
Highly Scalable and Secure

Mobile Applications

in Cloud Computing Systems

by

Piotr Konrad Tysowski

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

© Piotr Konrad Tysowski 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Cloud computing provides scalable processing and storage resources that are hosted on

a third-party provider to permit clients to economically meet real-time service demands.

The confidentiality of client data outsourced to the cloud is a paramount concern since

the provider cannot necessarily be trusted with read access to voluminous sensitive client

data. A particular challenge of mobile cloud computing is that a cloud application may be

accessed by a very large and dynamically changing population of mobile devices requiring

access control. The thesis addresses the problems of achieving efficient and highly scalable

key management for resource-constrained users of an untrusted cloud, and also of preserving

the privacy of users. Computation and wireless communication is minimized for mobile

users while preserving the confidentiality of cloud data and of users retrieving it.

A model for key distribution is first proposed that is based on dynamic proxy re-

encryption of data. Keys are managed inside the client domain for trust reasons,

computationally-intensive re-encryption is performed by the cloud provider, and key dis-

tribution is minimized to conserve communication. A mechanism manages key evolution

for a continuously changing user population.

Next, a novel form of attribute-based encryption is proposed that authorizes users

based on the satisfaction of required attributes. The greater computational load from

cryptographic operations is performed by the cloud provider and a trusted manager rather

than the mobile data owner. Furthermore, data re-encryption may be optionally performed

by the cloud provider to reduce the expense of user revocation.

Another key management scheme based on threshold cryptography is proposed where

encrypted key shares are stored in the cloud, taking advantage of the scalability of storage

in the cloud. The key share material erodes over time to allow user revocation to occur

efficiently without additional coordination by the data owner; multiple classes of user

privileges are also supported.

Lastly, an alternative exists where cloud data is considered public knowledge, but the

specific information queried by a user must be kept private. A technique is presented

utilizing private information retrieval, where the query is performed in a computationally

efficient manner without requiring a trusted third-party component. A cloaking mechanism

increases the privacy of a mobile user while maintaining constant traffic cost.

iii

All proposed algorithms and protocols have been implemented on popular commercial

mobile and cloud computing platforms to demonstrate feasibility and provide real-world

performance benchmarks. The scalability potential of the various schemes is also shown

through simulations. Options are presented throughout for adapting the techniques to the

unique requirements of various types of cloud systems.

iv

Acknowledgements

My research projects would not have been possible without a number of people to whom

I wish to express my sincere and utmost gratitude.

I thank my Ph.D. supervisor, Professor Anwar Hasan, of the Electrical and Computer

Engineering Department in the University of Waterloo, for his invaluable advice, support,

and guidance throughout my four years at the university for which I am greatly indebted.

I am also grateful to the members of my Ph.D. examination committee, including Pro-

fessors Sagar Naik and Paul Ward of the Electrical and Computer Engineering Department,

and Professor Urs Hengartner of the David R. Cheriton School of Computer Science, in

the University of Waterloo, for their indispensable feedback on my proposal and thesis,

and collaborations on research work.

I am very appreciative of my external examiner, Professor Kui Ren, of the Department

of Computer Science and Engineering, in the State University of New York at Buffalo, for

kindly traveling to Waterloo to participate as a committee member in my Ph.D. defence.

I also thank my additional publication co-authors Professor Ian Goldberg of the

David R. Cheriton School of Computer Science, and fellow graduate students Femi Olu-

mofin and Tony Zhao in the University of Waterloo, for their collaborations on the work

related to my thesis, and Ayush Gupta, for his assistance with programming work on an

earlier research topic as an undergraduate research assistant.

I also extend thanks to my family for their endless support and understanding.

My research work was supported in part by a National Sciences and Engineering Re-

search Council (NSERC) grant awarded to Professor Anwar Hasan, and an NSERC Alexan-

der Graham Bell Canada Graduate Scholarship, a University of Waterloo President’s Grad-

uate Scholarship, and University of Waterloo Graduate Scholarships awarded to me.

v

This thesis is dedicated to my mother and father.

vi

Table of Contents

List of Tables xii

List of Figures xiv

Nomenclature xvi

1 Introduction 1

1.1 Cloud Computing Services . 1

1.1.1 Functional Classification of Cloud Services 2

1.1.2 Advantages of Cloud Computing 3

1.2 Security Issues in Clouds . 4

1.2.1 Security Problem Definition . 4

1.2.2 Impact of Cloud Features on Security 5

1.3 Overview of Contributions . 7

1.4 Outline of Thesis . 8

2 Background 9

2.1 Cloud Organization . 10

2.1.1 Division of Resources . 10

2.1.2 Network Organization . 11

vii

2.2 Cloud System Model . 12

2.2.1 Internal Cloud Architecture . 12

2.2.2 Network System Model . 14

2.3 Applications of Mobile Cloud Computing 14

2.3.1 Use of Resource-Constrained Devices 16

2.3.2 Use Cases in Mobile Cloud Computing 17

2.4 Cloud Computing Trust Issues and Threats 19

2.4.1 Adversary and Threat Model . 19

2.4.2 Security Issues in Grid Computing 23

2.5 Design Factors for Cloud Security . 24

2.5.1 General Security Features . 24

2.5.2 Key Management Functions . 26

2.5.3 Comparison to Other Systems . 27

2.6 Performance Assessment Criteria . 28

3 Related Work on Key Management 30

3.1 Body of Academic Literature . 30

3.1.1 Public Key Encryption . 30

3.1.2 Identity-Based Encryption . 32

3.1.3 Hierarchical Access Control . 34

3.1.4 Distributed Key Management . 34

3.1.5 Proxy Re-Encryption . 36

3.1.6 Encrypted File Storage . 38

3.1.7 Secure Cloud Storage . 42

3.2 Security Features in Commercial Clouds 44

3.3 Summary . 46

viii

4 Re-Encryption-Based Key Management 47

4.1 Introduction . 47

4.2 Related Work on Proxy Re-Encryption . 48

4.3 Manager-Based Re-Encryption . 50

4.3.1 Introduction . 50

4.3.2 System Operation . 51

4.3.3 Discussion . 56

4.3.4 Novel Variants . 57

4.4 Cloud-Based Re-Encryption . 62

4.4.1 Introduction . 62

4.4.2 System Operation . 63

4.4.3 Discussion . 69

4.4.4 Variant . 71

4.5 Evaluation and Implementation of Models 72

4.5.1 Qualitative Cost Comparison . 72

4.5.2 Performance Measurement . 72

4.6 Summary . 76

5 Hybrid Attribute- and Re-Encryption-Based Key Management 77

5.1 Introduction . 77

5.2 Related Work on Attribute-Based Encryption 78

5.3 Proposed Algorithm . 79

5.4 Optional Features . 86

5.5 Discussion . 87

5.6 Implementation . 89

5.6.1 Performance Measurement . 89

5.6.2 Simulation . 94

5.7 Summary . 99

ix

6 Cloud-Hosted Key Sharing 100

6.1 Introduction . 100

6.2 Related Work on Key Sharing . 101

6.3 Proposed Algorithm . 102

6.3.1 Main Technique . 102

6.3.2 Discussion and Analysis . 111

6.4 Variants . 114

6.5 Implementation . 116

6.5.1 Performance Measurement . 116

6.5.2 Simulation . 117

6.6 Summary . 122

7 Query Privacy for Location-Based Services 123

7.1 Introduction . 123

7.2 Privacy Requirements of Location-Based Services 124

7.2.1 Requirements and Assumptions . 126

7.3 Related Work on Location Privacy and PIR 128

7.3.1 Location Cloaking Techniques . 128

7.3.2 PIR-Based Techniques . 129

7.3.3 Hybrid Techniques . 130

7.4 Proposed Solution . 131

7.4.1 Level of Privacy . 132

7.4.2 Pre-Processing and Location Cloaking 133

7.4.3 Variable Level of Privacy . 138

7.4.4 Algorithm . 139

7.5 Implementation . 140

x

7.5.1 Performance Measurement and Simulation 140

7.5.2 Discussion . 141

7.6 Summary . 145

8 Conclusions 146

8.1 Significance of Research . 147

8.2 Review of Contributions . 148

8.3 Future Work . 149

APPENDICES 151

A Mobile and Cloud Computing Costs 152

A.1 Mobile Device Energy Consumption . 152

A.2 Cloud Server Cryptographic Workload . 155

References 158

xi

List of Tables

2.1 Example specifications of the classes of user devices studied. 17

3.1 A comparison of approaches to key management in mobile cloud computing. 35

4.1 A legend for the symbolic notation used in the re-encryption models. . . . 51

4.2 A summary of operations in manager-based re-encryption. 55

4.3 A summary of operations in a variant of manager-based re-encryption. . . 60

4.4 A summary of operations in cloud-based re-encryption. 68

4.5 The processing, storage, and communication costs of the re-encryption models. 73

4.6 The performance results obtained from the re-encryption implementation. . 75

5.1 A legend for the symbolic notation used in the attribute-based model. . . . 80

5.2 A summary of the key material in the attribute-based model. 86

5.3 A summary of operations in attribute-based re-encryption. 88

5.4 The performance results obtained from the attribute-based implementation. 92

5.5 The benchmarks used for calibration of the attribute-based simulation. . . 93

5.6 The parameters used for the attribute-based simulation. 98

6.1 A legend for the symbolic notation used in the key-sharing model. 103

6.2 The message flow in the key-sharing model. 106

6.3 The cost of storage of key material in the key-sharing model. 113

xii

6.4 The client performance results obtained from the key-sharing implementation.118

6.5 The server performance results obtained from the key-sharing implementation.118

A.1 The parameters for the arrivals in a cloud application. 156

xiii

List of Figures

2.1 The internal architecture of a cloud. 13

2.2 A network system model of mobile cloud computing. 15

3.1 A system model of proxy-based data re-encryption. 39

4.1 A model of key management using manager-based re-encryption. 52

4.2 A model of key management using cloud-based re-encryption. 64

5.1 A high-level model of the implementation of attribute-based re-encryption. 90

5.2 The user interface of the mobile client app in attribute-based re-encryption. 93

5.3 The performance results obtained from the attribute-based implementation. 95

5.4 The processing workload for the data owner in the attribute-based model. . 96

5.5 The processing workload for the manager in the attribute-based model. . . 96

5.6 The processing workload for the cloud provider in the attribute-based model. 97

5.7 The processing workload for the user population in the attribute-based model. 97

6.1 The high-level data flow in the key-sharing system. 105

6.2 An example of key assignment in the key-sharing model. 108

6.3 A high-level model of the implementation of key-sharing. 117

6.4 The rate of user deauthorization based on share allocation in key-sharing. . 118

6.5 The total share downloads based on the initial allocation in key-sharing. . 119

xiv

6.6 The minimum valid users based on the re-generation frequency in key-sharing.120

6.7 The total share downloads based on the re-generation frequency in key-sharing.121

6.8 The minimum valid users based on the priority class in key-sharing. 122

7.1 An example of VHC mapping with uniform POI density in PIR. 135

7.2 An example of POI database mapping in PIR. 136

7.3 The query performance results obtained from the PIR implementation. . . 143

7.4 The user interface of the mobile client app in PIR. 144

A.1 The energy consumption on a mobile device. 154

A.2 A cloud server arrival model. 157

xv

Nomenclature

3G Third Generation

4G Fourth Generation

ABE Attribute-Based Encryption

ACL Access Control List

AES Advanced Encryption Standard

BDH Bilinear Diffie-Hellman

CA Central Authority

CBC Cipher Block Chaining

CLPKC Certificateless Public Key Cryptography

CP-ABE Ciphertext-Policy Attribute-Based Encryption

CPU Central Processing Unit

CSP Cloud Service Providers

DHT Distributed Hash Table

DMS Degrees-Minutes-Seconds

EC2 Elastic Compute Cloud

ECDSA Elliptic Curve Digital Signature Algorithm

xvi

EDGE Enhanced Data for Global Evolution

GAE Google App Engine

GPS Global Positioning System

GSM Global System for Mobile Communications

HIBE Hierarchical Identity-Based Encryption

HSDPA High-Speed Downlink Packet Access

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IBE Identity-Based Encryption

IEEE Institute of Electrical and Electronics Engineers

ISP Internet Service Provider

IT Information Technology

J2SE Java 2 Standard Edition

JCE Java Cryptography Extension

jPBC Java Pairing-Based Cryptography

JSON JavaScript Object Notation

KGC Key Generation Centre

KMIP Key Management Interoperability Protocol

KP-ABE Key-Policy Attribute-Based Encryption

LAN Local Area Network

LBS Location Based Service

LRWPAN Low-Rate Wireless Personal Area Network

xvii

MCC Mobile Cloud Computing

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OS Operating System

PaaS Platform as a Service

PBC Pairing-Based Cryptography

PIR Private Information Retrieval

PKCS Public-Key Cryptography Standard

PKE Public Key Encryption

PKG Private Key Generator

PKI Public Key Infrastructure

POI Point Of Interest

RAID Redundant Array of Independent Disks

RAM Random-Access Memory

RF Radio Frequency

SaaS Software as a Service

SAML Security Assertion Markup Language

SAP SSL Authentication Protocol

SC Secure Coprocessor

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SHA Secure Hash Algorithm

xviii

SMS Short Message Service

SPIR Symmetric Private Information Retrieval

SSL Secure Sockets Layer

SSO Single Sign-On

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

VHC Various-Size-Grid Hilbert Curve

VPN Virtual Private Network

XaaS Everything as a Service

xix

Chapter 1

Introduction

1.1 Cloud Computing Services

Cloud computing has garnered much interest in recent years in the computing in-

dustry, the media, and academia. It is a form of pay-per-use distributed computing

consisting of data centres providing commodity resources for massively scalable units of

computing and storage for commercial enterprise applications as well as scientific com-

puting; these facilities are delivered as a service to a global population of users over the

Internet and wireless data networks.

Cloud computing promises many benefits to the IT profession: the ability to scale

resources to meet varying customer demand in real-time, to deliver new computing services

faster, and to significantly lower capital and operational costs. Because the computing

resources of a cloud are operated by a third-party, clients are relieved from the burdens of

hardware ownership, maintenance, and administration of the underlying services. Clients

are only responsible for deploying the applications executed in the cloud and paying for

the actual consumption of network and computing resources; they need not incur the

capital expenditure of hardware with excess capacity to guarantee performance during

peak demand. Additionally, they need not incur the costs of maintenance, data backup,

and security. Suitable applications for cloud computing include financial market modelling,

scientific applications, speech recognition and synthesis, and social networks.

Due to the highly accessible nature of cloud servers, the ever-increasing capabilities

1

CHAPTER 1. INTRODUCTION

of mobile device hardware, and the availability of faster wireless networks, many cloud

applications today are accessed by users of mobile devices such as smartphones. The

evolution into Mobile Cloud Computing (MCC) has further broadened the usefulness of

cloud applications, which can deliver services at any time and to any location.

In this chapter, various facets of cloud computing are introduced. In this section,

cloud services are classified and their commercial advantages are summarized. Security

issues that stem from cloud feature characteristics are stated in Section 1.2. An overview

of contributions made in this thesis appears in Section 1.3. Finally, an outline of the

following chapters of the thesis is given in Section 1.4.

1.1.1 Functional Classification of Cloud Services

Cloud Service Providers (CSPs) offer numerous services to clients [69] [68] [70]; the taxon-

omy may be referred to as Everything as a Service (XaaS).

In Infrastructure as a Service (IaaS), computational resources such as data storage and

processors are made available on demand. A task may be replicated and distributed across

many processors to accelerate computation. Clients gain access to virtual servers on which

to deploy their own software, and the infrastructure is delivered over the Internet. The

client may have control over the choice of OS, storage, and host firewalls.

In Platform as a Service (PaaS), a cloud provider offers a platform that enables rapid

development and deployment of scalable applications without the need for investment in

an infrastructure. Higher-level services are offered, sometimes in specific domains; these

include application frameworks, developer ecosystems, collaboration tools, and storefronts.

In Software as a Service (SaaS), complete end-user applications are deployed, managed,

and delivered over the Internet in turnkey fashion; this is made possible by dynamic web

applications and standards-compliant browsers that do not require thick clients. As a

result, development costs and deployment lag are reduced. Examples include customer

relationship management middleware, data warehousing, and collaboration tools.

2

CHAPTER 1. INTRODUCTION

1.1.2 Advantages of Cloud Computing

It is useful to consider the economic drivers behind cloud computing, as they are largely

responsible for its technical evolution and likely future paths of development. The benefits

of cloud computing are numerous, and are summarized below [24] [68]:

• Greater cost efficiencies. A client organization does not need to acquire, provision,

and manage its own computing resources; instead, it can rent the use of these re-

sources from a cloud provider. Worldwide IT cloud services continue to grow at

several times the rate of traditional IT offerings [42]. Small firms in particular can

take advantage of utility pricing, allowing them to meet real-time needs of computa-

tion and storage. The provider undertakes installation, maintenance, and upgrades,

and has expertise in the area; so, there is no need for the client to incur these ex-

penses. Another advantage of outsourcing computation to clouds is the achievement

of green IT, where the total resource consumption footprint is reduced.

• Rapid deployment. Clients are not encumbered by the deployment lag inherent in

an in-house solution. The client typically provisions applications directly using a

management console. Additionally, a number of cloud vendors offer a platform for

the development of distributed applications, and storage solutions that scale well; for

instance, Google has pioneered BigTable, a distributed storage system for managing

structured data that can scale to petabytes of data across thousands of commod-

ity servers [23]. Cloud providers offer automation tools and scripting systems that

simplify the programming effort, and use standard web service protocols.

• On-demand scalability. A client of a cloud provider can address changes in demand

for its processing by replicating applications to many concurrent runtime instances.

Unanticipated burst demands such as flash traffic on a web server may be met au-

tomatically without noticeable delay. Cloud computing is particularly suitable for

non-uniform workloads, where the client would otherwise acquire excess infrastruc-

ture to account for peak usage to avoid outages; this practice can lead to idle cycles.

• Easy connectivity. Cloud applications may be accessed through various convenient

endpoints in the cloud; not all traffic must necessarily be routed to a centralized data

centre. Data partitioning models allow data to be stored as shards in many different

locations to speed up retrieval. Users can access data distribution endpoints that

3

CHAPTER 1. INTRODUCTION

are created on the edge of the network, especially in highly distributed clouds such

as that of Akamai Technologies, and pay only for the last mile. As well, the data

resident on multiple devices that may be used to connect to a single account in the

cloud may all be automatically and continuously synchronized.

1.2 Security Issues in Clouds

1.2.1 Security Problem Definition

Despite the economic benefits of outsourcing computation and data to the cloud, the

process poses very significant risks to its users. Because user data is stored and executed

on within the cloud domain, and because there is little or no external visibility into how

the cloud infrastructure is implemented and managed by the provider, there is significant

concern over the security and privacy of transactions and long-term storage of sensitive

client data. A client has no assurance of exactly where application data and logic is stored,

whether it is replicated or cached, how long it is kept for, and who exactly has access to it.

Ideally, data ought to be kept confidential not only from other clients sharing the cloud

resources, but also from the cloud provider itself, using suitable data encryption techniques.

