1,358 research outputs found

    Integrated, reliable and cloud-based personal health record: a scoping review.

    Get PDF
    Personal Health Records (PHR) emerge as an alternative to integrate patient’s health information to give a global view of patients' status. However, integration is not a trivial feature when dealing with a variety electronic health systems from healthcare centers. Access to PHR sensitive information must comply with privacy policies defined by the patient. Architecture PHR design should be in accordance to these, and take advantage of nowadays technology. Cloud computing is a current technology that provides scalability, ubiquity, and elasticity features. This paper presents a scoping review related to PHR systems that achieve three characteristics: integrated, reliable and cloud-based. We found 101 articles that addressed thosecharacteristics. We identified four main research topics: proposal/developed systems, PHR recommendations for development, system integration and standards, and security and privacy. Integration is tackled with HL7 CDA standard. Information reliability is based in ABE security-privacy mechanism. Cloud-based technology access is achieved via SOA.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Highly Scalable and Secure Mobile Applications in Cloud Computing Systems

    Get PDF
    Cloud computing provides scalable processing and storage resources that are hosted on a third-party provider to permit clients to economically meet real-time service demands. The confidentiality of client data outsourced to the cloud is a paramount concern since the provider cannot necessarily be trusted with read access to voluminous sensitive client data. A particular challenge of mobile cloud computing is that a cloud application may be accessed by a very large and dynamically changing population of mobile devices requiring access control. The thesis addresses the problems of achieving efficient and highly scalable key management for resource-constrained users of an untrusted cloud, and also of preserving the privacy of users. A model for key distribution is first proposed that is based on dynamic proxy re-encryption of data. Keys are managed inside the client domain for trust reasons, computationally-intensive re-encryption is performed by the cloud provider, and key distribution is minimized to conserve communication. A mechanism manages key evolution for a continuously changing user population. Next, a novel form of attribute-based encryption is proposed that authorizes users based on the satisfaction of required attributes. The greater computational load from cryptographic operations is performed by the cloud provider and a trusted manager rather than the mobile data owner. Furthermore, data re-encryption may be optionally performed by the cloud provider to reduce the expense of user revocation. Another key management scheme based on threshold cryptography is proposed where encrypted key shares are stored in the cloud, taking advantage of the scalability of storage in the cloud. The key share material erodes over time to allow user revocation to occur efficiently without additional coordination by the data owner; multiple classes of user privileges are also supported. Lastly, an alternative exists where cloud data is considered public knowledge, but the specific information queried by a user must be kept private. A technique is presented utilizing private information retrieval, where the query is performed in a computationally efficient manner without requiring a trusted third-party component. A cloaking mechanism increases the privacy of a mobile user while maintaining constant traffic cost

    A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing

    Get PDF
    Cloud computing (CC) is among the most rapidly evolving computer technologies. That is the required accessibility of network assets, mainly information storage with processing authority without the requirement for particular and direct user administration. CC is a collection of public and private data centers that provide a single platform for clients throughout the Internet. The growing volume of personal and sensitive information acquired through supervisory authorities demands the usage of the cloud not just for information storage and for data processing at cloud assets. Nevertheless, due to safety issues raised by recent data leaks, it is recommended that unprotected sensitive data not be sent to public clouds. This document provides a detailed appraisal of the research regarding data protection and privacy problems, data encrypting, and data obfuscation, including remedies for cloud data storage. The most up-to-date technologies and approaches for cloud data security are examined. This research also examines several current strategies for addressing cloud security concerns. The performance of each approach is then compared based on its characteristics, benefits, and shortcomings. Finally, go at a few active cloud storage data security study fields

