-MTJs used in each Composer and Decomposer. There is an inverse 

relationship between the computational resolution and the nuber of devices in a 

Table 7. Impact of S-MTJ switching errors and rounding errors on belief values at 
Level 1 in the binary tree BN (Figure 39) 

S-MTJ Switching Error Probability Belief Error Statistics at Level 1 (% of cases 
with error within +0.1) 

10-3 96.75 
10-4 97.63 
10-5 97.72 
10-6 97.733 

0 97.734 
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Composer (Figure 40a-b shows the relationship for a 2-state S-MTJ based Composer). 

The highest resolution achievable is limited by the number of input voltage levels that the 

Decomposer can succesfully distinguish. 

Theoretically speaking, this limit can be estimated based on the switching 

characteristics of non-volatile S-MTJs. As shown in Figure 6, there is a window of about 

4mV during which the S-MTJ is in the process of switching. Thus when a Decomposer is 

switching a non-volatile S-MTJ in its successive stage, it can theoretically distinguish a 

voltage difference of 4mV at its input assuming ideal conditions and no external/thermal 

noise. This would allow a theoretical computational resolution of up to 0.005 (about 200 

voltage intervals between 0-1V). However in practice, the presence of other factors such 

as noise would limit the resolution. Noise sources for magneto-electric circuits are still 

being researched and more information will become available to be used for this analysis 

as research in this field progresses.  

In our work, we estimate the impact of improving the computational resolution on a 

Bayesian Cell and Switch Box (one of each for every variable), for a resolution of up to 

0.01 (see Figure 40). As the number of S-MTJs used in each Probability 

Composer/Decomposer increases, it has a linear impact on the area, power and delay for 

each Bayesian Composer. Using this, we project the impact for various computational 

resolutions on area and the power-delay product (energy efficiency) per variable 

(Bayesian Cell and Switch Box) using our proposed approach. The estimated impact is 

shown in Figure 40c-d. As we can see, there is a significant improvement in resolution 

for a modest cost for down to 0.02. After that, the area and energy costs rapidly increase 

for miminal resolution gains.  
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This feature of improving resolution through number of S-MTJs provides 

opportunities per application requirements, where heterogeneous schemes may be 

explored with critical variables using higher resolution than other variables. There may 

be other avenues for improving computational resolution as well. One possible approach 

would be to use multi-state S-MTJs as they become available in future. Other approaches 

could look at using weighted number representations for probability data representation 

rather than flat non-weighted spatial vectors used in this work. However, such schemes 

 

Figure 40. Improving computational resolution in Probability Composers. (a) 
Probability Composer schematic, and (b) Graph showing relationship between 
computational resolution and number of S-MTJ devices used in Composer circuits; 
(c) Estimated area, and (d) Estimated energy per Bayesian Cell for various 
computational resolutions. 
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may be impacted significantly by S-MTJ switching failures depending on the position at 

which a failure occurs. Further improvements in S-MTJ switching reliability may enable 

such weighted number schemes to be used in future. Alternative emerging devices may 

present other avenues for implementing physically equivalent systems for machine 

intelligence at nanoscale. 
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CHAPTER 6 

CONCLUSION 

In this dissertation, we introduced the concept of physical equivalence for hardware 

implementation of unconventional computing frameworks for enabling machine 

intelligence. We illustrated the approach for Bayesian Networks (BNs), which is a highly 

successful and widely used probabilistic formalism for reasoning under uncertainty. We 

used physical equivalence at all layers starting from data representation, to non-volatile 

Probability Composer circuits that operate on probabilities directly using mixed-signal 

arithmetic, and finally a non von Neumann reconfigurable architecture that is capable of 

directly mapping BNs to hardware using Bayesian Cells for implementing the nodes and 

reconfigurable switch box based routing for implementing the links. We presented details 

on implementation of the Bayesian Inference Engine that peforms computations involved 

during Inference operation using Pearl’s Belief Propagation algorithm.  

We showed that due to computation-in-memory capability enabled by emerging 

straintronic MTJ devices and the proposed mangeto-electric mixed signal circuit 

framework, we can implement large-scale distributed reasoning system using Physically 

Equivalent Architecture. The projected benefits in terms of runtime was up to 4 orders of 

magnitude when compared to state-of-the-art CMOS 100 core processors, for a BN with 

up to a million variables when Composers used a resolution of 0.1. We also evaluated the 

propagation of errors in an example binary tree BN due to rounding to 0.1 computational 

resolution and probabilistic S-MTJ switching failures. The impact of S-MTJ switching 

failures was overshadowed by rounding errors when the S-MTJ switching error rate was 
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1 in 106. We also evaluated the impact of increasing computational resolution on area and 

energy efficiency of a Bayesian Cell.  

Future directions could explore specific applications using the proposed framework. 

Heterogeneous schemes may be explored with critical variables using higher resolution 

than other variables through some of the concepts discussed in this thesis. The proposed 

architecture may be extended with an implementation for a Learning Engine in a 

Bayesian Cell. Bayesian Network learning consists of parameter learning and structure 

learning. Learning tasks are performed on available data sets for a given problem and 

involve repeated inference tasks. This is where the tremendous performance benefit is 

expected to be leveraged.  

The complexity of learning depends on the characteristics of available data sets. The 

simplest scenario for learning is when the structure of a BN is known, but parameters 

need to be learnt from data sets that are complete (all variables are observed and every 

data set has values assigned to all variables). The parameter learning task then reduces to 

a statistical estimation of joing probabilities of a parent-child state combination over the 

entire data set. A second scenario is when given a BN structure, the parameters need to be 

learnt from an incomplete data set. Here, incomplete data set means that some variables 

are missing assignments in the observations. Assuming that they are missing at random 

[16] (which is a typical assumption made to make the parameter estimation task 

tractable), the parameters of the BN can be estimated using iterative algorithms, such as 

the Estimation-Maximization (EM) algorithm [16]. In this scenario, an inference 

operation is performed to estimate the missing probabilitied for every data set so as to 
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complete the missing assignments. Then once the data set is completed, the probabilities 

for parent-child state combinations are estimated statistically. 

The final scenario is when both structure and parameters of BN are unknown and 

need to be estimated from data. This has the highest complexity since the number of 

candidate structures is super exponential in the number of variables of a BN. Several 

heuritic techniques are used to narrow the search space for candidate graphs, such as 

using search-and-score methods with Hill-Climbing algorithm [16]. Then for every 

candidate graph, the parameters are estimated using EM algorithm. This approach 

however can easily get intractable for BNs of large sizes. A different approach was 

suggested that altenated between structure search and parameter estimation, called the 

Alternating Model Selection EM (AMS-EM) algorithm [21]. The learning operations are 

further complicated when the data is incomplete. 

Practical situations typically have incomplete data sets from which either parameter 

or structure or both need to be estimated. BN learning then involves performing several 

inference runs to estimate the missing values in the data sets. As shown earlier in this 

thesis, the physically equivalent implementation for BNs shows up to 4 orders of 

magnitude performance improvement for BN inference over convetional software 

implementation using multi-core processors. Thus when learning is incorporated, it is 

expected to lead to tremendous performance benefits due to iterative inference operations 

involved, enabling critical real-world applications that may be infeasible today. 

Alternative emerging devices may present other avenues for implementing physically 

equivalent systems for machine intelligence at nanoscale. 
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