Security should be enforced through technical means beyond contractual obligations be-

tween the client and provider. IT executives tend to rate security as their highest, or one

of their highest, concerns in the use of cloud computing services [68]. Clients need assur-

ance of sufficiently robust security and privacy in a cloud system before committing to it

tasks that add core value to an organization and thus cannot be placed at risk. Because

IT organizations are reluctant to devolve responsibility of security to a cloud computing

provider, the provision of an effective security framework within the cloud is essential. “It

is not recommended [for the customer to] entrust a cloud provider to manage [their en-

cryption] keys — at least not the same provider that is handling [their] data [. . .] Because

key management is complex and difficult for a single customer, it is even more complex

and difficult for [cloud providers] to try to properly manage customers’ keys.” [78].

Simultaneously, cloud applications must remain accessible from a heterogeneous mix of

computing devices efficiently, so that the costs of additional computation and communica-

tion do not significantly degrade the operation of the cloud and the mobile user experience.

The goal of security researchers in this field is to develop techniques to ensure security in

4

CHAPTER 1. INTRODUCTION

cloud computing systems at reasonable cost. Only by overcoming these challenges, will

enterprise companies increasingly migrate to the cloud to reap its economic benefits as

well as open up new classes of massively scalable and useful applications.

The main scope of this thesis is the proposal of novel key management schemes to

protect communication between the cloud and its users, as well as preserve the confiden-

tiality of data stored in the cloud, in an efficient and highly scalable manner, and to thus

help improve the security of cloud systems and advance their commercial potential. The

proposed solutions are meant to be realistically applicable to commercial systems that are

foreseeable or already in operation today.

1.2.2 Impact of Cloud Features on Security

In order to better understand the security issues present in cloud computing systems, it is

instructive to first examine the high-level feature set of a typical cloud system. A cloud

is essentially a distributed computing platform that can run many computational tasks

in parallel. It is typically hosted in near-centralized fashion on a few large data centres

that that are geographically separated for reasons of redundancy and transport efficiency.

A cloud may also be implemented in a fully decentralized fashion on a large collection

of interconnected peer servers. The platform, including all computational resources, are

owned and operated by a cloud services provider. A number of key characteristics common

and unique to clouds have been recognized [1,79], and are summarized here. The security

concerns associated with each of these features are also provided to show their relevance.

• Virtualization. Cloud computing can be implemented on commodity hardware and

the application that runs is abstracted from the underlying hardware resources via

a process known as virtualization; a system virtual machine allows a single server

to host multiple operating system instances. A hypervisor isolates and protects

individual application instances. Since it is impossible for the client to control what

server a cloud application is assigned to at any given time, all hardware belonging to

the cloud provider must be considered to be a monolithic and untrusted entity.

• Resource pooling. The cloud provider’s computing resources are pooled together to

serve the requests of many clients concurrently, in true multi-tenant fashion. Vir-

tual resources are instantly and dynamically reassigned according to current demand.

5

CHAPTER 1. INTRODUCTION

Since data may be replicated for caching and redundancy reasons, to guarantee per-

formance and safety, it may be assumed that data stored in the cloud is untraceable

by the client. There is the potential for unauthorized access to confidential data

that is stored on the cloud provider’s servers, by another client or even the provider

itself. Furthermore, client applications may be subject to interference or side-channel

attack by malicious applications running simultaneously on the same server.

• Broad network access. Cloud application services are accessed over the Internet by

a large and heterogeneous mix of clients that may vary in processing capability and

in the security of the communications medium used. Desktop and server machines

access the cloud through fixed high-bandwidth lines, while mobile devices are limited

to the wireless medium and require greater communication efficiency. A malicious

party can potentially read or manipulate data that is in transit to the cloud; thus,

sensitive data requires protection when it is in-flight.

• Unbounded storage and lifetime. Data may be automatically replicated for relia-

bility reasons and remain in storage in the cloud indefinitely, thus requiring strong

encryption when it is at-rest. If key material required for data encryption is made

accessible to the cloud provider, then it is subject to unauthorized retrieval by an

honest-but-curious administrator, by an attacker, or through a legal court order.

• Elasticity. A central feature of the cloud is that a client may automatically scale

an application to meet real-time demand; the number of running instances may be

adjusted dynamically. Although it may seem that a cloud provider’s resources are

virtually unlimited with respect to supporting data security through cryptographic

computation, this is not truly the case. Such operations are relatively very computa-

tionally expensive; the resources allocated to this overhead are at the cost of useful

client application work.

“As we move to this new era of cloud computing [. . .] data security needs to be

understood as something new, requiring new and innovative solutions [. . .] it is incumbent

on us to generate innovations in our concepts of data security and integrity. We need tools

and processes that recognize the ephemeral nature of data and the reality that physical

locational controls simply will not work going forward. With a little hard work, we can

achieve security models that minimize risk and enable this new method of computing. We

don’t need to give up on security; we simply need to abandon some of our metaphors [66].”

6

CHAPTER 1. INTRODUCTION

1.3 Overview of Contributions

This thesis makes a number of contributions to the fields of security and privacy in the

context of mobile cloud computing applications; an introductory synopsis appears here:

Three novel techniques are proposed for key management that ensure the confidentiality

of data outsourced to the cloud. Strategies for efficient key generation and distribution

are provided to address the unique challenges of mobile cloud computing. In particular,

cryptographic operations that are relatively slow to process are performed by the cloud

provider without it being able to decode the encrypted data stored on its servers. In

addition, the number of communication sessions required for mobile users to retrieve keys

and data is minimized. A trusted third-party may be utilized to assist with the protocol

if it exists, but is considered optional in most cases. Furthermore, revocation of user

access is carried out in an efficient manner. The first key management scheme relies

upon transformation of the encrypted data by the cloud provider; the mobile data owner

does not need to constantly re-encrypt data to prevent a user that has left the system

from continuing to access it. Unlike other works, users may access data directly from

the cloud without an intermediary. The second scheme grants access to data based on a

recipient holding correct attributes in a way that simplifies key distribution and assigns

most computation to the cloud provider; in addition, it allows for optional access control

through a secret group key. In the third scheme, keys are securely stored in the cloud, but

disappear over time as a form of access control, while utilizing the cloud’s scalable and

economical storage. The proposals in the thesis are distinct from many existing works,

which tend to assume that the user population utilizes powerful desktop computers that

are capable of performing frequent and complex cryptographic tasks. Other works also

assume that users are always connected and available, and so network usage is not of

particular concern. Some works rely upon the presence of a trusted third-party within a

network, which is a possible point of failure and results in added expense. Finally, other

works fail to consider use cases where extremely large and constantly-changing mobile user

populations are present, where the focus on efficiency in this thesis becomes highly relevant.

Additional use contexts relevant to mobile cloud computing are also considered. It is

recognized that the data stored in a cloud may actually be public, or at least is required

to be made readable by a cloud provider; however, it may be important to preserve the

confidentiality of a user query so that the cloud provider does not learn a user’s personal

information based on the data accessed. Hence, a technique is presented where the cloud

7

CHAPTER 1. INTRODUCTION

provider retrieves data without essentially knowing exactly what is being retrieved. Unlike

other works, it is designed to conserve the amount of information downloaded by a mobile

user over a wireless network; furthermore, it does not require a trusted intermediary.

With all proposals, the algorithms have been implemented and benchmarked on ac-

tual popular mobile device hardware and a real cloud computing system. In addition,

simulations have been run to assess the scalability of the schemes. The ultimate viability

and performance of a software system, and its cost tradeoffs, normally becomes appar-

ent only through actual implementation and experimentation; this facet is often missing

from existing related work. Furthermore, the techniques proposed are not implementation-

dependent; the algorithms and libraries that they depend on are highly portable or adapt-

able to most of today’s commercial mobile and cloud platforms.

A detailed comparison of related work is found in Chapter 3 on page 30, and a more

detailed list of contributions is found in Section 8.2 in Chapter 8 on page 148.

1.4 Outline of Thesis

The thesis contained herein addresses communication and data security in the context of

mobile cloud computing. In Chapter 2, a model of a cloud computing system and its

mobile users is presented, with a discussion of possible security threats and factors to

consider in securing such a system. Key management techniques that permit secure data

storage in the cloud are then presented. In Chapter 3, related work in academic literature,

as well as in current commercial solutions, is summarized. In Chapter 4, a model for key

management utilizing data re-encryption in the cloud is proposed. In Chapter 5, a hybrid

model for key management combining attribute-based encryption and data re-encryption

in the cloud is proposed. In Chapter 6, a key management model utilizing cloud-hosted key

sharing is presented, which takes advantage of the cloud provider’s scalable storage rather

than computation. Additional complementary aspects of information exchange in mobile

cloud computing systems appear next. In Chapter 7, a technique for private information

retrieval from a cloud is proposed, where the stored data is public but the client’s queries

are kept private. Finally, in Chapter 8, a summary of research contributions from all

chapters is presented and future work is proposed. In Appendix A, projected cryptographic

computation and communication costs for mobile device users and clouds are suggested as

a thought exercise.

8

Chapter 2

Background

The focus of the thesis is on the area of communications and data security for

mobile cloud computing systems. Various ways to organize clouds are depicted in

Section 2.1. A discussion of the architecture of a cloud system is presented so that the

components that require protection may be understood. An overview of the internal oper-

ation of a mobile-based cloud and its role within a system and network model appears in

Section 2.2. Typical applications and use cases are suggested in Section 2.3 to show how a

contemporary cloud system is utilized and to aid in identification of features that require

security protection. A threat model is demonstrated in Section 2.4 that captures the po-

tential points of attack in a cloud system. The criteria that an ideal security mechanism

ought to satisfy are elaborated in a list of design considerations in Section 2.5; a comparison

is made against the factors associated with other kinds of systems such as grid computing,

to show the unique constraints of a cloud. In particular, the key management function

is emphasized as being the most relevant to the security problem under study. Finally,

guidelines for assessing the usefulness of a security solution are suggested in Section 2.6.

9

CHAPTER 2. BACKGROUND

2.1 Cloud Organization

2.1.1 Division of Resources

Clouds may be organized in various ways with respect to the division of responsibility

between the client organization and the cloud provider:

• Public cloud. Applications are all hosted on infrastructure controlled by the cloud

provider. The services or computational results provided by these applications are

accessed over the public Internet and optionally over wireless networks. Communi-

cation must be performed over a secure channel to ensure confidentiality.

• Private cloud. The efficiencies of cloud computing are realized on an infrastructure

that is on-premise, or internal to the organization. This option is applicable to an

enterprise with an existing investment in a distributed system that wishes to retain

greater control over its proprietary data and administration. It is particularly suit-

able for mission- and business-critical applications. The client can leverage existing

infrastructure to avoid the cost of migration to a public cloud and its subsequent op-

eration. The underlying rationale is that these customers may also be subject to laws

that restrict the location of data due to its jurisdiction, or may simply be concerned

about running highly sensitive applications on a third party’s servers. This option

limits the potential for runtime scalability, however. In a private cloud, a client may

access the application over a protected intranet or via a secure tunnel.

• Hybrid cloud. The above two approaches may be combined in a hybrid solution that

connects a company’s internal infrastructure to the cloud provider’s, resulting in a

cloud partitioned into private and public components. This is sometimes known as

IT infrastructure bridging. A client’s private network may be shielded from a cloud

service provider’s public cloud network by a firewall. One advantage is flexibility in

the assignment of data collections or tasks between a private domain that is more

secure and a public domain that is more scalable. In terms of network architecture,

hybrid clouds may be decomposed into cluster controllers that manage the network

traffic to individual nodes making up the cloud. Each cluster is considered to be a

private network, and a central cloud controller manages all clusters.

10

CHAPTER 2. BACKGROUND

2.1.2 Network Organization

Cloud architectures can be categorized according to the distribution of back-end resources:

• Centralized cloud. A cloud provider may operate multiple data centres, which are

adequate when application users are within the same geographical region as one of

the host centres. Data centres are generally separated for continuance of operations

in case of natural or man-made disasters. Additionally, the availability of multiple

connected data centres can reduce latencies for a global user population.

• Highly-distributed cloud. A distributed approach entails a great number of servers

being hosted in many locations and on many networks worldwide. Application in-

stances can be automatically created in certain regions based on real-time demand.

The location of an application component depends on its function. Content-serving

application components can be built at the edge of the cloud to reduce latency,

while transaction-oriented components requiring consistency can be run at the origin

infrastructure. Authentication functions may be performed at either end [69].

• Grid computing. Although not strictly a variant of today’s definition of a cloud

system, it is worthwhile to consider a pre-cursor that links disparate computers to

form one large infrastructure. Essentially, a supercomputer is formed from a cluster of

networked, loosely coupled computers working together to perform very large tasks.

The grid infrastructure allows service-oriented, flexible, and seamless sharing of a

heterogeneous network of resources for intensive tasks. The goals are to provide faster

throughput and higher scalability, while keeping costs low [22]; this loose organization

differs from that of cloud computing. Grid computing eventually evolved into cluster

computing, where computing resources are connected together by high-speed inter-

connects; and peer-to-peer networks, in which peers directly share information. In

contrast, the internal organization of a cloud system is opaque to its clients. Cloud

computing further offers virtualization, web service technology, and programmable

interfaces as differentiating technical features.

11

CHAPTER 2. BACKGROUND

2.2 Cloud System Model

2.2.1 Internal Cloud Architecture

Broadly speaking, the chief design goals of a cloud computing system are to provide an

environment to allow scalability of application performance and efficient virtualization.

Key administrative functions that also need to be fulfilled are performance monitoring and

management to reliably allow for various levels of service. The architecture of a cloud

computing system typically contains a set of layers that are common to most providers,

as illustrated in Figure 2.1; the model shown is derived from cloud reference architectures

proposed by IBM and Oracle [2,14]. The following is a functional description of the layers,

from the topmost to the lowermost layer:

• Application services provide business logic, web hosting, and interactive features

delivered over a wired Internet connection.

• A management services layer is responsible for managing the underlying hardware

resources that fulfill application processing and storage demands. It includes appli-

cation template storage and provisioning, application performance monitoring and

dynamic workload management, security policy management, and billing functions.

• A cloud infrastructure fabric includes virtualized physical servers, network connectiv-

ity, and storage. Resources are allocated by the upper layer to execute applications

consistent with service level agreements through optimal workload management.

To deploy a cloud application, a client typically creates an image and uploads it to

the provider. The image is then instantiated and replicated automatically within the

cloud to satisfy the processing demands of users at any given time. This process is called

provisioning ; the provisioning service allocates processes among available data centres and

ensures rapid reconstitution of services if necessary.

12

CHAPTER 2. BACKGROUND

Management services layer

Service
portal

Workload
management Provisioning Monitoring

Rack-mount and blade-based servers

Enterprise
cloud

Private
cloud

Web
hosting

Consumer
cloud

Application services layer

Administration
workflows, policy
security, life cycle

management

Virtual
machine
templates

library

Virtualized
resources

management

Service level
agreements, billing,
metering, capacity

planning

Virtualized physical servers,
network, and storage

Cloud infrastructure fabric

Users (PC's,
notebooks, tablets,

smartphones)

Internet

Figure 2.1: The internal architecture of a cloud.

13

CHAPTER 2. BACKGROUND

2.2.2 Network System Model

A complementary external system model of a cloud is illustrated in Figure 2.2. It consists of

multiple data centres that are administered by a central controller, which manages requests

that arrive at external interfaces in the cloud’s firewall. Client administrators have control

over port access for their applications.

Requests are made over the public Internet, which is considered a normally reliable

but insecure medium. Internet traffic is routed through a topology of network switches,

which culminate in individual Internet Service Provider (ISP) network switches connected

by high-capacity optical links such as OC-3; this packet data network may be bridged to a

wireless 3G or 4G infrastructure through a gateway node, allowing smartphones to connect

wirelessly to 3G or 4G towers and switches. Additionally, smartphones may communicate

among themselves using short-range local links such as Bluetooth. Another entry point

into the Internet is via a router and Wi-Fi access point, enabling notebooks and wireless

sensors to connect via some Wi-Fi standard, such as 802.11 or low-cost 802.15.4 as part

of a Personal Area Network. Desktop computers may connect via Ethernet to a router

directly, which typically integrates a firewall function.

2.3 Applications of Mobile Cloud Computing

A security framework incorporating secure data storage within the cloud and secure com-

munication channels has numerous practical applications. If the solution is highly efficient

and scalable, then it may be more readily utilized by resource-constrained devices. These

devices may interact with clouds in a variety of different applications to solve real world

problems, such as document and media storage, user collaboration, and data analytics.

Mobile device industry trends and use cases are captured in the following discussion.

14

CHAPTER 2. BACKGROUND

Data center

Controller

Cloud

3G

Smartphone user Notebook user Desktop user

3G tower and switching center

Bridge and gateway ISP network switch Router

802.11

Optical Carrier

Bluetooth

802.11

Cloud firewall

Data center

Wireless sensor

802.15.4

Users

Client firewall

Cloud

Internet

Wi-Fi access point

Optical Carrier

Intranet

Ethernet

Organization firewall

Figure 2.2: A network system model of mobile cloud computing.

15

CHAPTER 2. BACKGROUND

2.3.1 Use of Resource-Constrained Devices

Mobile- and Sensor-Based Computing

There has been a very evident trend towards the adoption of smartphone and tablet devices

that enable users to run complex applications interacting with cloud services, including me-

dia repositories such as music streaming, and always-on collaborative services such as social

networks [55, 59]. It is reasonable to predict that users will increasingly require persistent

access to cloud applications from a variety of highly mobile machines. Connections are typ-

ically made using standard wireless packet data protocols with TCP/IP as the transport;

their use is relatively expensive. Just as importantly, mobile devices have limited memory,

battery life, processing performance, connectivity, and available bandwidth compared to

their desktop counterparts, all of which complicate protocol design.

Numerous cloud applications exist today, or are being actively researched, that cater to

the resource demands of smartphone users. By offloading computation of complex tasks to

the cloud and storing associated data in the cloud, mobile device users may enjoy numerous

advantages; such a framework serves to extend onboard battery life, conserve local mem-

ory, speed up processing of tasks, and improve reliability by storing data in a centralized

manner. Various application areas and platforms are being investigated by researchers [30],

including in the domain of mobile commerce, mobile learning, collaboration, health care,

gaming, and web searching. Commonly used artifacts such as enterprise and personal e-

mail, movies and music, and various other forms of user data are already outsourced to

the cloud today; reasons for doing so include greater storage capacity, expanded options

for sharing, leveraging network effects, and data safekeeping.

The wireless sensor is another important class of device that is not necessarily mobile,

but may also utilize a cloud and wireless network, and is even more resource-constrained

than the devices already mentioned; hence, it is considered relevant to the discussion. For

instance, Sensing Planet’s cloud-based platform provides real-time online instrumentation,

management, and control of a connected wireless sensor network. It uses the ZigBee

2.4 GHz radio frequency, based on the IEEE 802.15.4 standard for LRWPANs (Low-Rate

Wireless Personal Area Networks). Microsoft’s Azure cloud platform integrates with Living

PlanIt’s Urban Operating System, a real-time urban control platform converging cloud

computing with the fabric of buildings containing embedded sensors [81].

