5,042 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Reservoir water release dynamic decision model based on spatial temporal pattern

    Get PDF
    The multi-purpose reservoir water release decision requires an expert to make a decision by assembling complex decision information that occurred in real time. The decision needs to consider adequate reservoir water balance in order to maintain reservoir multi-purpose function and provide enough space for incoming heavy rainfall and inflow. Crucially, the water release should not exceed the downstream maximum river level so that it will not cause flood. The rainfall and water level are fuzzy information, thus the decision model needs the ability to handle the fuzzy information. Moreover, the rainfalls that are recorded at different location take different time to reach into the reservoir. This situation shows that there is spatial temporal relationship hidden in between each gauging station and the reservoir. Thus, this study proposed dynamic reservoir water release decision model that utilize both spatial and temporal information in the input pattern. Based on the patterns, the model will suggest when the reservoir water should be released. The model adopts Adaptive Neuro-Fuzzy Inference System (ANFIS) in order to deal with the fuzzy information. The data used in this study was obtained from the Perlis Department of Irrigation and Drainage. The modified Sliding Window algorithm was used to construct the rainfall temporal pattern, while the spatial information was established by simulating the mapped rainfall and reservoir water level pattern. The model performance was measured based on the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Findings from this study shows that ANFIS produces the lowest RMSE and MAE when compare to Autoregressive Integrated Moving Average (ARIMA) and Backpropagation Neural Network (BPNN) model. The model can be used by the reservoir operator to assist their decision making and support the new reservoir operator in the absence of an experience reservoir operator

    Management of Pollution in Groundwater Systems Using Neuro-Fuzzy Model

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    A simulation-optimization framework for reducing thermal pollution downstream of reservoirs

    Get PDF
    Thermal pollution is an environmental impact of large dams altering the natural temperature regime of downstream river ecosystems. The present study proposes a simulation-optimization framework to reduce thermal pollution downstream from reservoirs and tests it on a real-world case study. This framework attempts to simultaneously minimize the environmental impacts as well as losses to reservoir objectives for water supply. A hybrid machine-learning model is applied to simulate water temperature downstream of the reservoir under various operation scenarios. This model is shown to be robust and achieves acceptable predictive accuracy. The results of simulation-optimization indicate that the reservoir could be operated in such a way that the natural temperature regime is reasonably preserved to protect downstream habitats. Doing so, however, would result in significant trade-offs for reservoir storage and water supply objectives. Such trade-offs can undermine the benefits of reservoirs and need to be carefully considered in reservoir design and operation
    • …
    corecore