    Data security in cloud storage services

    Get PDF
    Cloud Computing is considered to be the next-generation architecture for ICT where it moves the application software and databases to the centralized large data centers. It aims to offer elastic IT services where clients can benefit from significant cost savings of the pay-per-use model and can easily scale up or down, and do not have to make large investments in new hardware. However, the management of the data and services in this cloud model is under the control of the provider. Consequently, the cloud clients have less control over their outsourced data and they have to trust cloud service provider to protect their data and infrastructure from both external and internal attacks. This is especially true with cloud storage services. Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use by multiple devices (e.g. smart phones, tablets, notebooks, etc.). Besides famous cloud storage providers, such as Amazon, Google, and Microsoft, more and more third-party cloud storage service providers are emerging. These services are dedicated to offering more accessible and user friendly storage services to cloud customers. Examples of these services include Dropbox, Box.net, Sparkleshare, UbuntuOne or JungleDisk. These cloud storage services deliver a very simple interface on top of the cloud storage provided by storage service providers. File and folder synchronization between different machines, sharing files and folders with other users, file versioning as well as automated backups are the key functionalities of these emerging cloud storage services. Cloud storage services have changed the way users manage and interact with data outsourced to public providers. With these services, multiple subscribers can collaboratively work and share data without concerns about their data consistency, availability and reliability. Although these cloud storage services offer attractive features, many customers have not adopted these services. Since data stored in these services is under the control of service providers resulting in confidentiality and security concerns and risks. Therefore, using cloud storage services for storing valuable data depends mainly on whether the service provider can offer sufficient security and assurance to meet client requirements. From the way most cloud storage services are constructed, we can notice that these storage services do not provide users with sufficient levels of security leading to an inherent risk on users\u27 data from external and internal attacks. These attacks take the form of: data exposure (lack of data confidentiality); data tampering (lack of data integrity); and denial of data (lack of data availability) by third parties on the cloud or by the cloud provider himself. Therefore, the cloud storage services should ensure the data confidentiality in the following state: data in motion (while transmitting over networks), data at rest (when stored at provider\u27s disks). To address the above concerns, confidentiality and access controllability of outsourced data with strong cryptographic guarantee should be maintained. To ensure data confidentiality in public cloud storage services, data should be encrypted data before it is outsourced to these services. Although, users can rely on client side cloud storage services or software encryption tools for encrypting user\u27s data; however, many of these services fail to achieve data confidentiality. Box, for example, does not encrypt user files via SSL and within Box servers. Client side cloud storage services can intentionally/unintentionally disclose user decryption keys to its provider. In addition, some cloud storage services support convergent encryption for encrypting users\u27 data exposing it to “confirmation of a file attack. On the other hand, software encryption tools use full-disk encryption (FDE) which is not feasible for cloud-based file sharing services, because it encrypts the data as virtual hard disks. Although encryption can ensure data confidentiality; however, it fails to achieve fine-grained access control over outsourced data. Since, public cloud storage services are managed by un-trusted cloud service provider, secure and efficient fine-grained access control cannot be realized through these services as these policies are managed by storage services that have full control over the sharing process. Therefore, there is not any guarantee that they will provide good means for efficient and secure sharing and they can also deduce confidential information about the outsourced data and users\u27 personal information. In this work, we would like to improve the currently employed security measures for securing data in cloud store services. To achieve better data confidentiality for data stored in the cloud without relying on cloud service providers (CSPs) or putting any burden on users, in this thesis, we designed a secure cloud storage system framework that simultaneously achieves data confidentiality, fine-grained access control on encrypted data and scalable user revocation. This framework is built on a third part trusted (TTP) service that can be employed either locally on users\u27 machine or premises, or remotely on top of cloud storage services. This service shall encrypts users data before uploading it to the cloud and decrypts it after downloading from the cloud; therefore, it remove the burden of storing, managing and maintaining encryption/decryption keys from data owner\u27s. In addition, this service only retains user\u27s secret key(s) not data. Moreover, to ensure high security for these keys, it stores them on hardware device. Furthermore, this service combines multi-authority ciphertext policy attribute-based encryption (CP-ABE) and attribute-based Signature (ABS) for achieving many-read-many-write fine-grained data access control on storage services. Moreover, it efficiently revokes users\u27 privileges without relying on the data owner for re-encrypting massive amounts of data and re-distributing the new keys to the authorized users. It removes the heavy computation of re-encryption from users and delegates this task to the cloud service provider (CSP) proxy servers. These proxy servers achieve flexible and efficient re-encryption without revealing underlying data to the cloud. In our designed architecture, we addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized rights. To resolve these issues, we designed a trusted third party (TTP) service that is in charge of storing data in an encrypted format in the cloud. To improve the efficiency of the designed architecture, the service allows the users to choose the level of severity of the data and according to this level different encryption algorithms are employed. To achieve many-read-many-write fine grained access control, we merge two algorithms (multi-authority ciphertext policy attribute-based encryption (MA- CP-ABE) and attribute-based Signature (ABS)). Moreover, we support two levels of revocation: user and attribute revocation so that we can comply with the collaborative environment. Last but not least, we validate the effectiveness of our design by carrying out a detailed security analysis. This analysis shall prove the correctness of our design in terms of data confidentiality each stage of user interaction with the cloud