16

CHAPTER 2. BACKGROUND

Mobile Device Classification

Multiple classes of devices are now identified to define the capabilities of the user class in a

mobile-based cloud system, with typical recent-generation specifications listed in Table 2.1.

In the case of wireless sensors, typical characteristics are assumed [75] of devices with pro-

cessors running wireless data-driven Time Division Multiple Access (TDMA) applications

on TinyOS, a prevalent sensor operating system.

Criterion Smartphones Wireless sensors

Processor Single/dual-core, 0.6-1 GHz 12 MHz

Memory 256-512 MB 2 kB

Mobility Highly mobile Fixed (but possibly mobile)

Battery capacity 1200 mAh 240 mAh (per cm3)

Power Up to 1200 mAh per day 8 mAh per day

Wireless connectivity Transient and intermittent Constant and reliable

Wireless data rate 2800 kbps download (3G) 20-250 kbps (IEEE 802.15.4)

Table 2.1: Example specifications of the classes of user devices studied.

2.3.2 Use Cases in Mobile Cloud Computing

Numerous practical use cases may be described where data is securely stored in the cloud

and accessed, which a security framework should be designed to accommodate. The user

base consists of mobile device users that regularly upload content to the cloud that is

then shared with other authorized users. For example, the data may consist of customer

records in the case of an enterprise application, or personal photos and videos in the

case of a consumer-oriented personal productivity and entertainment application. These

applications entail two-way data exchange between users and the cloud. One-way data

exchange may also be envisioned; for instance, data may be stored in a relational database

or in a log-based file format, which may be applicable for analytics purposes.

The user membership may include a workplace department or a collection of social

friends; it is considered to be dynamic and constantly evolving, with users joining and

leaving in a frequent and unpredictable manner. Each member of an authorized user

group is deemed to operate at an equivalent trust level, although each data record may

17

CHAPTER 2. BACKGROUND

require its own unique access permission that may be shared by any set of users. Thus,

there is a many-to-many association between data records and users in terms of access

rights. For instance, a group of senior managers may have access to a collection of records,

a subset of which may also be accessible to the rank and file. In terms of the network

model, each user group will obtain access to a collection of linked and related records [101]

in the cloud called a data partition.

The permanent cloud data store may be accessed through a key-value mechanism, in

which a valid key index must be supplied to retrieve the value stored at the index location.

In each communication session with the cloud, a user may send a data storage or a fetch

request, identifying the data record with a unique numeric record identifier, and similarly,

the partition with which is it associated with. The identifiers, but not the data content,

are deemed to be public knowledge. Repeated access of the same records in the cloud by

the same user is to be anticipated, as local storage on a mobile device is very limited.

Specific security features may be identified to satisfy these use cases:

• Forward secrecy. A previously authorized user that leaves an authorized user set, in

a process known as revocation, should no longer retain access to encrypted data. For

example, a consultant may require only temporary access to company resources for

the duration of a project, or an employee may permanently leave a firm.

• Backward secrecy. A user that joins an authorized user set may also not necessarily

obtain access to resources that were made available before the join occurred. This

rule is of lesser practical value, but may be useful in special cases such as mitigating

the risk of wilful patent infringement by limiting the sphere of known information

related to intellectual property.

• Blind storage. Data stored in the cloud remains encrypted at rest to prevent the

cloud provider from gleaning confidential user information at any time.

These features also serve to limit the amount of useful information that may be gleaned

by an attacker that successfully obtains valid key material in some instance of time.

Note that an underlying assumption of this work is that mobile users are in constant

connectivity with the cloud via a 3G or 4G wireless network or a Wi-Fi access point;

however, this assumption may not hold in the following cases: temporary connection loss

18

CHAPTER 2. BACKGROUND

suffered by a user when indoors, a user being exposed to excessive wireless data usage

fees as a result of international roaming, and the need to transfer an extremely large

amount of data such as an operating system update; in such cases, it is useful to determine

whether direct peer-to-peer links between mobile devices may be exploited to continue

sharing content without direct participation of the cloud provider. Because the devices

must be in very close proximity, data confidentiality is less of a practical concern than

efficient sustained transfer. A high-level framework for peer-to-peer file transfer is proposed

in [112] that specifically addresses the resource constraints of mobile users. A mobile

user with fast connectivity is elected as a super-node, creates an initial seed from data

stored in the cloud, then distributes it to other users that subscribe their interests to

that content. Experiments on smartphones are conducted to determine how throughput is

improved by dynamically controlling variables such as file segment sizes in a communication

protocol utilizing Bluetooth. A parameter such as a target upload-to-download ratio may

be dependent upon the dynamic state of a device, such as its current battery level.

2.4 Cloud Computing Trust Issues and Threats

2.4.1 Adversary and Threat Model

The cloud provider is expected to store and retrieve data, to and from its permanent

data store, upon request by users. The cloud provider is situated in a network domain

outside of that of the users, and its internal operations are opaque. The cloud provider,

including all parties within its scope of operations such as an internal administrator, is

assumed to be an honest-but-curious adversary without malicious intent; it will obey a

communications protocol and application logic deployed by the client, and will not deny

service to any authorized party or cause other interference. Furthermore, it will provide

reliable service to users, including the provision of persistent storage capacity on demand,

and data replication to the extent that it is paid for; it will also honour all data upload

and download requests. At the same time, an administrator of the cloud or any other

party that may gain access to the cloud storage cannot be trusted to not read, copy, and

retain confidential data that is stored within the cloud for nefarious reasons or simply out

of curiosity; such access can occur without the client’s knowledge. If the data is stored in

encrypted form, then any party that gains access to the storage and key material may be

19

CHAPTER 2. BACKGROUND

expected to decrypt and read the confidential data contents.

It is not expected that the cloud provider will attempt to create, modify, or delete

data in a data partition that is understood to belong to an external client or a set of

clients; nor will it serve incorrect or modified data to a user upon request. As a result, no

facility is required to detect that tampering of data has occurred. If the cloud provider

is not trustworthy to the described extent, then additional safeguards would be needed

to verify operations and the integrity of data, and corresponding performance overheads

would also be incurred; such features are outside the scope of the work. Nevertheless, the

honest-but-curious characteristic is deemed reasonable and realistic in view of the degree

of trustworthiness of recognized public clouds currently in operation.

As part of its normal activities, a cloud provider may replicate any encrypted data

with or without the user’s consent, but this should not aid the provider or an external

unauthorized party in gleaning any additional information helpful to decrypting the data

stored in the cloud. It is unlikely but conceivable that a provider may collude with a rogue

user or another provider, if one is available and contains relevant information, to defeat

a security mechanism and satisfy the curiosity of either party as to the contents of cloud

data. Collusion is to be prevented if possible, but is a lesser concern overall. Attacks may

also originate within the cloud itself from other tenant clients of the cloud servers. The goal

of this thesis, however, is to address data and communication security that is external to

the cloud implementation; for instance, hardware security, protection of running instances

and inter-instance communication security is outside its scope.

From the perspective of network security, the cloud itself is accessed over an open In-

ternet infrastructure, which is not considered to be highly secure. It may be bridged to a

wireless infrastructure consisting of an air link that is also considered insecure. This sce-

nario is borne out in practice: for instance, the original GSM telecommunications system

relies upon a very limited 64-bit A5/1 stream cipher; although it has since been replaced by

the 128-bit A5/3 cipher on 3G networks, its effective length is still only 64 bits. The A5/1

encryption has been successfully attacked by creating a rainbow table, in which the encryp-

tion key is reconstructed in a real-time attack [86]. The Code Division Multiple Access

(CDMA, standardized as IS-95) system also uses a very limited cipher; its security relies

on a pseudorandom so-called long code that is only 42 bits in length. It has been shown

that an eavesdropper can recover the required code after eavesdropping a transmission on

the traffic channel for about one second [122]. Clearly, some form of strong encryption for

20

CHAPTER 2. BACKGROUND

the communications channel between the mobile device and the cloud system is required

to ensure the confidentiality of sensitive data exchange.

Users, whether connecting from desktop or mobile devices, implicitly trust their local

machine. That is, when data is reliably retrieved from a cloud server in a correct state,

the user’s machine is trusted to perform the necessary cryptographic operations to retrieve

and display the original plaintext. Authorized users with common access to a data share

are considered to belong to the same organization or community, and hence may share

key material without compromising the security of the entire system. If a user chooses to

share key material with an unauthorized user, such an attempt is not prevented, as the

user could simply share the decrypted content with equal ease; the use of digital rights

management, as a remedy, is not contemplated within the scope of this work.

In a variation of the system model, a manager acting as a trusted entity is present within

the logical client domain and maintains a list of authorized users. The manager may be

located behind the organization’s firewall and is inaccessible by the cloud provider. It may

perform some key management duties and enforcement of access rights, and requires high

availability. It may exist within the context of a private cloud and is considered trusted

by the authorized user population. However, as the manager represents a possible point

of attack in itself, it is advantageous to limit sharing of private key material between users

and the manager, unless it is warranted by the scheme. Collusion between the manager as

a trusted third party and any user is not deemed to be a particular threat, as the manager

and all its authorized users are expected to belong to the same client organization.

Once a user’s access rights are revoked, any valid key information in the user’s pos-

session may continue to provide access to encrypted user data. However, this apparent

vulnerability is deemed to be only temporary in nature; in practice, mobile users have lim-

ited storage capacity and are unable to cache copious amounts of data, including numerous

key materials, for extended periods of time. This is especially true of a data storage system

consisting of fine-grained access, where even individual data records may be encrypted with

unique keys, and the storage of key material itself is onerous.

It is assumed that all mobile devices are protected against outside attack through

sufficient computer security and that users cannot become compromised; other techniques

related to computer security are required to ensure that secret information is not divulged

between a mobile user and an outside attacker. Even if such an attack occurs, then the

information illicitly gained is understood to eventually become stale and unusable.

21

CHAPTER 2. BACKGROUND

Vulnerabilities in the cloud may be exploited to access information in the cloud with-

out authorization to do so; typical examples are insufficient access control enforcement,

unencrypted data storage and transmission, and unrestricted modification of security poli-

cies [90]. Cloud providers may not be subject to external audits and security certifica-

tions, so that the onus of keeping data secure is ultimately on the customer; the shared

environment in which data resides means that data must be correctly segregated and en-

crypted [20]. Despite all these risks, any role that the cloud provider plays in executing

a security scheme is assumed to impart the same level of confidence in robustness as its

other services, and does not really constitute a single point of failure. A cloud by design is

typically engineered as a distributed system with data replication, reliable servers, multiple

endpoints, and other safeguards that virtually guarantee its continuous operation.

In certain commercial environments, a single organization may exert control over mul-

tiple entities in the system model. For instance, the Nexus One and Galaxy Note II

smartphones used in the experiments in this thesis run the Android Linux-based operating

system developed by Google. The same corporation develops and operates the App Engine

PaaS cloud platform, also part of the experiments. It is assumed that Google, or any other

entity under similar circumstances, will not embed any logic in the smartphone software to

defeat the proposed security mechanisms, such as sharing key material or plaintext with

the cloud provider. Likewise, it is also assumed that a telecommunications carrier that

provisions the mobile device or allows it to operate on its network will not install any

software to compromise the security of the system, such as intercepting message traffic.

In summary, the parties contributing to an attack may include an eavesdropper located

along the open Internet path to the cloud, a user whose access has been revoked yet retains

key information, a user belonging to the client organization but of insufficient clearance to

access all of the data belonging to the client, and the administrator of the cloud system

with unrestricted access to cloud resources. To minimize the privacy risk for content, it

is evident that data must be encrypted in-transit to and from the cloud, and at-rest in

the cloud. The fact that the shared environment of a cloud has intrinsic vulnerabilities

and limited oversight suggests that many of the concerns may be alleviated by assigning

management of security keys to a client or a trusted third-party, outside of the domain

of a cloud provider. If the client controls most aspects of security, the risk and impact of

third-party negligence is mitigated.

22

CHAPTER 2. BACKGROUND

2.4.2 Security Issues in Grid Computing

It is instructive to examine the security issues inherent in grid computing [32], as a relevant

pre-cursor to cloud computing:

1. Protection from external threats must allow the sharing of resources across organi-

zational boundaries, for which traditional firewalls are unsuitable.

2. Trust relations are agreed upon at the organizational level rather than the user level.

3. Grid nodes are dynamic and unpredictable in nature. The efficient updating of group

keys is a particular problem.

4. Grid computing systems are distributed and heterogeneous. Centralized authentica-

tion is generally unavailable.

From a cloud perspective, the implication is that authentication should occur at the

client’s organizational level, and that it must be efficient for dynamically changing groups.

Although a cloud system can offer centralized authentication, its high scalability does result

in challenges in implementing efficienct key management, as it does in grid computing.

Some of the stated concerns originally found in grid computing can be addressed by

group keying. Grid computers may involve resources that are shared across the Internet,

and point-to-point communication using cryptographic schemes is inefficient; broadcasting

a group key may be an accepted alternative. Groups may be dynamic and can be organized

in real-time according to available resources. Broadcasting is of limited value in a cloud

application, however; due to the majority of network communication being over the Internet

and wireless network, it could become prohibitively expensive, especially for mobile users;

the cloud provider typically bills the client for such downloads, and wireless transmission

incurs its own usage and energy costs.

23

CHAPTER 2. BACKGROUND

2.5 Design Factors for Cloud Security

The lack of direct control over cloud resources forces clients to either fully trust the cloud

provider, or adopt cryptographic protocols to ensure the confidentiality of stored data. The

use cases discussed above exert influence on the appropriate design of a secure solution.

The following general guidelines are identified, the focus being on communication security

and encrypted file storage in particular:

2.5.1 General Security Features

1. Encryption. The fact that the shared environment of a cloud has intrinsic vulnera-

bilities and limited oversight suggests that data must be permanently stored within

the cloud in encrypted form, with keys being controlled by the client or a trusted

third-party. End-to-end encryption must be offered for all data communication, as

it traverses the open Internet. Users typically interact with cloud applications via

sessions, and perform regular updates to data, suggesting the need for session man-

agement and data versioning. The multi-tenant nature of cloud computing requires

isolation between the individual users of a cloud application.

2. Scalability. Many devices may be connected to a cloud application simultaneously,

and all sessions must be individually protected. The multi-user environment may

potentially scale to many thousands or even millions of users. In an extreme example,

the social network Facebook has over 400 million active users, half of whom log into

the system in any given day and spend about an hour on the site, on average [40].

In an enterprise system, users may be created or removed at great frequency, and

communication costs related to key management must scale accordingly.

3. Access control. Using appropriate credentials, the user must authenticate with the

cloud network before being granted access to key material. Users of different class

privileges may exist, and so it is advantageous to provide prioritized or hierarchical

access control in some cases. Furthermore, the data owner may be mobile and not

always available to fulfill the administration duties of these functions.

4. Data partitioning. Members belonging to a subpopulation of all users will typically

require access to a common data partition resident in the cloud storage system.

24

CHAPTER 2. BACKGROUND

Thus, it is desirable for data permanently stored inside the cloud to be segmented

into addressable data partitions, such that appropriate access rights are enforced on

each. Clients may even require fine-grained security controls on the record-level.

5. Data lifetime. User data stored inside the cloud is typically replicated and archived;

it may exist for an indefinite time. If key material accessible by the cloud provider is

not destroyed once the data is no longer needed, it may be retrieved in the future by

a malicious party or through legal means such as a court order. Some data, however,

requires confidentiality protection for only a limited amount of time, after which the

security of the data, or the data itself, becomes irrelevant; an example is a financial

market transaction.

6. User diversity. A contemporary user may connect with the cloud from any one of

a heterogeneous mix of user devices. In some cases, authorized access may need to

be associated with a particular user, rather than a particular device. This concept

may involve a reunion of user information across multiple device accounts in a single

identity management system.

7. Mobile access. Mobile devices are exposed to a number of resource challenges, net-

work rate limitations, and intermittent connectivity. Communication and processing

requirements of a secure protocol must be as limited as possible, without significantly

compromising its performance and efficacy.

8. Efficient server transactions. Any cryptographic protocol must be lightweight in

computation and key updates must be relatively small and infrequent; otherwise, a

cloud provider may be ill-equipped to handle this traffic, leading to an outage [105].

9. Hybrid architectures. A scheme for communication security must be compatible with

popular computing models. Cloud computing is evolving to support hybrid systems

where secure communication between a private and public cloud is assured, and where

computation may be distributed between private and public realms.

25

CHAPTER 2. BACKGROUND

2.5.2 Key Management Functions

From a functional point of view, a candidate key management solution for a cloud comput-

ing system will encompass most of the following operations and properties, some of which

are referred to in [80] [92]:

1. Trust. The user must obtain trusted credentials that permit access to the cloud. The

cloud must recognize the user as belonging to a trusted Access Control List (ACL),

or the user must be found to be trusted by the other members of the group.

2. Authentication. Using appropriate credentials, a user will authenticate with the cloud

network before being granted access to key material. The user must be provisioned

with a secret key from the cloud itself, a trusted third-party entity, or other trusted

users. Key material can be confirmed to be valid for a particular user, and it must

be kept confidential and secure from attack.

3. Encryption. The user must utilize a key to secure communication with the cloud, and

to secure the data that is stored within the cloud and accessed by other users. Due

to the longevity of cloud data, appropriate key sizes must be chosen. NIST (National

Institute of Standards and Technology) recommendations [13] for comparable security

strengths beyond the year 2030 include: 128 bits for symmetric algorithms (e.g. AES),

3072 bits for asymmetric algorithms (e.g. RSA), key and group sizes of 256 and

3072 bits, respectively, for discrete logarithm algorithms (e.g. Diffie-Hellman), and

256 bits for elliptical curve cryptography (e.g. ECDSA).

4. Refresh. The key that the user holds must be updated periodically to limit the

opportunity window for an attacker to decrypt communication with the cloud, and

to minimize the useful information obtained if the attack is successful.

5. Revocation. The user, upon leaving the cloud network, must not continue to retain a

valid key that can be used to access the cloud or decrypt the communication of other

users. The key must be destroyed or become obsolete. If access rights are revoked,

then the user can no longer remain authenticated with the network.

6. Availability. Key management services must always be available to users to ensure

uninterrupted communication and continuity of cloud services.

26

CHAPTER 2. BACKGROUND

7. Scalability. Key management services must efficiently consume, directly or indirectly,

scarce resources such as wireless bandwidth and energy. In so doing, they must

support high scalability of the user base without degrading the level of service.

2.5.3 Comparison to Other Systems

The security issues noted here are fairly unique to the problem of mobile cloud computing.

They differ from more traditional key distribution schemes found in grid computing, client-

server computing, and peer-to-peer networks in the following ways:

1. Most cloud systems consist of centralized data centres that users must access directly.

The existence of an infrastructure can be relied upon, for centralized key management

or other purposes. Peer-to-peer communication over a wireless network is possible

but it may be difficult to find available peers and in close proximity if required.

2. The user base consists of a heterogeneous mix of devices, many of which are mobile

devices with tight resource constraints. They may include devices ranging from multi-

core tablets to RF sensors. In contrast, desktop users have significantly greater

computational power and storage capacity. For instance, an SSL handshake on a

notebook (with a Pentium M 1.86 GB CPU) was found to take only 31% of the time

that a smartphone (with a 624 MHz PXA270 CPU) took to finish it [100]. Therefore,

a cryptographic scheme that is asymmetric in nature may be appropriate in mobile

cloud computing: the amount of cryptographic computation on the mobile device is

minimized to improve responsiveness of the user interface and to limit battery drain,

while a cloud server can take advantage of its inherent scaling property to carry out

cryptographic work by commissioning additional application instances as needed.

3. The cloud provider must be considered to be a non-trusted entity. Any key material

stored in the cloud must be protected not only from outside access, but also from

cloud administrators, to ensure maximum data confidentiality. Alternatively, keys

may need to be stored outside of the untrusted cloud domain. Note that a key

management server, whether it is located in the cloud or off-site, may store various

kinds of keys, including authentication keys, authorization tokens, file encryption

keys, hardware storage keys, and certificates.

27

CHAPTER 2. BACKGROUND

4. Within an enterprise network, the user can rely on multiple layers of authentication

including password-protected logins. In a cloud system, users may not be verifiable

against a corporate directory, as it is normally located behind the client’s own firewall.

Users may be widely distributed and not utilize Virtual Private Network (VPN)

tunnels, complicating access management.

The stated requirements address the unique properties of cloud computing systems;

they do not necessarily pertain to general-purpose web servers which are more fixed in

resources. For instance, a web server may not be able to seamlessly and quickly scale in

terms of its processes, memory, and network bandwidth, which affects both application

operation and key management. A standard web server will also typically be physically

located in one place, whereas cloud systems typically operate multiple data centres to

reduce latency for global services, and thus network topology is less relevant. Finally,

few web servers are equipped to handle the scale of users being examined in this work.

For those enterprise servers that do, their back-end typically mirrors the characteristics of

private cloud systems such as blade system hardware setups, application template creation

and provisioning layers, and distributed workload management.

2.6 Performance Assessment Criteria

Key management systems may be evaluated not only in terms of compliance with the

security features already outlined, but also in terms of their performance in various areas

such as resource usage. Although some schemes may perform well even on resource-limited

mobile devices in small numbers, it may be impossible to attain extreme scalability in a

cloud computing scenario. Some of the following quantitative performance aspects will aid

in evaluating various approaches to key management:

• The amount of storage required for key material on the server and on mobile devices;

the latter is especially restricted due to limited onboard flash memory.

• The amount of data that must be exchanged between parties to carry out crypto-

graphic transactions. A wireless communications medium has limited capacity and

carries with it a high usage cost; it should therefore be minimized.

28

CHAPTER 2. BACKGROUND

• The amount of computation required, particularly on the mobile device, to carry out

the encryption and decryption operations.

• The amount of energy consumption on the mobile device due to wireless data being

transmitted and received, or due to prolonged computation occurring.

• The operational memory footprint required on the mobile device; this includes dy-

namic RAM (Random-Access Memory) used for temporary storage and flash memory

used for permanent storage.

• The economic cost for the client of the cloud service, based on the total amount of

cloud computation required, and the amount of Internet communication consumed

by the cloud application and charged to the user.

The following commentary is useful for motivating the study of performance: “We’re

in great need of secure computation outsourcing mechanisms to protect sensitive workload

information [. . .] This task is difficult, however, due to several challenges [. . .] First, such a

mechanism must be practically feasible in terms of computational complexity. Otherwise,

either the user’s cost can become prohibitively huge, or the cloud might not be able to

complete the outsourced computations in a reasonable amount of time. Second, it must

provide sound security guarantees without restricting system assumptions [including] prac-

tical performance. Third, this mechanism must enable substantial computational savings

at the user side compared to the amount of effort required to solve a problem locally.

Otherwise, users have no reason to outsource computation to the cloud. [94].”

In Appendix A on Page 152, sample calculations are provided of the kind of energy

consumption on mobile devices and cryptographic workloads on cloud computing servers

that may be expected from a key management solution; the discussion provides insight

into the significance of these costs in a real system.

29

Chapter 3

Related Work on Key Management

Recent research literature on key management techniques with relevance to

cloud computing systems is surveyed in Section 3.1. Included are generic central-

ized and decentralized techniques for key control, as well as solutions specific to encrypted

storage based on proxy re-encryption, encrypted network file systems, and more recent

work on secure cloud storage. Analyses of strengths and weaknesses are provided, and

opportunities for improvement as dictated by the demands of a scalable cloud system are

highlighted. The related work in this chapter covers only a common baseline; it forms a

starting point for the proposals in subsequent chapters, where additional related work is

presented where appropriate based on the specific techniques used. As a reference point,

features of the rapidly evolving commercial cloud systems of today are also presented in

Section 3.2. Concluding remarks are made in Section 3.3.

3.1 Body of Academic Literature

3.1.1 Public Key Encryption

Numerous solutions may be envisaged to exchange encrypted data with a cloud provider in

a secure manner such that the cloud provider is not directly entrusted with key material,

but näıve schemes often prove difficult to scale. In the classic centralized model, a single

authority present within the cloud computing infrastructure is responsible for access con-

trol; this notion seems consistent with the centralized nature of cloud servers. Public key

30

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

encryption (PKE) may be employed, in which the authority generates private keys and

distributes them to individual users through secure means. The corresponding public key

of a data partition is freely made available for download by the cloud provider. The un-

derlying cryptographic method may be RSA, for instance. Digital certificate management

can be used to verify the identity of the originator of the ciphertext. Communication is

necessarily one-to-one; the originating user encrypts data with the recipient user’s public

key, uploads it to the cloud, and the recipient retrieves it and decodes the plaintext using

his or her own private key. This general scenario of solely using PKE, however, is unrealis-

tic when a very large user population is present; it requires that the data owner provide an

encrypted version of data for each recipient that may access it, and furthermore, it requires

constant availability of the owner. Likewise, a straightforward approach employing PGP

encryption [125] would encounter challenges with scalability; the symmetric key used for

encryption of user data would need to be encoded with the public key of each recipient.

Rather, it is preferable for a data owner to perform a one-time encryption. Alternatively,

if all user data is encrypted with a single key, then that key must be shared with all autho-

rized users, which carries a high traffic cost especially if this obligation rests on a mobile

data owner. Revocation would require some form of authentication to prevent access; the

enforcement of it would require trust in the provider or further burden the data owner.

A remedy is to encrypt data with a group key, instead, and share it among a population

of authorized users; the main challenge relates to distributing the keys in a secure and

scalable manner without requiring the cloud provider to be trusted to manage and deploy

all private user keys itself. Another important problem lies with user revocation; if a

user leaves the authorized user set, the group key must be replaced and redeployed, a

process known as re-keying, which scales in cost with the number of users. Also, public-

key certificates must be generated by the cloud authority and deployed to all users before

communication can occur. The authorization server in the cloud may become overloaded

as a result of this responsibility, and potentially stop operation of the cloud. Furthermore,

users may join and leave the authorized user set frequently, leading to constant key re-

generation and re-distribution through additional communication sessions to handle user

revocation; in a highly scalable system composed of thousands of users, such events may

occur at relatively high frequency. Wireless communication, however, is expensive and

results in rapid battery drain, particularly when transmitting from a mobile device [11].

Security enforcement based on the monitoring of user behaviour can mitigate these

performance concerns, at the cost of reduced security. For instance, in TrustCube, a

31

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

star-shaped, or centralized, authentication system is used [30]; it provides implicit authen-

tication by monitoring user behaviour, and it falls back to another authentication method

such as OpenID if a user violates policy norms. In this case, however, the cloud provider

must be entrusted with all aspects of this system, including the use of aggregated data on

user contexts and activities, thus relaxing the trust model to an even greater extent.

One variant of centralized key management is baseline broadcast encryption, in which

the key manager generates symmetric keys for multiple users. Each time that new en-

crypted data becomes available in the cloud, it may be broadcasted in encrypted form

to all interested users, with each outgoing message being encrypted with a different key

corresponding to the recipient. If the user membership changes, then new keys must be

broadcast to all users, which is an unrealistic proposition in a highly scalable system. Also,

the broadcast itself is an expensive use of bandwidth. To reduce the cost, a stateful scheme

such as Logical Key Hierarchy [116] may be employed, in which a directed acyclic graph

of encryption keys is constructed, and each user is associated with a leaf node. Whenever

a user joins or leaves, rekeying messages are transmitted along the path from the root

node to the user’s leaf node location. In such a rekeying strategy, the “processing time per

request [scales] linearly with the logarithm of group size.” Unfortunately, the “signing [of]

rekey messages increases the server processing time by an order of magnitude.”

The high communication and processing costs incurred in key management, and the

implicit trust of the cloud provider required, cast doubt on a classic centralized solution

as a viable candidate for a mobile cloud computing system.

3.1.2 Identity-Based Encryption

One general problem with PKE that needs to be addressed is that a mechanism is needed for

users to find and obtain the public keys required for encryption, whether keys correspond

to individual users, to a data partition accessed by a set of users, or to individual records.

To simplify certificate management, Identity-Based Encryption (IBE) was invented, based

on BDH (Bilinear Diffie-Hellman) [9, 19]. The public key used in this scheme is derived

from an arbitrary string such as an e-mail address that can uniquely identify a party;

it dispenses with the need to query a key authority; this concept is used to reduce the

communication overhead of requesting encryption keys from the cloud provider, and has

the added benefit of enabling multi-user access to shared data. Thus, querying a certificate

32

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

authority for public encryption keys on demand, as with RSA, is not required, reducing

the cost of communication. An expensive pre-distribution of authenticated keys is also

unnecessary, unlike in a traditional public-key infrastructure. It has been demonstrated

that an IBE technique can be faster than one based on RSA. One protocol called Identity-

Based Hierarchical Model for Cloud Computing (IBHMCC) has been proposed with faster

authentication and less communication cost than the SSL Authentication Protocol (SAP)

used on many web servers [71]; it provides encryption by generating and storing secret

keys at two different levels: the cloud data centre and the users. The encryption key is

derived from the public keys of the data centre, the originating user, and the target user;

unfortunately, this method restricts data exchange to occurring between two individual

parties without consideration of a multi-user setting. Although IBE generally helps reduce

the communication cost entailed with key distribution by allowing users to generate keys

themselves, it is lacking in that it still requires trust in the cloud provider.

To address the issue of trust, Certificateless Public Key Cryptography (CLPKC) may

be utilized [3]. A Key Generation Centre (KGC) resides in the cloud but “[it] does not have

access to users’ private keys.” The KGC supplies each user with a partial private key PSK

which the KGC computes from an identifier for the entity and a master key. The user then

combines his or her PSK with some secret information to generate a full private key SK.

In this way, the user’s final private key is not made available to the KGC. The user also

combines his or her secret information with the KGC’s public parameters to compute his

public key PK. In fact, the user need not be in possession of SK before generating PK:

“all that is needed to generate both is the same secret information.” The advantage of this

scheme is that it prevents the KGC from being able to decrypt all data and communications

directly. One problem, however, is that “the system is [no longer strictly] identity-based,

because the public key is no longer computable from an [identifier].” Also, “the KGC needs

to ensure that the partial private keys are delivered securely” to users using some available

secure or out-of-band transport.

33

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

3.1.3 Hierarchical Access Control

As described in the use cases for mobile cloud computing, it is useful to control permis-

sions for users at different levels within an organization. Traditionally, the management

of keys to provide hierarchical access control has assumed the presence of a trusted Cen-

tral Authority (CA) that maintains the keys. Many such solutions rely on a tree-based

structure of nodes, where any node can derive keys for its descendants. Major challenges

include the rekeying operations that must occur whenever nodes are added or deleted in

the tree. One scheme strives for efficiency by utilizing less expensive hash operations to

avoid expensive re-keying and allow for efficient key derivation for nodes that are lower in

the access hierarchy [7]. In another scheme, for the purpose of securing access to clouds, it

is suggested that identity-based encryption be combined with a hierarchical access control

scheme, such that every Private Key Generator (PKG) maintains the private keys of all

users in its own domain [118]. A root PKG generates private keys for lower-level PKGs.

The presence of multiple PKGs in a cloud system suggests an inefficiency, however.

3.1.4 Distributed Key Management

To transfer key management duties and associated trust from the cloud provider to users,

a distributed key model may be used in place of a centralized one. Shares of a private key

are distributed among a number of trusted users. Any authorized member of a group can

request sufficient shares of the private key associated with a single identity and reconstruct

the entire private key; this objective may be accomplished using the concept of partial

keys. On the basis of IBE, it has been “suggested that distributed PKGs [can] function as

decryption servers [to implement] threshold decryption;” [10] each PKG holds a share of

the master key, and a sufficient number of these shares must be assembled by a user [19].

This arrangement requires each PKG to be involved in communication with users at all

times, because the key share needs to be re-distributed for each new ciphertext; this is

inefficient in a large user set. It has been proposed that a private key received from a

PKG, rather than the master key, can be distributed among several users in portions such

that a sufficient number of portions are required to decrypt a message, thus removing the

requirement for central key storage and constant involvement from the PKGs [10]. Any

authorized member of a group can request sufficient portions of the private key associated

with a single identity, reconstruct the entire private key, and distribute it within its domain.

34

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

The problem remains that a single mediator is still responsible for assembling a key from

multiple sources, such as decryption servers, and distributing it for each decryption; the

danger is that this can result in a bottleneck in a cloud system; furthermore, key revocation

is expensive.

The threshold decryption approach may be refined to manage sessions. By using IBE,

it is possible for a public key to be constructed using the recipient’s public identity joined

with a timestamp; the encrypted message can only be decoded by obtaining the private key

from the PKG generated using that timestamp [19]. Once access is revoked, the PKG stops

generating new private keys; although this effectively enforces a time limit for keys and

limits the danger of compromised keys, the constant key updates imply that this approach

is impractical for cloud applications, however.

A comparison of the key management approaches discussed appears in Table 3.1.

Responsibility for stor-

age of key material

Advantages Disadvantages

Centralized in the cloud

provider.

Utilizes the scalable computa-

tional and network resources of

the cloud. Relies upon the di-

rect user-to-cloud link.

Requires trust in the cloud

provider to not decode en-

crypted user data stored on its

servers.

Centralized in a trusted au-

thority that is outside of

the cloud domain.

Does not require trust in the

cloud provider. May control

access to cloud data through

an intermediary node.

Requires maintenance of a

scalable authority server by the

client, or trust in a third-party

guardian as a paid service.

Fully decentralized among

users.

Requires no additional network

elements. Key sharing may

utilize cheap local links such as

Wi-Fi or Bluetooth.

Obtaining keys may require

arbitration by an authority

which entails additional traffic.

Revocation is inefficient.

Table 3.1: A comparison of approaches to key management in mobile cloud computing.

35

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

3.1.5 Proxy Re-Encryption

The shortcomings of traditional key management are increasingly being addressed by recent

ideas in secure cloud storage. The goal is for data stored in the cloud to be encrypted to

maintain its confidentiality from the provider. One option is to utilize a trusted authority

administered by the client to retain secret key material; the challenge is that it must

be sufficiently scalable to perform key distribution duties for a large population, which

is expensive to engineer. Also, an inherent risk of the authority is that it constitutes a

single point of failure. The main difficulty, however, arises when new mobile users join

the system, and existing ones leave, at a great frequency; this necessitates re-generating

keys and making cloud data inaccessible to those who have left. Having an authority fetch

data from the cloud, decrypt it, and then re-encrypt it with a new key is unrealistic from

a performance standpoint, especially in a highly scaleable system.

The dilemma is that the cloud provider has nearly unbounded computational resources

to perform cryptographic operations, but it cannot be trusted with key material, while an

external trusted agent suffers from scalability potential. One solution entails cloud data

being transformed such that it may be unlocked only with newly generated keys, without

needing an intermediate decryption step; this is possible by having the cloud provider

perform a re-encryption operation without having access to the actual decryption keys. An

active area of research, it is a form of proxy cryptography, where a third-party such as the

cloud re-encrypts content for a user. One possibility is to utilize unique content decryption

keys that are further locked so that they cannot be accessed by a cloud provider [8]. Users

download encrypted user content, then request that a trusted access control server provide

them with the appropriate content decryption keys, by performing re-encryption. In such

schemes, the content owner typically decides which users should have access to cloud data

and allows re-encryption to be carried out accordingly. If a user’s access rights are revoked,

then no re-encryption will occur for that user.

The challenge in a mobile cloud computing context is that the content owner, which

is a mobile device, manages access control for all other users; it can become an excessive

communications burden if it requires constant activity by the data owner such as generation

and distribution of new versions of keys. Also, the appropriate timing of re-encryption

tasks, which are very computationally-intensive, remains an open problem; in some cases,

they may be performed only when needed, or at cheaper off-peak times, resulting in lazy

revocation.

36

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

Another area of research that is correlated is attribute-based encryption [50], where a

recipient may be able to read an encrypted message based on the satisfaction of certain

attributes, rather than possession of a valid key, at the cost of additional complexity;

examples include membership in a particular department or authority level within the

organization. Regardless of the re-encryption mechanism used, data stored in the cloud

should remain encrypted in some form at all times, and any required transformation of it

should not reveal the plaintext in the process; such an agenda is in keeping with the threat

model identifying the cloud provider as being honest-but-curious.

Re-Encryption System Model

A system model for proxy re-encryption is now presented, which is a variant of the general

mobile cloud computing system envisioned in Section 2.2.2 on page 14. Figure 3.1 illustrates

a typical proxy re-encryption scenario. The manager is a trusted self-supporting network

component that may be situated behind an organization’s firewall and form part of a private

cloud belonging to the client. It is normally administered under the domain of the users in

question and is completely independent of the CSP. It may maintain a database of private

key information relating to a set of authorized mobile users. The manager is sufficiently

trusted to authorize access to the cloud and to contain key material as necessary; however,

to minimize the risk of it being compromised, a user will only share as much of its own key

material with the manager as is necessary in the security scheme utilized. Furthermore,

the manager will not be as inherently scalable as a cloud provider.

Inside the cloud, the controller maintains a complementary public key information

database, and stores and reads user data on behalf of clients to and from the permanent

replicated data store. The user data may periodically undergo cryptographic transfor-

mation, such as re-encryption from one version of ciphertext to another; such activities

are dispatched on-the-fly or alternatively at off-peak times by eligible worker processes

instantiated and initiated by the controller.

A mobile user may act as a data owner and decide what access privileges are appropriate

for the data that it uploads to the cloud and retains control over; a specific subset of

the user population may be identified as having sufficient permission based on unique

identities, or users may be assigned various distinguishing attributes that inherently grant

permission regardless of the specific identity that assumes them. A highly scalable system

37

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

is envisioned where users may potentially number in the many thousands or millions.

Continuous arbitration by a single data owner during all transactions is impractical, as

a mobile user is subject to a limited battery and transient connectivity. The data owner

uploads encrypted content to the cloud data store using a shared public key; another user

requests it, and the manager invokes a re-encryption process either within the cloud or

inside itself; the content is then downloaded directly from the cloud or via the manager,

and read by the recipient using his or her own private key. If the recipient’s access rights

are revoked, then content will not be re-encrypted to a readable form for him or her.

3.1.6 Encrypted File Storage

Various network file systems have been proposed to provide encrypted file storage capability

for users. Although these systems were not specifically designed for use in cloud computing,

it is instructive to examine the approaches taken to solve the problem of scalable security.