    Protection of big data privacy

    Full text link
    In recent years, big data have become a hot research topic. The increasing amount of big data also increases the chance of breaching the privacy of individuals. Since big data require high computational power and large storage, distributed systems are used. As multiple parties are involved in these systems, the risk of privacy violation is increased. There have been a number of privacy-preserving mechanisms developed for privacy protection at different stages (e.g., data generation, data storage, and data processing) of a big data life cycle. The goal of this paper is to provide a comprehensive overview of the privacy preservation mechanisms in big data and present the challenges for existing mechanisms. In particular, in this paper, we illustrate the infrastructure of big data and the state-of-the-art privacy-preserving mechanisms in each stage of the big data life cycle. Furthermore, we discuss the challenges and future research directions related to privacy preservation in big data

    Framework to establish offline file sharing in Application as a service layer in cloud computing

    Get PDF
    Term cloud computing has opened entire new domain of computability, reliability and efficiency. Organizations can now focus on providing targeted services to consumers rather than considering infrastructure and resource issues. Cloud consumers can enjoy ease of computing and power of reliability but cloud service providers have to ensure many measures to let cloud services be reality and reliable. Consumers can store their valuable data on cloud and can use them as and when required. This leads to some key points like security of cloud data should be considered, sharing of cloud data as per requirement should be done. Allocation of required resources to the consumers should be done efficiently and above all, cloud service providers should have opportunity to gain some economical values. This research paper is based on providing some mechanism to allow file sharing among various cloud users. This paper proposed a framework that can be followed to easily share file residing on cloud with another cloud user. In this framework, concept of cryptography has been used to generate secure key that can be shared among users. Cryptography allows encryption and decryption of different normal text to some cipher text that cannot be interpreted easily. This paper has proposed secure mechanism of generating key, sharing a key and validating use of key for given file. Most important aspect considered in this research paper is, the user who owns a file and wants to provide access to other user don’t have internet access at hand. Framework uses mobile technology to contact service providers and generate a key as and when needed. Keywords— Cloud computing, cryptography, AES, RSA, Security, Authentication, Validation, Application as a servic

    A Review on Data Storage Security in Cloud Computing Environment for Mobile devices

    Get PDF
    Cloud computing is a platform which provides different capabilities which are not just limited to storage, networking and computing capability as a service to users through Internet. Users can automatically request and release these resources on demand, by paying charges for the quantity and quality of service they use. Cloud computing for Mobile which is also referred as Mobile Cloud Computing is combination of mobile with cloud computing that provides user with unlimited access to the pool of different resources from cloud without affecting mobilization of user with his Mobile. As with its advantages it comes with the risk of data read by the cloud service provider or been grabbed by someone else using man-in-middle attack, thus affecting user privacy and integrity and losing users trust further over the service. These issues can be solved by implementing different techniques like encryption, avoiding unauthorized access to user to have access to stored data. Any algorithm or technique used for securing data should consider few important points like Mobile devices are battery powered and have less processing capability and have less storage space. In this paper we reviewed different techniques for secure storage of user’s data in the cloud, their advantages and disadvantages for mobile cloud computing environment. DOI: 10.17762/ijritcc2321-8169.150514
    • …
    corecore