An oft-cited system is SiRiUS, which essentially adds a security mechanism on top

of an existing networked file system [58]. It supports granting read-only or read-and-

write access to files by providing file encryption and signature keys that can access a

data block; these are stored as metadata along with the data block, and are encrypted

using the data owner’s master encryption and signature keys. When sharing, an encrypted

data block is created consisting of these access keys encrypted using the intended reader’s

public key. Unauthorized modifications to files, such as attempts to reverse an occurrence

of revocation, are detected by storing a hash tree of the metadata, and comparing it

against newly modified metadata by users. SiRiUS supports only end-to-end security; all

cryptographic operations must be performed on the client, which may be unrealistic in the

case of a mobile device. The system relies upon an existing key distribution system using

a Public Key Infrastructure (PKI) or IBE. In particular, SiRiUS employs an encryption

key permitting read access to a data block, and a signature key permitting write access.

Scalability is a major issue with this system. A user wishing to share data with another user

must encrypt the file encryption key using the public key of the target user; repeating this

process for a large target population of users, some of which may be unknown at the time

of data creation, is problematic. Key management is simple, however, as a user only needs

to retain a master key pair, and out-of-band communication is not needed if an IBE scheme

is utilized for public key retrieval. To address the problem of allowing a large number of

users to access the same data block in SiRiUS, the Naor-Naor-Lotspeich (NNL) subset-sum

38

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

Manager
(trusted authority)

Data
owner

...

Data store

Controller

Cloud Service Provider

Public group key
directory

Firewall

Private group
key store

Authorized mobile user set belonging to client

Re-encryption
task

Wireless medium and/or Internet

User

Figure 3.1: A system model of proxy-based data re-encryption.

39

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

framework may be utilized. Here, the potential recipients are grouped into subsets, and the

encryption key is encrypted using the key belonging to a whole user subset, and not just

an individual user. To reduce the cost of revocation, “each subset is a complete subtree

rooted at some node in a tree. A user is given keys corresponding to those subtrees rooted

at nodes along the path from [his or] her leaf to the root.” To support this scheme, the

expanded key blocks in the file metadata require significantly more data storage, however,

which is a tradeoff in achieving scalability. Ultimately, this cryptographic file system relies

on the client performing all cryptographic operations, which is a significant disadvantage.

Plutus is another secure file storage system with encrypt-on-disk capability that offloads

all key management and distribution to the client [60]. The motivation behind its design

is that the cost of encryption and decryption is distributed among all users without server

involvement. This approach is not very feasible in a cloud-based system consisting of

clients with resource-constrained devices, however, where all wireless communication and

processor-intensive cryptographic operations should be kept to a minimum, and a secure

out-of-band channel is generally unavailable. One of the defining features of Plutus is that it

offers lazy revocation. Following a revocation, a revoked reader may still read unmodified or

cached files; it cannot, however, read updated files or modify them itself. A major limitation

is that users must exchange keys securely between themselves; no such mechanism to

accomplish this feat is proposed. In addition, readers must contact the file owner to

obtain the necessary keys for decryption, which further increases the communication cost.

Scalability in Plutus is achieved through filegroups, which are essentially aggregations of

files shared by multiple users that have a single RSA key pair associated with them. The

vulnerability of the file system is reduced through the use of lockboxes. Lockboxes contain

the keys for individual files, and the lockboxes are themselves encrypted with an RSA

key. Enforcement of read versus write access is achieved through cryptographic means, as

opposed to relying upon the server. Writers receive file-sign keys while readers receive file-

verify keys. Readers verify the integrity of data downloaded from the server by checking

the signature of each block. To address the problem of an increase in the number of keys

due to revocation, a technique called key rotation is utilized. Files are re-encrypted with

the latest keys, and users can derive earlier keys if needed, as all keys are related to each

other. However, only the owner can generate the next version of the key; this prevents a

revocation from being undone by a reinstatement of an older key, but it requires availability

of the original owner of a file. In a large-scale multi-user cloud application, the required

availability of the data owner may be infeasible. Indeed, necessarily identifying a single

40

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

user as a permanent owner is also unrealistic. Key rotation is done by exponentiating the

current key with the owner’s private key, which is a relatively expensive operation. Another

feature of Plutus is that the server can validate writers of files based on their supply of a

write token issued by the file owner; the hash of this write token is stored on the server

for verification. This is not a significant improvement over a traditional access control list

securely maintained on the server, however, and the issuance of a large number of write

tokens by a mobile user is unrealistic.

Tahoe is a storage grid designed to provide secure, long-term distributed storage [115].

It is especially useful for backup applications and can be used in a RAID-like manner. It

is designed to remain operable even if some servers across which a file is shared become

unavailable. The motivation behind Tahoe is the Principle of Least Authority, where cryp-

tographic capabilities grant the minimal set of privileges necessary to accomplish a task.

The cryptography employed by Tahoe ensures that servers cannot violate confidentiality

by reading the original plaintext, nor can they violate integrity by forging file contents. It

utilizes a capabilities-as-keys access control scheme, which enables a client to gain access to

an object based on knowledge of an identifier. Capabilities for reading from, writing to, and

verifying the integrity of files are provided. The client chooses a symmetric encryption key,

encrypts the file, creates multiple shares encoded with erasure codes for integrity verifica-

tion and file reconstruction, and then uploads the shares to different servers. This approach

does not fit with a cloud computing system, where the client expects a single upload to a

cloud provider to occur, and has no knowledge about multiple servers contained within the

cloud; the cloud provider itself is responsible for replication if necessary. Tahoe requires

the use of public-key encryption such as RSA for key generation, but does not provide a

facility for key distribution between users, nor a mechanism for revocation. Freshness of

mutable files is handled by having the client request metadata about a data share from

a sufficient number of servers, identify the highest-numbered version, and confirm that

enough shares of that version exist. Again, this solution is not a close fit to mobile cloud

computing; having a mobile user communicate with multiple servers is infeasible.

CryptDB [93] is a system that allows execution of SQL queries over encrypted data;

it also ensures that curious database administrators do not gain access to encrypted data.

“Each data item in the database can be decrypted only through a chain of keys rooted

in the password of one of the users with access to that data. As a result, if the user is

not logged into the application, and the adversary does not know the user’s password, the

adversary cannot decrypt the user’s data.” The main difficulty with this approach is that

41

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

CryptDB assigns and manages keys for principals (physical users) itself; keys for use in a

session are obtained from a user that is logged-in, and the data belonging to that user can

be compromised while accessed. The trust model is relaxed; the server must be trusted

to restrict permissions for the administrator, and to delete the user’s key on log-out; such

compromises are made to permit queries to be efficiently executed on unencrypted data.

Furthermore, the server performs no re-encryption function itself when a user is off-line.

Clearly, the designs of encrypted file storage systems are rooted in a traditional client-

server setting that does not impose the steep scalability and efficiency requirements of a

mobile cloud system. Cryptographic operations and key distribution tasks are typically

outsourced to the clients, rather than the network storage system, which is opposite to

what is desired in a cloud accessed by resource-limited mobile devices. High availability

of data owners is also required, but mobile devices suffer from transient connectivity and

provision of such an assurance is unrealistic. Furthermore, encrypted file storage systems

may be implemented on remote machines that do not guarantee a particular level of service,

whereas a cloud system is a tightly-controlled collection of nodes under single ownership

that exists on the basis of delivering a service under contract with high guarantees.

3.1.7 Secure Cloud Storage

Recently, secure storage system design has migrated from the network file system domain to

that of cloud computing with more tailored solutions, yet work in this area is still nascent.

CloudProof is a secure storage system designed for the cloud [92]; “[clients of this system]

can not only detect violations of integrity, write-serializability, and freshness, [but] they

can also prove the occurrence of these violations to a third-party.” The system does not

deal with confidentiality, however. It presents an auditing protocol that uses attestations,

or proofs, “which are signed messages that bind the clients to the requests they make and

the cloud to a certain state of the data;” this allows violations to be proved. CloudProof

manages access control by grouping data blocks into a family, such that each block in the

family is managed by a single ACL that dictates what group of users should have access

to the block family. All of the key information is stored in the family key block. The

read access key pertaining to a block family is distributed to all users using broadcast

encryption. The main challenge lies with revocation of user access. Immediate revocation

would entail simply re-encrypting all blocks managed by ACLs that include the affected

group, which would be expensive. Instead, CloudProof performs lazy revocation. Using

42

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

key rotation as in Plutus, the data owner rolls keys forward to a new version for each of

the affected families. The new key information is sent to all current authorized users via

broadcast encryption, which has complexity equal to the root of the membership in the

ACL. Upon data access, a client checks the version of the read access key; if it is out of date,

then the client re-encrypts the data. Thus, the revocation burden is borne by users; a data

write always requires re-encryption, anyway. This scheme seems unworkable in the context

of mobile users: they cannot be expected to perform re-encryption operations themselves

given their limited computational capacity. The cloud provider does not assist with the

expensive re-encryption activity, and the data owner is responsible for performing the key

rotation. In practice, a mobile user would not be expected to be available and connected

at all times to perform such activity, nor could it endure the communication cost of it.

DepSky is a cloud storage system that addresses secure storage on multiple clouds;

it permits “encryption, encoding, and replication of data on diverse clouds that form a

cloud-of-clouds” [16]. “All writers of a data unit share a common private key used to sign

some of the data written on the data unit, while readers have access to the corresponding

public key to verify these signatures.” It is assumed that the system has some sort of

access control, but it is left unspecified. Confidentiality of data stored in the clouds is

ensured without the use of a key distribution service, by employing Shamir’s secret sharing

scheme [98], where a “dealer distributes a secret to [all] players, but each player gets only

a share of the secret;” a sufficient number of shares are needed to recover the secret key.

In the case of the basic variation of DepSky, the players are the participating clouds,

not the users. An erasure code algorithm is employed that reduces the size of each share,

such that “data is encrypted with a random secret key, [it is then] encoded, [and] the key

is divided using secret sharing; each server receives a block of the [same] encrypted data

and a share of the key.” “No individual cloud has access to the data stored, but clients

that have authorization to access the data” must communicate with a sufficient share of

different other clouds to obtain all key components and rebuild the original data. This

communication cost is excessive for a mobile user, and it also requires full data replication

on all clouds. There is also the practical difficulty of finding sufficient non-collaborating

cloud providers to implement the proposed system. In another variation of DepSky, to

reduce cloud storage demands, the data itself is partitioned into a set of blocks such that

a sufficient share of blocks is necessary to recover the original data. Each reader requires

multiple replies to a read request, and a data writer is required to generate and store a

message digest for each cloud; these features also entail a high communication cost.

43

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

The CS2 cloud storage system [61] provides facilities to conduct symmetric search of

large volumes of encrypted data with provision of data confidentiality and global integrity;

however, it does not address issues of key management and end-to-end security as it con-

siders itself to be of a different purpose than a cryptographic file system for the cloud.

The secure cloud storage systems detailed here impose substantial communication and

processing costs on users, such as on-the-fly data re-encryption or constant communica-

tion with multiple clouds, as described. These demands would prove insurmountable for

resource-constrained mobile device users. Clearly, new solutions must be designed such

that mobile users are accommodated without compromising data privacy and integrity.

3.2 Security Features in Commercial Clouds

Inroads have been made in standardizing key management for commercial cloud use.

OASIS (Organization for the Advancement of Structured Information Standards) has

proposed KMIP (Key Management Interoperability Protocol) for unified cloud manage-

ment [87], which addresses interoperability of key management services in use in the in-

dustry; it defines a single low-level standardization protocol for communication between

key management systems and applications within an enterprise system, but it arguably

falls short of addressing the unique scalability problems inherent in cloud computing. It

has been observed that KMIP has a limited focus on enterprise key management and lacks

applicability towards cloud computing; there is agreement over the need for a scalable key

management model applicable to today’s cloud systems [77].

Authentication is an important aspect closely related to key management; it determines

whether a user can gain entry to a cloud. This function may be accomplished through the

use of SAML (Security Assertion Markup Language), permitting an organization to man-

age authentication for its own users, as well as between other sites using trust relationships.

It provides Single Sign-On (SSO) capability, which is seamless authentication on multiple

cloud providers; a user may log into multiple sites using a common identity authorized

by an identity provider. Microsoft’s Azure cloud computing platform [24] provides access

control by having each user supply a token that contains claims, which is more efficient

than individual access control. An identity federation scheme permits claims created in

one identity scope to be accepted in another. Amazon’s EC2 (Elastic Compute Cloud) [5]

44

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

requires multi-factor authentication; customers must not only supply their standard cre-

dentials, but also supply a single-use code from an authentication device in possession.

Network security on a commercial cloud systems is largely handled by a firewall that

protects a running virtual instance from attack by allowing only certain ports to be accessed

from outside by legitimate clients. In EC2, a mandatory inbound firewall is configured in

deny mode by default; customers must explicitly open all ports to allow inbound traffic.

Communication may be restricted by protocol, service port, and source IP address.

Other security mechanisms relate to the inner workings of the cloud. One example is

process isolation, where a sandbox provides a controlled set of resources for programs to

run in, while restricting communication access; it permits untrusted programs to co-exist

safely in the cloud. In the secure sandbox environment of Google’s App Engine (GAE)

platform [49], each cloud application runs in a separate process, and the data store prevents

an app from accessing data belonging to other applications. A cloud application is forced

to access external computers solely through a provided URL fetch service, and inbound

traffic occurs on standard HTTP ports. An application is prevented from writing to the

file system directly, and must return a response to a web request within a specified time.

In the case of an untrusted cloud provider, key management services are sometimes

handled by a third-party guardian. For example, the security provider enStratus enforces

a separation of roles [39]; it acts as a custodian of the client’s security keys and credentials.

It maintains the key store outside of the cloud but has no access to client data, while the

cloud provider is the opposite: it holds the encrypted data, but not the keys. The security of

this approach lies in the difficulty of successfully attacking two independent and encrypted

systems. However, the client credentials are stored on one of enStratus’s own servers, and

although it is allegedly not externally accessible, it could still be compromised; clients may

also be unwilling to trust a third-party provider with their keys any more so than the CSP.

Generally, commercial cloud providers are innovating security features, but solutions

tend to be fragmented and proprietary, and tailored for specific types of applications; in

particular, for web server traffic. Evidently, there is no readily available and efficient key

distribution scheme to provide fine-grained access control to encrypted storage in the cloud.

45

CHAPTER 3. RELATED WORK ON KEY MANAGEMENT

3.3 Summary

The lack of direct control over the resources of a cloud computing system require clients

to either fully trust the cloud provider, or adopt cryptographic protocols to ensure the

security of data that is transferred to and stored in the cloud. The increasing popularity

of cloud applications that service mobile users implies that these protocols must be made

efficient. To provide trusted, encrypted communication with a cloud application, a highly

scalable key management system is needed. Data confidentiality must be preserved through

in-transit data encryption as well as encrypted data storage. One important feature in

particular is efficient key revocation, due to the frequent changes in membership that can

occur in a large multi-user cloud application. Furthermore, key management solutions in

use by commercial cloud systems today are largely insufficient from a scalability point of

view. Security technologies adopted by general-purpose web servers and networked file

systems also do not fully address these needs. In the following chapters, a number of novel

key management techniques to achieve scalable and secure mobile cloud computing will be

proposed and analyzed.

46

Chapter 4

Re-Encryption-Based

Key Management

4.1 Introduction

Key management techniques are proposed in this chapter which minimize com-

munication sessions for users and avoid expensive client-side calculations; they take

advantage of an asymmetric computing model in which the cloud server has much greater

computational ability than a mobile client to process cryptographic functions of a security

protocol. The re-encryption system model described in Section 3.1.5 on page 37 and the

adversary and threat model described in Section 2.4.1 on page 19 are assumed.

First, related work is presented on proxy re-encryption in Section 4.2, beyond what

is described in Chapter 3 on page 30. Two key management schemes based on data

re-encryption are then presented: a conventional one entailing a re-encryption workload

processed by a trusted client-controlled party, with novel improvements suggested, in Sec-

tion 4.3; and the other entailing a workload processed by the cloud provider as an untrusted

entity that offers greater scalability in the mobile cloud computing context, in Section 4.4.

Implementation results on popular smartphone and cloud platforms are provided that val-

idate the assumptions made, in Section 4.5. Finally, concluding remarks on the efficiency

and scalability of the proposed schemes are made in Section 4.6.

The content of this chapter is based on work that has been published [108,109].

47

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

4.2 Related Work on Proxy Re-Encryption

Data stored in the cloud should ideally be stored in encrypted form so that the cloud

provider cannot access it. This notion is dependent on the keys being securely managed by

an entity outside of the provider’s domain. The difficulty arises when new users join the

system, and existing ones leave, necessitating new keys to be generated. The encrypted

data should ideally be transformed such that it may be unlocked with new keys, without

an intermediate decryption step that would allow the cloud provider to read the plaintext.

One possible method is to re-encrypt the stored content during retrieval. Such a tech-

nique has been applied to an encrypted file storage system using proxy cryptography and

the Chefs file system, where a “[content] owner encrypts blocks of content with unique,

symmetric content keys [(symmetric keys presumably being preferred for performance rea-

sons); these keys] are then encrypted with an asymmetric master key to form a lockbox” [8].

“Users download the encrypted content from the block store, then communicate with an

access control server to decrypt the lockboxes protecting the content. [Critically,] the con-

tent owner selects which users should have access to the content and gives the appropriate

delegation rights to the access control server.” To accomplish this, the content owner re-

tains a master key that is used to compute a re-encryption key; this re-encryption key

is used by the “access control server to re-encrypt the lockbox [to that of the intended

reader’s] public key.” The problem with this approach is that the content owner manages

access control for all other users, which is a great burden on communications if the owner

is a mobile device user. In addition, it requires dynamic re-encryption of the same data

whenever multiple users want to access it. In the novel model proposed later in this the-

sis, one-time re-encryption only occurs whenever membership changes, presumably a less

frequent occurrence than that of data access. Also, access rights need not be enforced by

individual users, and it is not possible for a single user to divulge the keys of all other users

to the cloud provider, as they are not known. Other approaches exist [57] that also require

a trusted proxy for each decryption, which increases the communication cost.

A related work proposes the merging of Attribute-Based Encryption (ABE) with proxy

re-encryption in a cloud computing application, allowing fine-grained access control of

resources while attempting to offload re-encryption activity to the cloud provider [119].

This scheme has numerous differences to the cloud-based re-encryption scheme that will

be proposed; these differences prove to be disadvantageous in a mobile-based environment.

The data owner, or originator, is involved in generating a key for each new user that joins

48

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

or leaves the system, rather than offloading this task to a trusted key authority under the

client’s control. This is not only a prohibitive cost for a mobile user, but also impractical

due to the user’s mobility and hence occasional unavailability. Another difference is that a

secret key must be regenerated and re-distributed for each user, in lazy fashion, whenever

user revocation occurs, rather than allowing users to upgrade a common partition key based

on public parameters which would reduce communication and result in higher efficiency.

Also, the data re-encryption activity is aggregated in lazy fashion, whereas in this proposal,

re-encryption occurs dynamically on an as-needed basis, greatly reducing server workload

for data primarily accessed by approximately the same set of users over time. The re-

encryption occurs due to attribute re-definition, unlike the proposal. There is also no

facility for exchanging key material in peer-to-peer fashion, which would be useful among

mobile users utilizing cheap local wireless links such as Bluetooth. Finally, the scheme is

based on KP-ABE (Key-Policy Attribute-Based Encryption), not CP-ABE.

Similar observations are made with respect to another related approach that combines

Hierarchical Identity-Based Encryption (HIBE) and Ciphertext-Policy Attribute-Based

Encryption (CP-ABE), which uses hierarchical domain masters to distribute user keys and

the cloud provider to re-encrypt data on user revocation depending on the attribute keys

held by the revoked user [113]; this is done at the cost of increased storage requirements for

key material held by users and a greater amount of processing when generating ciphertext,

which are problematic for mobile device users. Another method of trusted data sharing

over untrusted cloud providers has been proposed that uses a progressive elliptic curve

encryption scheme [123]. However, it relies upon a writer uploading encrypted data to the

cloud, then distributing credentials to the cloud to perform re-encryption, and also to the

reader on each data access attempt; this is clearly impractical when applied to resource-

constrained devices and networks. The inefficiency of peer-to-peer key distribution in this

manner is best avoided.

Although data re-encryption appears to be a promising technique in managing en-

crypted data as access rights evolve over time, current solutions in the literature do not

address the issue of high scalability to a sufficient and satisfactory degree.

49

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

4.3 Manager-Based Re-Encryption

4.3.1 Introduction

The overall goal of this chapter is to explore, adapt, and evaluate system security engi-

neering techniques to achieve a high level of communication security for cloud computing

systems. In particular, the emphasis will be on the scenario of a mass multi-user services

application running in the cloud and interacting with a high population of active mobile

device users. A key management scheme is described in this section that is based on

the proxy re-encryption cryptography suggested in [8]; however, it has been mapped to

a cloud computing system with significant modifications. Its primary involvement here is

to demonstrate a technique that will serve as a foundation and point of comparison for

the novel scheme proposed in the following Section 4.4 that offers much greater scalability.

Some additional novel variations are still suggested at the end of this section, however,

which provide limited but substantive improvements to performance, scalability, and secu-

rity. The contributions of this chapter include the adaptation of proxy cryptography to a

cloud computing system such that the communication cost for mobile users is reduced, as

compared to the encrypted file system application in [8] that is less practical in the mobile

usage context studied here, as will be explained.

The scheme described in this section permits access to a common data partition in

the cloud among multiple users, ensures confidential data storage to which even the cloud

provider is not privy, and offers greater data access efficiency in a mobile-based cloud

system at lower overall communication and processing cost than traditional centralized

solutions; all of these features are accomplished through the process of data re-encryption.

Table 4.1 summarizes the notation used throughout.

A manager, or trusted proxy node, controls the access of its users to the cloud. This

manager is typically under the control of the client organization, and ensures that key

management functions need not be outsourced to an untrusted cloud provider. The man-

ager may comprise a server situated behind the firewall of the client organization that is

securely accessed by a mobile user population. At the same time, the cloud stores user

data in encrypted form such that it is accessible to all authorized users at any time; it does

so by regularly performing one-way re-encryption of the data in the cloud as it is being

accessed, so that a reader in the authorized group can decode it using the reader’s own

decryption key.

50

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Symbol Description

P Cloud data partition.

P Set of all partitions.

UP User group with authorized access to P .

M Manager or trusted proxy.

A,B,C Users Alice, Bob, Charlie.

m Plaintext message.

Ex(m) Ciphertext of message m encrypted using secret key x.

PKXv Public key of entity X (with version v optionally specified).

SKXv Decryption key of entity X (with version v optionally specified).

RKX→Y Re-encryption key for converting from content unlocked by SKX to that unlocked

by SKY .

Table 4.1: A legend for the symbolic notation used in the re-encryption models.

4.3.2 System Operation

Key Generation and Encryption

Consider modifications and improvements to a proxy re-encryption scheme [8], based on

the BBS encryption method [18] and the El Gamal crypto-system [38]. The proof of the

underlying encryption technique is presented in [8], and is relied upon here.

As shown in Figure 4.1, the manager generates public and private decryption keys (PKX

and SKX) for each user X belonging to the system, and is responsible for maintaining an

access control list for enforcing the authorized user set. A data partition P in the cloud

is accessible by a user group UP and belongs to the entire set of partitions P . In this

example, Manager M manages the access of user group UP to data partition P . Note that

a single user may belong to multiple groups.

Let G1, G2 be groups of prime order q with a bilinear map such that: e : G1×G1 → G2.

The system parameters are the random generator g ∈ G1 and Z = e(g, g) ∈ G2. A secret

decryption key SKX is randomly selected by M for each user X ∈ UP and distributed to

the users through a secure (possibly out-of-band) channel. Let: SKX = x ∈ Z∗q. A public

key PKX is also chosen for user X as follows: PKX = gx. Similarly, the manager M also

creates a private key SKP = p ∈ Z∗q and public key PKP = gp for data partition P in the

cloud that it manages. The public partition key may reside in a directory inside the cloud

51

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Manager M

User
A

User
B

User
C... ...

Data
partition

P

Controller

Cloud

cP

Public key
directory

cP

cB cC

PKA, SKA PKB, SKB PKC, SKC

PKp

SKP, PKx, SKx

User group UP

Figure 4.1: A model of key management using manager-based re-encryption.

52

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

that is accessible by all users in the system, or be distributed to all users in UP by the

manager; it is considered public information. The manager, however, retains the private

decryption key SKP required to read the cloud data; the cloud provider and other users

cannot decode the data even if they download it directly from the cloud, with or without

authentication. A unique property of this model is that all read requests initiated by users

are normally serviced through the manager.

User A, or Alice, encrypts a message m and creates a ciphertext using the public key

PKP of the data partition where it is to be stored, and uploads the cipher-text Ep(m) to

the cloud, so that it is stored in encrypted form in partition P .

Given m ∈ G2, random r ∈ Z∗q

Ep(m) = (Zr ·m, gpr)

The cloud provider will be unable to extract the original content m. If m exceeds the

maximum possible block length, then the message may be segmented, and each segment

encrypted using the same key PKP . Alternatively, a symmetric cipher such as AES-256

may be applied to the entire message, and the cipher key itself encrypted using the proposed

scheme, as opposed to the entire message. Irrespective of the approach taken, the number

of required encryption keys in the proposed scheme will not increase, as the same pre-

computed public partition key is applied in all encryptions relating to the same message.

Re-Encryption

Suppose that a user B, or Bob, belonging to the same group, makes a request to the cloud

provider for the same message m stored earlier by Alice. The cloud provider does not

send it to B directly; instead, it sends it to M , which decides whether that data should

be accessible by B based on its ACL. If so, then the manager creates a re-encryption key

RKP→B using the private key of the partition. The manager then fetches the encrypted

message Ep(m) from the cloud, and computes a re-encryption key using B’s decryption key

SKB, which was initially generated by the manager and shared with B. Note that SKB

is equal to b ∈ Z∗q, chosen randomly by M . In general, the re-encryption key computed for

user X in UP is:

RKP→X = g
SKX
SKP = gx·p

−1(mod q)

53

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

For user B, as in this example, the re-encryption key computed is RKP→B = g
b
p . Using

this key, M re-encrypts the ciphertext Ep(m) as Eb(m) and sends it to B directly.

From Ep(m) = (Zr ·m, gpr),

Compute: e(gpr, RKP→B) = e(gpr, g
b
p) = Zbr

Publish: Eb(m) = (Zr ·m,Zbr)

The justification for re-encrypting data before delivery to B is as follows:

1. A secure channel between M and B may not exist, and hence encryption is required.

2. M may perform a re-encryption without possession of the private key of B, and

is unable to read the ciphertext during the process; this possibility is explored in a

variation presented later in Section 4.3.4, and is not possible if M was to follow a two-

step process and simply decrypt then encrypt the data with the recipient’s private

key. Thus, the security of the proposed scheme may be enhanced with re-encryption,

at the cost of a simpler and faster scheme using symmetric keys.

Decryption

The recipient B can then decode the ciphertext Eb(m) using his own decryption key SKB:

m =
Zr ·m
(Zbr)

1
b

If the original user Alice wished to decrypt the message, then a similar process would

unfold; the manager would create a re-encryption key RKP→A and Alice would decrypt her

ciphertext Ea(m) using her decryption key SKA. Thus, the manager can allow any user

within the group to access the encrypted data stored within the cloud. Here, first-level

encryption is demonstrated [8], where the content Eb(m) available from the manager may

be decrypted only by the holder of SKB; the content may not be re-encrypted a second

time and read by a third party such as user C in UP . If C requires access, then the use of

RKP→C to carry out a re-encryption of Ep(m) to Ec(m) is required.

54

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Data Flow

To summarize, the flow of ciphertext in the system between two users is as follows:

A Ep(m)
−−−−→

P Ep(m)
−−−−→

M Eb(m)
−−−−→

B

The cryptographic operations explained in this section are shown visually in Table 4.2.

Step Alice (A) Cloud (P) Manager (M) Bob (B)

1 Computes

PKp = gp and

SKp = p, and

shares PKp with

cloud. Similarly,

computes SKB = b

and sends it to B.

2 Obtains PKp from

cloud, picks ran-

dom r, encrypts m

as Ep(m) = (Zr ·
m, gpr), and sends

it to the cloud.

3 Stores Ep(m), and

sends a copy of it to

M on request.

4 Computes

RKP→B = g
b
p .

Re-encrypts

Ep(m) as Eb(m) =

(Zr ·m,Zbr).
5 Downloads Eb(m)

from M and de-

codes m = Zr·m
(Zbr)

1
b

using SKB.

Table 4.2: A summary of operations in manager-based re-encryption.

55

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Key Re-generation

If a new user Charlie, or C, joins the group, then he registers with the manager which

grants authorization, and is given a decryption key SKC . C will be able to receive and

decrypt only the content that the manager is willing to re-encrypt for him, as ciphertext

Ec(m). If Charlie leaves the group, then the manager removes him from its access list; it

will no longer re-encrypt data for C on retrieval attempts.

4.3.3 Discussion

An important advantage of this model lies in is its elimination of expensive key re-

generation and re-distribution for all users whenever group membership changes. It pre-

serves data confidentiality for the client; data in the cloud remains encrypted and unread-

able in its original form by the provider at all times. For a new user that joins the group,

the manager can choose to decrypt data stored only after a certain time, hence providing

backward secrecy. For a user that leaves the group, and whose access is revoked, none of the

stored data can be decoded independently by that user, hence providing forward secrecy.

Unlike the encrypted file storage mechanism described in [8], the proposed proxy re-

encryption is applied to the ciphertext itself rather than a container (i.e. lockbox) for

decryption (i.e. content) keys, so that decryption keys are not shared by multiple users

which carries a risk of compromise or collusion; additionally, the container itself is not

required to be downloaded by users as extra overhead. Additionally, unlike in the related

work, the client does not need to make a separate request against an access control server

for every single data fetch in order to request a re-encryption, and then make a second

request to actually download the data of interest. Conservation of communication in this

manner is important for mobile device users.

Some opportunities arise for increasing performance. The manager may cache the most

recently re-encrypted content for each user so that multiple accesses of the same data

by the same user may be serviced more quickly. A replacement strategy such as least-

recently-used may be employed; if the same user requests the same records repeatedly,

then re-encryption would not need to be re-done on a cache hit. In all cases, the recipient

completes only a single decryption operation, which is suitable for a resource-constrained

user. Additionally, the manager can take on additional responsibilities if allowed by the

56

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

system model. If there is a secure link between the users and their manager (through a

VPN connection for instance, or if all user entities are connected on an intra-net behind

a secure firewall), then users may communicate freely with the manager without the need

for additional data encryption in transit in the final leg. In this case, the authority can

manage all of the encryption and decryption needs of its members, thereby unloading that

processing burden from lightweight mobile device users.

A very significant disadvantage of this approach, however, is that for each retrieval

attempt of a new data block or record, the manager must perform re-encryption using an

asymmetric key. A bilinear pairing operation based on a Weil and Tate pairing is several

times more costly than a scalar multiplication [64]. Although it is an expensive operation, it

can be accomplished in the private portion of a hybrid cloud if the manager is a component

of it, thus taking advantage of its scalability. A mechanism for using the public portion of

a cloud, which would typically scale much more easily for this purpose, will be described

in the following section. Another disadvantage is that, because the manager stores all

decryption keys, it must be fully trusted; hence, it is a point of vulnerability. Furthermore,

it requires full trust by the client which may be unrealistic in some systems.

The proposed scheme is presented in this chapter as a plausible and straightforward

adaptation of the concept of re-encryption cryptography to a cloud computing context.

However, its stated disadvantages render it a non-optimal key management scheme for

mobile cloud computing. A more practical scheme is presented in the following Section 4.4.

4.3.4 Novel Variants

Notwithstanding the fundamental scalability problem of the manager, additional optional

variants are presented to improve the security or performance of the original scheme:

Encryption Using an Owner Key

In order to reduce the cost of re-encryption for all requests, the protocol may be modified

so that rather than using the partition key PKP for encryption, user A would use her

own public key PKA, and upload ciphertext Ea(m) to the cloud. Upon data retrieval, the

manager would be required to perform re-encryption for another user, such as B, using

re-encryption key RKA→B supplied by M :

57

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

RKA→B = g
SKB
SKA = g

b
a

This technique would allow Alice to retrieve data directly from the cloud that she could

then decrypt without the aid of the manager, which has good practical application; in many

conceivable use cases, it would be expected that the same user that uploaded data would

be the one that would most frequently access it. The trade-off is that in case A was to

leave the group, the manager would need to invalidate all data uploaded by A; one option

would be for the cloud provider to re-encrypt it to the partition key, and then control all

access to it from that point going forward; even so, no key re-distribution would occur.

Optimized Manager-Based Re-Encryption

If the manager introduces too much latency into the system due to its workload, it is

possible to substantially reduce its communication and processing burden by transferring

some of it to the users; this is particularly effective if system usage typically entails repeated

fetches of the same data, as is generally the case. The manager’s critical role in the protocol

described thus far is to perform the re-encryption task for every fetch of ciphertext by the

same user. However, observe that the Zr · m subcomponent of the encrypted ciphertext

Ep(m) stored in the cloud is not directly involved in this operation; it may be directly

downloaded from the cloud by the recipient B, who will then await the second component

Zbr from M . In this way, M avoids the overhead of fetching Ep(m) in its entirety from

the cloud. Furthermore, M will reduce the number of pairing operations that it needs to

perform in the original re-encryption scheme in order to compute the Zbr component, and

will thus significantly improve its scalability. The modified scheme proceeds as follows:

The data owner first uploads Ep(m) to the cloud, which stores it, as before. When

the recipient B first makes a request of the ciphertext Ep(m) = (Zr ·m, gpr), it contacts

the cloud and manager jointly to receive the ciphertext components that it needs for the

decryption. The provider first provides the component Zr ·m to B to fulfill its obligation

in the client request. As part of the transaction, the provider also sends the component gpr

to the manager, which performs a single pairing operation on it, utilizing SKP , as follows:

Zr = e(gpr, g
1

SKP) = e(gpr, g
1
p)

58

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

The manager stores the result Zr for future use in re-encryptions for any user. Note that

this operation by the manager occurs the first time that the ciphertext in question is

accessed by any user, and the same component can be re-used for any user in the future.

Next, to process the current outstanding request from B in particular, it exponentiates the

result Zr using a copy of B’s decryption key SKB, to obtain the result Zbr:

Zbr = (Zr)SKB = (Zr)b

The manager then sends the result Zbr as the second required component of the ciphertext

to B, so that B now possesses Eb(m) in its entirety and can perform the decryption, as

described previously. The cryptographic operations explained in this variant are shown

visually in Table 4.3.

These modifications to the manager-based re-encryption scheme significantly improve

the performance of the manager, which now only carries out a single pairing operation

for each ciphertext and user. Repeated subsequent requests of the same data result in a

single exponentiation by the manager, instead of an expensive pairing operation as in the

original scheme. The only added cost is an additional component Zr to be retained for each

ciphertext, but it is applicable to all users. Furthermore, to reduce the communication

cost for the mobile user to a single request, it is possible for the manager to fetch the

Zr · m component from the cloud and provide it directly to the user; the cost is added

communication for the manager itself, but it is no worse than in the original protocol.

An undesirable side effect is that if B leaves the group, he can continue to download

and access encrypted data in the cloud. This issue is solved in the model presented in

the next section, in which the cloud data undergoes a transformation that prevents this

possibility. Also, B must initiate download requests to both the cloud provider and the

manager; in the next model, downloads only involve the cloud provider.

59

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Table 4.3: A summary of operations in a variant of

manager-based re-encryption.

Step Alice (A) Cloud (P) Manager (M) Bob (B)

1 Computes PKp =

gp and SKp = p,

and shares PKp

with cloud. Sim-

ilarly, computes

SKB = b and

sends it to B.

2 Obtains PKp

from cloud,

picks random

r, encrypts m

as Ep(m) =

(Zr · m, gpr), and

sends it to the

cloud.

3 Stores Ep(m),

and sends the gpr

component of it

to M on request.

4 On the first (and

only) request for

Ep(m) from any

user, and from

the component

gpr, computes

e(gpr, g
1
p) = Zr,

and stores it.

Requests the ci-

phertext compo-

nents from P and

M .

60

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Table 4.3: (continued)

Step Alice (A) Cloud (P) Manager (M) Bob (B)

5 Sends the Zr ·
m component of

Ep(m) to B on re-

quest.

On the first and

all subsequent

requests by B

in particular,

and using SKB,

computes Zbr =

(Zr)SKB = (Zr)b

and sends it to B.

6 Downloads all

components

of Eb(m) =

(Zr · m,Zbr)

jointly from the

cloud and M ,

and decodes

m = Zr·m
(Zbr)

1
b

using

SKB.

Limited Trust of the Manager and Data Owner

In the scheme presented, the manager retains the decryption keys of all users, as well as

the partition secret key, and is assumed to be wholly trusted by the entire user population.

This assignment of trust has utility in regenerating and redistributing a decryption key in

the case where a mobile user loses it due to a device loss or erasure, or in automatically

regenerating a key due to time expiry in compliance with an IT security policy.

However, to restrict access to data of the most sensitive nature, and mitigate the

consequences of an attack on the manager, it may be desirable for a user to generate his

or her own decryption key, instead, and not share it with the manager; fortunately, the

re-encryption task performed by the manager is not hampered as a result of this restriction.

61

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

During the key generation phase, Alice (A) may randomly select a secret key SKA =

a ∈ Z∗q and compute a public key PKA = gSKA = ga, to be used for encryption; the

public key is uploaded to the manager; it does not necessarily require an out-of-band

transport for security. The secret decryption key SKB = b ∈ Z∗q for recipient Bob (B) is

independently generated by Bob himself, and the public key PKB = gb is shared with the

data owner A for re-encryption purposes. Similarly to the cloud provider, at no time can

the manager decrypt any user data stored in the cloud, as it has no access to either private

key. Furthermore, Bob does not share his private key with Alice.

Later, during a re-encryption operation, the data owner exponentiates the public key

PKB with the inverse of SKA to calculate the re-encryption key RKA→B, achieving the

same result as before, where the ciphertext is transformed to a version that can be decoded

by B:

RKA→B = (PKB)
1

SKA = (gSKB)
1

SKA = g
SKB
SKA = g

b
a

The manager still computes the expensive pairing operation entailed in the re-

encryption task. In this way, highly sensitive data cannot be read by a compromised

manager, unlike in [8], where the access control server must be fully trusted. The cost is

additional key generation and distribution demands placed on the data owner.

4.4 Cloud-Based Re-Encryption

4.4.1 Introduction

A potential problem with the manager-based encryption scheme is that the manager is

allocated all re-encryption tasks, and its ability to scale may be limited. An alternative

and novel model is now presented, where the cloud provider is delegated the responsibility of

re-encryption, in order to leverage its advantages in computational capacity. The manager

still exists in this scenario, playing the role of key coordinator; however, it is no longer a

bottleneck for re-encryption operations in the system. All data re-encryption operations

are handled by the cloud provider, which is highly scalable.

62

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

4.4.2 System Operation

Key Generation and Encryption

Refer to Figure 4.2. As before, in the setup phase, the manager M generates version 0 of a

public and private key pair, PKP0 and SKP0 for the data partition P , in a similar manner

to what was described in Section 4.3; it then distributes a copy of PKP0 to all current

authorized users in the user group UP , including A and B. Alternatively, PKP0 may be

stored in the public key directory accessible to all users. The secret partition key is never

shared with the cloud provider. M directly distributes SKP0 to all of its current users who

are entrusted with the safekeeping of it.

Once again, user A, or Alice, wishes to store encrypted data in the cloud. A encrypts a

message m with PKP0 . A then uploads the ciphertext Ep0(m), and any optional associated

policy settings, to the cloud provider:

Ep0(m) = (Zr ·m, gp0r)

The data is stored in P , in encrypted form.

Decryption

User B, or Bob, is another user in the same group as A, and requests the data Ep0(m)

that A has uploaded to partition P . Since B has a copy of the secret partition key SKP0 ,

he can decrypt the data:

m =
Zr ·m

(Zp0r)
1
p0

Both A and B receive SKP0 during the set-up phase from the cloud provider. A may

also provide it directly to B in peer-to-peer fashion, over a secured Bluetooth channel, for

instance; a local link such as this would not incur the same high transmission cost as a 3G

or 4G wireless channel. All users in UP may retrieve the message uploaded by A to the

cloud, by directly obtaining Ep0(m) from the cloud provider, and using the same shared

decryption key SKP0 . Thus, in this model, second-level encryption is demonstrated [8]; as

applied here, the ciphertext published by the cloud may be decrypted by a recipient who

holds the original secret partition key; additionally, a re-encryption round on the ciphertext

is possible by the provider acting as a delegate, which will transform it into a first-level

ciphertext so that it may be decrypted only by the holder of a newer partition key.

63

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Manager M

User
A

User
B

User
C... ...

Data partition 1

Controller

Cloud

cP0
cP1

cP1

Key hash
directory

h1,h2

h1 h2

PKP0

User group UP

SKP0
SKP1

SKP1

cP0
cP1

cP2

h1
SKP0 → SKP1 → SKP2

h2

SKP0
, SKP1

, SKP2

SKp1

PKP1
PKP2

Key generation:

Figure 4.2: A model of key management using cloud-based re-encryption.

64

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Re-Encryption

If a new user Charlie, or C, joins the group and the manager authorizes him, then the

present partition key PKP0 is invalidated; it becomes obsolete, and a new version of the

key must be generated. M first authorizes C, approving membership. The manager then

creates a new random salt, with value h1, and adds it to the key SKP0 ; it then hashes the

result through a secure hash such as SHA-2, to generate the new (version 1) key SKP1 . In

general:

SKPv = pv = f(SKPv−1 , hv)

for version v = 1, . . . , n, random hv ∈ Z and secure hash function f . The public key PKPv

is then derived from the secret key SKPv , as before: PKPv = gpv .

The hash value used to generate the new key is then shared with all current authorized

users in the group. The entire hash chain H = {hx|x ∈ N, x ≤ y}, where y is the current

version number corresponding to the most recently created key, can be stored in the cloud

and shared with authorized users in UP ; the random hash input values themselves are

insufficient for the cloud provider to determine the key. The newly joined user C will be

unable to decrypt the message already stored by A; it was encrypted with an older key,

with a value less than y.

The accessibility of the ciphertext by C may be dependent on the default policy, or an

optional custom policy originally attached to the data by A. By default, it may require

that the data Ep0(m) presently stored in the cloud partition be re-encrypted with the new

partition key. If the policy rule requires permission from A to accomplish this, then C

will be unable to decode the data until it is given. The re-encryption need not necessarily

occur at the time of C’s admission into the group; it may be triggered at the time of his

data access attempt. It may also be requested by the manager or any other authorized

user at any time, i.e. when that data is next accessed. If the data is re-encrypted by the

cloud provider using h1 to form ciphertext Ep1(m), then it can be decoded by C using the

new key SKP1 , where y = 1.

To re-encrypt the message, the cloud provider requires knowledge of the re-encryption

key that is based on the latest version of the private partition key; this re-encryption key is

generated and provided by the manager as soon as the key is updated. The re-encryption

key RKP0→P1 is a transformation from SKP0 to SKP1 :

SKP1 = p1 = f(SKP0 , h1) = f(p0, h1)

65

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

RKP0→P1 = g
SKP1
SKP0 = g

p1
p0

During re-encryption, ciphertext Ep0(m) is transformed into Ep1(m):

From Ep0(m) = (Zr ·m, gp0r),

Compute: e(gp0r, RKP0→P1) = e(gp0r, g
p1
p0) = Zp1r

Publish: Ep1(m) = (Zr ·m,Zp1r)

C can now proceed to download and decrypt the message:

m =
Zr ·m

(Zp1r)
1
p1

The cloud provider stores a history of the key versions, including the version number

of each key, the public partition key itself, the corresponding re-encryption key required

to re-encrypt the original uploaded ciphertext to the corresponding new version, and the

hash value used to create the re-encryption key, as illustrated in the following versioning

array: 
0 PKP0 − −
1 PKP1 RKP0→P1 = g

p1
p0 h1

2 PKP2 RKP0→P2 = g
p2
p0 h2

...
...

...
...

y PKPy RKP0→Py = g
py
p0 hy


Note once again that the cloud provider can never decrypt and view the original contents

of the message, as the original key SKP0 in the chain is unknown. Each new re-encryption

corresponds to a new and higher version number. Each new key is traceable to a version

number, so that any user may determine whether the key required to decrypt the ciphertext

is in his or her possession. If not, when the client requests the ciphertext from the cloud

provider, he or she can request that it be re-encrypted to the same version of the key that

is actually in the user’s possession, if the ciphertext is encoded with an earlier version and

backward secrecy is not enforced. On the other hand, if the ciphertext version is more

recent, then the user can re-assemble the correct private key using the hash value chain

history H that can be downloaded at any time from the cloud; the user must then perform

only a single decryption; multiple decryptions are not required.

66

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

At the latest, the stored data needs to be re-encrypted when access to it is attempted;

the effect of this is that re-encryption will only occur on the most frequently-accessed data.

Whenever a fetch request for cloud data is made, the cloud provider first checks whether

the message version matches the version of its most recent key in possession, and performs

re-encryption if it does not.

If C leaves the group, then the manager will increment the key version, re-generate

the partition key, and inform the server that re-encryption is required. C will not be

issued any further key updates; he will no longer be authorized to access the key hashes

stored within the key hash directory on the cloud, or request them from the manager. To

guarantee that the cloud cannot collude with C and reveal the hash history even when C

fails authentication, the hash history may either be published by the manager only, or the

manager may periodically reset the hash history and designate a new starting key version 0

while still allowing the history to reside in the cloud.

Data Flow

To summarize, the flow of ciphertext in the system between two users is as follows, with

the manager no longer playing the role of an intermediary in the communication:

A Ep(m)
−−−−→

P Ep(m)
−−−−→

B

The cryptographic operations described in this section are summarized in Table 4.4.

67

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Table 4.4: A summary of operations in cloud-based re-

encryption.

Step Alice (A) Cloud (P) Manager (M) Bob (B) Charlie (C)

1 Obtains

PKP0 = gp0

from the cloud

provider, picks

random r,

encrypts m

as Ep0(m) =

(Zr · m, gp0r),
and sends it to

the cloud.

2 Stores Ep0(m)

and its associ-

ated version 0.

3 Downloads

Ep0(m).

Receives

SKP0 = p0
from M

and uses it

to decode

m = Zr·m

(Zp0r)
1
p0

.

4 Authorizes

new member

C. Computes

RKP0→P1 =

g
p1
p0 and sends

it to P . Sends

SKP1 =

f(p0, h1) = p1
to C.

Receives SKP1

from M .

68

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Table 4.4: (continued)

Step Alice (A) Cloud (P) Manager (M) Bob (B) Charlie (C)

5 Re-encrypts

Ep0(m) as

Ep1(m) =

(Zr · m,Zp1r)
using

RKP0→P1 ,

and updates

version to 1.

6 Downloads

Ep1(m)

and decodes

m = Zr·m

(Zp1r)
1
p1

using SKP1 .

4.4.3 Discussion

The cloud-based re-encryption model off-loads the processor-intensive task of re-encryption

to the cloud provider. It is consistent with the underlying assumption behind a cloud

computing system: that it can scale to a much greater degree than its client can in terms

of computational ability. Crucially, unlike in the scheme described in the previous section,

the manager is not involved in each data fetch operation; it is only occasionally involved

in creating new keys when new users join. Another advantage is that the re-encryption

task may be executed only when necessary; it is only required at most once for each data

record whenever group membership changes. The re-encryption tasks may be batched and

executed during off-peak hours, or may be done only when a new fetch of the record is

made, at the latest. This model permits more direct access to the cloud while allowing all

security requirements to continue to be satisfied. Any authorized user can write and read

encrypted data directly to and from the cloud without involvement of the manager or any

other proxy, resulting in fast access on a regular basis. Data confidentiality is preserved in

69

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

this model even when changes to group membership occur. Since a new user is only given

the latest iteration of a key and cannot decrypt messages encrypted earlier with older keys,

backward secrecy is preserved (however, if this security feature is deemed unimportant, then

re-encryption is not necessary in the case where user membership increases). The reciprocal

is that a user that leaves the group is no longer issued key updates. Since re-encryption

occurs prior to a new data fetch request, the user is no longer able to decrypt data; forward

secrecy is preserved. User memberships tend to increase in practice, however.

The use of hashes as public key material makes it unnecessary to distribute a new

version of the partition key to all users when it becomes re-generated by the manager. The

history of re-encryption keys can be stored with the encrypted data and made available to

all users by the cloud provider; it can be downloaded along with the ciphertext. An existing

user will be able to generate the partition key by knowing the hash value history; the cost

of re-distribution of keys on every change in membership is avoided. Storage requirements

for each user are modest; it is unnecessary to store the original key and the entire history

of hash values. On a key re-generation, each user can use his or her hash values to arrive

at the latest key, and discard all of its history. Thus, only one secret key must be locally

stored for each partition that the user interacts with.

Note that the original re-encryption protocol based on BBS [18] allowed the same

encrypted content to be re-encrypted multiple times by the cloud provider; the cost of this

in the proposed protocol is that it would allow transitivity of delegations. For example, it

would allow the cloud provider to derive its own re-encryption key RK ′Px→Px+2
based on

public key PKx to PKx+2 as follows:

RK ′PKx→PKx+2
= RK ′PKx→PKx+1

×RK ′PKx+1→PKx+2
=
px+2

px

This flexibility would allow the cloud provider to retain only the most recent re-encryption

from the newest available key, and to keep re-encrypting it multiple times as the key evolved

through a process of delegation. In this case, Epx+1(m) would be re-encrypted directly to

Epx+2(m), rather than from the original Epx(m). The cost is that it would allow a newly

joined user to collude with the holder of SKx+1 and the provider by sharing its private key

SKx+2; the cloud provider could deduce RK ′PKx+1→PKx+2
, as shown, and re-encrypt data

for the new user that was not actually intended to be accessed by him. In contrast, the

re-encryption protocol based on bilinear maps, as described here, is not transitive, and thus

such delegation to new users is not allowed without arbitration from the manager. The

70

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

protocol is collusion-safe, as discussed in [8]; a user that knows SKp1 = p1 cannot collude

with the cloud provider, which knows RKPKp0→PKp1 = g
p1
p0 , and recover SKp0 = p0. This

protection is at the expense of having to retain the original ciphertext Ep0(m) in the cloud

for use in all future re-encryptions, and to incur a storage cost. The provider may still

cache the ciphertext resulting from the most recent re-encryption for immediate access.

The main drawback with this approach is the re-encryption task required whenever

group membership changes, which is a relatively expensive operation. Unlike the previous

model, it is performed within the cloud, however, which has the ability to instantly scale to

meet the processing demand. Also, there still exists the risk of the key being illegitimately

shared by a misbehaving (yet authorized) user with that of an unauthorized one. All users

are inherently entrusted with the secret partition key, unlike in the previous manager-based

re-encryption scheme. The cloud provider can perform user authentication against its ACL

as a fallback mechanism, however.

4.4.4 Variant

User-Generated Keys

It is possible to restrict the scope of trust of the manager for highly-sensitive user data.

In a variant of this model, as opposed to employing a manager-generated initial partition

key P0, A herself may generate the key pair PKP0 and SKP0 . These keys may then be used

for the first encryption of a data record that is uploaded to the cloud. The advantage of this

approach is that A can then completely control access to that data record by creating new

re-encryption keys based on the manager-created hashes. The manager will never be able

to read the data, and thus does not have to be trusted to the same degree as in the standard

case described above. The manager will only generate and issue new re-encryption keys to

all authorized users for subsequent versions; the manager will never obtain a copy of the

first-version key so that it can reconstruct the key history and be in a position to decrypt

all data in the partition uploaded by A. For instance, A can simply share the component

g
1
P0 with M , and M will then exponentiate it with P1, which it generated, to obtain the

re-encryption key RKP0→P1 = g
P1
P0 .

The granularity of access control may be controlled by the user; A may generate a

secret key pair for each new data record created, or the same key pair for all records. The

71

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

cost of this approach is that A must share her keys with all users who require read access

to the data. In a mobile scenario, this may be accomplished by A pairing with another

user via Bluetooth in peer-to-peer fashion to avoid the cost of wireless 3G or 4G transfer,

as only a small one-time transfer of key material is needed.

4.5 Evaluation and Implementation of Models

4.5.1 Qualitative Cost Comparison

The processing, storage, and communication costs of the transactions in the two proposed

re-encryption models are shown in Table 4.5. The main advantage of these models is that

constant key re-generation need not occur between the cloud (or a proxy) and the user set.

Considering that the user base will largely comprise mobile device users, the conservation

of wireless communication exchanges is significant and valuable. The trade-off is in the

automatic and continuous re-encryption necessary as user memberships naturally evolve.

In the cloud-based re-encryption model, the partition key is generated by the manager, but

the re-encryption itself is carried out by the cloud provider; importantly, fetching data from

the cloud does not involve the manager as an intermediary in each data fetch session. The

proxy re-encryption model requires the manager to perform re-encryption on each client

request, however, and so it is not as scalable in a cloud context; it still has reasonable

potential if the manager is situated inside of a private cloud.

4.5.2 Performance Measurement

In order to understand the execution cost of the protocol on real hardware, the cloud-

based re-encryption algorithm described in the previous section was implemented in Java

using jPBC (Java Pairing-Based Cryptography Library) version 1.2.1 [33], a porting of

the PBC (Pairing-Based Cryptography Library) in C [76]. The encryption, re-encryption,

and decryption tasks, as described earlier, were timed on different platforms; portability

was provided by Java 6 Standard Edition. The desktop platform consisted of an Apple

iMac with a quad-core 64-bit 3.4 GHz Intel Core i7 processor and 16 GB of RAM, running

Mac OS X 10.8.2 (Mountain Lion). The smartphone platform consisted of a Google Nexus

72

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Computational complexity

Description Proxy-based re-encryption Cloud-based re-encryption

Key generation (manager) BP + E BP + E

Key generation (user) - -

Encryption (user) 2 · E +M 2 · E +M

Decryption (user) E +M E +M

Key re-generation (manager) - H + E

Key re-generation (user) - -

Re-encryption (server) - BP

Re-encryption (manager) BP + E E

Computational costs

Description Proxy-based re-encryption Cloud-based re-encryption

Key generation (none) (none)

Re-encryption 1 per join/leave 1 per join/leave

(operation done by proxy) (operation done by cloud)

Access model

Description Proxy-based re-encryption Cloud-based re-encryption

Data fetch Via proxy Direct-from-cloud

Storage costs

Description Proxy-based re-encryption Cloud-based re-encryption

Key storage All stored in manager All stored in manager

Table 4.5: The processing, storage, and communication costs of the re-encryption mod-

els. The cryptographic operations include: Hashing (H), Exponentiation (E), Bilinear

pairing (BP), and Multiplication (M).

73

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

One phone with a single-core 1 GHz Qualcomm QSD 8250 Snapdragon ARM processor

and 512 MB of memory, running Android OS 2.3.6 Gingerbread.

The cloud platform consisted of a single Google App Engine (GAE) web application

instance. The reference for billing is a front-end instance comprising a 1.2 GHz Intel x86

processor with 128 MB RAM, billed at 10¢ per hour; the actual number of CPU cycles

used is internal to the App Engine and not exposed. The cloud servlet application posted

responses to HTTP requests.

For the purpose of experimentation, Google allows a free test account for use with up

to 500 MB of storage and up to 5 million page views per month. The Google App Engine

SDK supports the URL Fetch service only; it does not support sockets for communication,

for security reasons. It also constrains some aspects of OS functionality by disallowing

processes, threads, dynamic library loading, and writing to the data store. Nevertheless,

it is a highly popular cloud development platform.

A Type A pairing was utilized in the algorithm, which is the default curve in the PBC

library’s included test code; the group order was 160 bits long, and the base field order

was 512 bits long, which is suitable for cryptographic use. The aggregate timing results

obtained from experiments on each of the three platforms are shown in Table 4.6.

Overall, the re-encryption task was found to be much more feasible on a cloud instance

or a fast desktop computer; in the latter case, it was over 50 times faster than on the

smartphone. Although the re-encryption task may be performed on a scalable server, the

advantage of off-loading it to the cloud is that it can scale almost without bound. Addition-

ally, GAE provides faster back-end instances with up to a 4.8 GHz CPU and 1 GB memory.

The performance attained on the smartphone was reasonable; the encryption task by the

data owner was accomplished in approximately 1.5 seconds, which is a one-time cost, and

the decryption task by the recipient in only approximately 0.1 seconds. The presented

benchmark results were achieved using libraries that are not yet highly mature and opti-

mized for a mobile platform. However, they serve to validate the comparative strengths of

mobile devices and clouds, as described, which the re-encryption model leverages.

74

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

Platform Task Timings (in ms)

µ σ s LB UB

Smartphone (Nexus One)

Encryption by A 1,505.2 40.5 1,636.9 1,425.9 1584.5

Re-encryption 979.8 37.3 1,393.2 906.6 1,052.9

Decryption by B 107.4 28.1 790.1 52.3 162.5

Desktop (iMac)

Encryption by A 32.9 2.1 4.3 28.9 37.0

Re-encryption 19.1 1.1 1.1 17.1 21.2

Decryption by B 1.1 0.2 0.0 0.7 1.5

Cloud (Google App Engine)

Encryption by A 426.6 49.1 2414.6 330.3 522.9

Re-encryption 260.8 42.8 1828.8 177.0 344.6

Decryption by B 13.7 23.9 570.3 0 60.5

Table 4.6: The performance results obtained from the re-encryption implementation. The

following symbols are used: µ is the sample mean, σ is the sample standard deviation, s

is the sample variance, and LB and UB are the lower and upper bounds, respectively, of

the 95% confidence interval, for each set of runs on each platform. 100 runs were executed

on each of the smartphone and desktop platforms, and 50 runs were executed on the cloud

platform (so as not to trigger a request timeout). The three consecutive operations shown

for each platform are: encryption time by A using the P0 key, re-encryption time from

P0 to P1 keys with pairing, and decryption by B using the P1 key. All operations were

performed on a 48-bit data block.

75

CHAPTER 4. RE-ENCRYPTION-BASED KEY MANAGEMENT

4.6 Summary

Cryptographic protocols based on data re-encryption have been adapted to a cloud comput-

ing system model in order to gauge their viability in improving communication security and

supporting highly scaleable and secure cloud computing applications serving an extremely

large mobile device user population. Appropriate modifications have been proposed to

support both public and private clouds, and standard 3G or 4G wireless as well as peer-to-

peer links, in order to reduce the cost of communication for mobile users securely accessing

and storing data in a cloud for dissemination purposes to a large reader population.

The manager-based re-encryption scheme addresses the cost of re-keying operations in

a cloud-based key management protocol by having a trusted authority, independent of the

cloud provider, perform re-encryption before delivering a request to the client. The author-

ity becomes the gateway for data access to the cloud; in doing so, it does not necessitate

any key updates over time. It is particularly suitable for a private cloud environment, but

entails a considerable computational load. A novel protocol based on data re-encryption

has been proposed to offer higher scalability and to support an extremely large mobile

device user population. This is achieved by leveraging the cloud provider’s scalability to

perform the required re-encryption tasks inside the cloud itself, rather than inside the man-

ager; at the same time, this occurs without granting the cloud provider access to sufficient

key material to decode the user data. The manager, as a trusted authority is only respon-

sible for key re-generation; the evolving key material to construct iterations of secret keys

can be securely shared through the cloud provider itself, resulting in a more efficient and

scalable security protocol. The scheme ensures that the cloud provider can never read user

data, but can nevertheless transform it through re-encryption to efficiently manage access

for users that continuously join and leave the system.

76

Chapter 5

Hybrid Attribute- and

Re-Encryption-Based

Key Management

5.1 Introduction

A hybrid scheme entailing attribute-based encryption and optional group keying tech-

niques is proposed in this chapter, such that computationally-intensive work is per-

formed by the cloud provider or a trusted manager rather than the mobile data owner.

The re-encryption system model described in Section 3.1.5 on page 37 and the adversary

and threat model described in Section 2.4.1 on page 19 are assumed.

Related work on attribute-based encryption is described in Section 5.2, beyond what is

presented in Chapter 3 on page 30. In Section 5.3, the proposed algorithm for attribute-

based encryption and re-encryption suitable for mobile users of the cloud is given. In

Section 5.4, optional features of the algorithm such as delegation are presented, for com-

pleteness. In Section 5.5, the algorithm is assessed for its usefulness in a mobile cloud com-

puting system. In Section 5.6, the results of an implementation of the proposed scheme on

actual mobile devices and an operational cloud system are presented and discussed; a sim-

ulation is then used to demonstrate its scalability potential. Finally, Section 5.7 provides

concluding remarks.

77

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

The content of this chapter is based on work that has been published [111].

5.2 Related Work on Attribute-Based Encryption

The technique of Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [17] offers nu-

merous advantages in the envisioned target environment. It allows a user to obtain access

to encrypted data in the cloud based on the possession of certain attributes that satisfy an

access structure defined in the cloud, rather than the possession of a particular individual

or group key that must be disseminated to all interested parties in advance. The requisite

attributes may be determined by a data owner in advance; this owner is responsible for

generating the user data to be shared, encrypting it, and uploading it to the cloud. Unau-

thorized access to stored data is not in itself an issue due to the protection afforded by

CP-ABE. Furthermore, the data owner is not required in every data transaction involving

other users, which is advantageous in the case where always-on connectivity cannot be

guaranteed. It is impossible for any two users to collude by combining their individual at-

tributes to gain access that would otherwise not have been individually granted. Normally,

a scheme based on CP-ABE relies upon the data owner granting access permission through

an access tree, which requires his or her constant availability. Some works have modified

CP-ABE so that key material is distributed among multiple parties; for instance, a data

owner and a trusted authorizer may function in concert to grant access permission to other

users, building on the OAuth standard [106]; the solution, however, is not tailored for a

mobile environment due to its computational demands, the required constant availability

of the data owner, and time-based expiration of access leading to frequent key retrieval.

Revocation of an authorized user is particularly difficult to accomplish efficiently in

CP-ABE and is usually addressed by extending attributes with expiration dates or by an

authority distributing keys with expiration dates [17]. In some cases, a tree of revocable

attributes may need to be maintained and a trusted party assigned to validate the revo-

cation statuses of users; the access control may be system-wide or more fine-grained. A

revocation mechanism using linear secret sharing and binary tree techniques, where each

user is associated with an identifier on a revocation tree, is one example [73]. The difficulty

with this general approach in a mobile context is that it results in mobile users having to

incur the communication cost of continually requesting new keys, while wireless communi-

cation always remains expensive. Also, the data owner is typically a mobile user as well,

78

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

and thus the owner cannot effectively manage access control on demand for other users

due to its transient connectivity. Revocation for data outsourcing purposes has been pro-

posed that relies on stateless key distribution and access control on the attribute level, but

requires a trusted authority and encumbers the data owner with a pairing operation [54],

a cryptographic function that is very computationally expensive.

As a next step in the evolution of such techniques, proxy re-encryption has been com-

bined with CP-ABE [74] such that re-encryption keys are computed by the cloud provider

based on a secret that is pre-shared between the data owner and the provider, as well as

the provider’s internal clock. The re-encryption keys must be computed for all attributes

in the access structure, which could be very numerous. Another idea is to securely embed

the data key within the header of the record stored in the cloud [37]; a privileged man-

ager group is responsible for generation of re-encryption keys, but it must also distribute

the secret header key to the recipient to complete the process. A different approach has

been suggested where attribute revocation events occur, and in response, an authority re-

defines master key components for the attributes, user secret keys are updated to a new

version, and data is re-encrypted by the proxy server [120]; the difficulty is that revo-

cation is dependent upon modifications to attributes, resulting in costly key updates on

each revocation, and the proxy server must be given access to user attribute information.

Finally, a technique that combines CP-ABE with proxy re-encryption [82] does not appear

highly efficient for mobile users: the decryption process requires processing two subtrees

instead of one, user revocation causes all user secret keys to be re-generated, and attribute

revocation results in private key regeneration, too.

5.3 Proposed Algorithm

The proposed algorithm for key generation, distribution, and usage is now described. It

consists of key management techniques that ensure highly secure data outsourcing to the

cloud in a highly scalable manner for mobile cloud computing applications. Table 5.1

summarizes the symbolic notation used throughout the description. In the discussion

that follows, improvements are proposed to the basic functions of the original CP-ABE

scheme [17]; the security proof for the underlying cryptography appears in this related

work and is relied upon here.

79

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Symbol Description

CSP Cloud service provider.

M Trusted manager.

T Access tree structure.

R Root node of T .

A Set of attributes that must be satisfied against T .

Uo Data owner.

Ur Restricted user group.

m Plaintext of user data.

CT Ciphertext of user data.

v Version of ciphertext.

PPK Public partition key.

PSK Secret partition key.

OPK Owner public key.

OSK Owner secret key.

DSK Data secret key.

GPK Public group key of Ur.

GSK Private group key of Ur.

DDSK Delegated data secret key.

RK0→x Re-encryption key from version 0 to x.

Table 5.1: A legend for the symbolic notation used in the attribute-based model.

80

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

• A single authority does not generate all key material; the mobile data owner and

cloud entity co-operate to jointly compute keys. The cloud provider has insufficient

information to decode the user data that it permanently stores; yet, it assists in the

distribution of a portion of the whole key material to all authorized users to minimize

the communication cost for the data owner.

• The cloud has highly scalable computational ability, unlike a resource-constrained

mobile user; a trusted manager also has greater computational resources than does a

user. Pairing operations, which are the most expensive cryptographic operations that

are involved in the proposed protocol, are thus performed by the cloud or manager

to the maximum possible extent, relieving the burden on the mobile data owner.

• Proxy-based re-encryption has been integrated with CP-ABE so that the cloud

provider may perform automatic data re-encryption; this is an optional feature that

allows further control over revocation than is afforded by an attribute-based scheme

alone, and it also takes advantage of the cloud provider’s computational scalability.

This dual-encryption scheme is a hybrid approach that offers greater flexibility in

access control.

The proposed technique is now described as follows:

Preliminary:

Let G0 and G1 be cyclic bilinear groups of prime order p with generator g. Also defined

are random exponents α, β ∈ Z∗p. The bilinear map e is a map such that: e : G0×G0 → G1

with the following properties:

• Bilinearity: ∀g0, g1 ∈ G0 : e(gα0 , g
β
1) = e(g0, g1)

αβ.

• Non-degeneracy: e(g0, g1) 6= 1.

• Computability: ∀g0, g1 ∈ G0, there is an efficient algorithm to compute e(g0, g1).

A secure one-way hash function H : 0, 1∗ → G0 is used as a random oracle and maps

an attribute described as a binary string to a random group element.

Setup() → PPK,PSK,OSK:

Suppose that Alice is a mobile user that acts as the self-elected data owner Uo of

plaintext message m, which is user data that is desired to be encrypted and shared in

81

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

the cloud with other authorized users. If m exceeds the maximum allowed block length,

then two solutions are possible: segmentation of the message may be performed, and the

encryption applied to each individual segment; or, it is possible to first apply a symmetric

cipher such as 256-bit AES to the entire message, then to encrypt the AES key itself using

the proposed scheme, with the steps being reversed on decryption. Regardless, the length

of the message does not impact the size or number of encryption keys required. In the case

of message segmentation, the same pre-computed keys may be applied to all segments.

A manager M , acting as a trusted entity, chooses a random value α and computes gα

to form a private partition key PSK. It then performs a pairing operation to compute

component e(g, g)α, which becomes one of the components forming the public partition

key PPK. The public parameters G0 and g are also included in PPK. In the meantime,

Uo chooses a secret data owner key OSK equal to β. It then computes the components

gβ and g
1
β , the latter by first taking the inverse of OSK (i.e. 1

β
) in its possession; these

components are added to the public key PPK, which is then uploaded and published in

the public directory of the cloud. Uo does not divulge its secret OSK to any other party,

including M . The elements of PPK, PSK, and OSK are as follows:

PPK =
{
G0, g, g

β, g
1
β , e(g, g)α

}
PSK = {α, gα}, OSK = {β}

To provide an additional layer of security, the manager may create a shared secret group

key GSK for an individual user or a restricted subset of users Ur, equal to a random value

u0 ∈ Z∗p, and a public key GPK as follows:

GPK = {gu0} , GSK = {u0}

This group key is uploaded to the public directory as well. The secret key is not shared

with the cloud; it may, however, be shared with the manager for the purpose of distribution

to all authorized users. The initial version number of the secret key is initially referred to

as 0, and will increase monotonically.

Encrypt(PPK,GPK,m, T) → CT :

Any user may access the public partition key PPK, by downloading it from the public

directory in the cloud, to perform an encryption; it need not necessarily be the data owner.

82

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

The encryption algorithm takes as input the key PPK and encrypts a message m under

the tree access structure T with root R as described in [17]. It chooses a polynomial qx
for each node x in T , and a random value s ∈ Z∗p that is applied to the PPK parameters.

It sets qR(0) = s for the root node R, while Y denotes the set of leaf nodes in T . The

function γ(y) extracts the binary attribute string from a leaf node y in Y .

In order to protect highly sensitive data, the encryptor may wish to restrict user mem-

bership requirements beyond possession of the required attributes A. To do so, an ad-

ditional key component may be incorporated consisting of e(g, g)u0s, computed from gu0 ,

which is the public key GPK of a restricted user group Ur belonging to the entire popula-

tion of users. The group consists of one or more members, and the GPK is available from

the public directory in the cloud. The absence of this component, where u0 is presumed

to be nil, will allow decryption based on satisfaction of the access tree only. The pairing

operation e(g, g)u0 may be performed by the cloud or manager to assist the data owner.

The intermediate ciphertext CTown is constructed as follows by the data owner Uo and

uploaded to the cloud:

CTown =
{
v = 0, T, C0msg = m · e(g, g)αs, C0grp = gu0s, C ′ = gβs,

∀y ∈ Y : Cy = gqy(0), C ′y = H(γ(y))qy(0)
} (5.1)

Next, the CSP performs a pairing operation on the C0grp component in CTown to obtain

the result Ĉ0grp = e(g, g)u0s. The final ciphertext CT0, denoting the initial version v of 0,

is constructed as follows and published in the permanent data store of the cloud:

C̃0 = C0msg · Ĉ0grp = m · e(g, g)αs · e(g, g)u0s = m · e(g, g)αs+u0s

CT0 =
{
v = 0, T, C̃0, C0msg , C

′ = gβs,∀y ∈ Y : Cy, C
′
y

} (5.2)

Re-Encrypt(CT0, RK0→x) → CTx:

Whenever a user leaves the authorized membership of Ur, the user’s access rights to

the ciphertext must be revoked. When this occurs, a new version of the secret group

key GSK is normally distributed by the manager to the remaining authorized users in

Ur immediately, or distributed to each user on-demand through a secure off-line channel

whenever data access is required. The CSP is then requested to perform a re-encryption

operation on-demand so that its stored ciphertext can no longer be decoded using the prior

83

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

version of the key. The ciphertext is re-encrypted from version 0 to version x, given a re-

encryption key RK0→x from a user holding secret group key GSKx assigned to version x;

or, RK0→x may be transmitted by the manager which is entrusted with the safekeeping

of the key GSKx. The re-encryption key is computed from the secret group key values u0
and ux corresponding to versions 0 and x of the ciphertext:

RK0→x =
{
g
ux
u0

}
The cloud provider computes the new ciphertext CTx corresponding to version x (that

is newer than the original version 0 uploaded by the encryptor), as follows, utilizing the

component C0msg found in CT0 in Equation 5.2:

C̃x = C0msg · e(C0grp , RK0→x) = m · e(g, g)αs · e(gu0s, g
ux
u0) = m · e(g, g)αs+uxs

CTx =
{
v = x, T, C̃x, C0msg , Cxbase = guxs, C ′,∀y ∈ Y : Cy, C

′
y

}
The CSP is unable to decode the ciphertext during the re-encryption process as it has no

knowledge of the old key u0 and the new key ux. The cloud provider retains the components

C0msg and Cxbase in the ciphertext CTx so that it may perform a future re-encryption from

version x to y, where y > x.

KeyGen(PPK,PSK,A) → DSK:

Irrespective of which party performed the encryption, the manager executes a data

secret key generation algorithm which takes as input the private key PSK and a set of

attributes A that are deemed sufficient to decrypt the ciphertext. Specifically, the manager

chooses a random r ∈ Z∗p and computes (α + r); it then exponentiates the component g
1
β

in the PPK by this sum to obtain the result g
(α+r)
β = (g

1
β)α+r. In this way, during the

collaboration, the manager and data owner do not need to reveal their private keys PSK

and OSK to one another. The data owner is not involved in the key generation and need

not remain available.

To generate the additional required sub-parts of the data key, the manager chooses

random rj ∈ Zp for each attribute in A. It computes the data secret key DSK that

identifies with the attributes A as follows:

DSK =
(
D = g

(α+r)
β ,∀j ∈ A : Dj = gr ·H(j)rj , D′j = grj

)
(5.3)

84

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

The manager distributes a DSK based on a unique r value to each authorized user holding

the required attributes A, without requiring the participation of the data owner. The

manager may also provide the DSK to the data owner for peer-to-peer distribution at its

discretion to the intended recipients of the encrypted message.

Decrypt(CT,DSK,PPK,GSK) → m:

Any user that is authorized, by virtue of holding the required attributes A, may down-

load the ciphertext CT from the cloud and decrypt it, as the recipient. The decryption rou-

tine takes as input the ciphertext CT and data secret key DSK obtained earlier either from

the manager M or data owner Uo. The recursive decryption algorithm DecryptNode

is applied to the root node R of the tree T that is publicly available on the cloud for

download. If the node x is a leaf node, then let i = γ(x), where the function γ denotes

the attribute associated with the node x in T . If i ∈ A, then the DecryptNode function

is defined as follows, using components Di and D′i derived from the DSK, as found in

Equation 5.3, and Cx and C ′x derived from CTown, as found in Equation 5.1:

DecryptNode(CTown, DSK, x) =
e(Di, Cx)

e(D′i, C
′
x)

=
e(gr ·H(i)ri , gqx(0))

e(gri , H(i)qx(0))

=
e(gr · gδri , gqx(0))
e(gri , gδqx(0))

= e(g, g)rqx(0)

The recursive case, when x is a non-leaf node, is described in detail in [17]. If the access

tree is satisfied by attributes A (that determined the data secret key DSK), observe that

the DecryptNode function gives the following result:

DecryptNode(CTown, DSK,R) = e(g, g)rqR(0) = e(g, g)rs

If the ciphertext is optionally encoded with the public key of the restricted user group Ur,

then the recipient may utilize the secret key GSK = ux in conjunction with the g
1
β com-

ponent in the PPK to compute the required decryption component g
ux
β .

The message m can then be decrypted as follows, assuming one round of re-encryption:

m =
C̃x · e(g, g)rs

e(gβs, D) · e(gβs, g
ux
β)

=
m · e(g, g)αs+uxs · e(g, g)rs

e(gβs, g
(α+r)
β) · e(gβs, g

ux
β)

=
m ·((((((((

e(g, g)(α+r+ux)s

((((((((
e(g, g)(α+r+ux)s

Note that the component e(gβs, g
(α+r)
β) in the above equation is pre-computed by the

manager, so that the user must perform only one pairing operation on decryption.

85

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

A summary of the key material in possession within the system is given in Table 5.2.

The cryptographic operations described in this section, applied to a typical encryption and

decryption transaction, are summarized in Table 5.3.

Entity Key material

Data owner (Uo) Chooses random β. Computes: OSK = {β}, OPK = {gβ, g
1
β }

Chooses random uo. Computes: GSK = {u0}, GPK = {gu0}
Shares GSK with user B.

Chooses random s. Computes CTown based on the PPK and GPK, and

uploads it to CSP .

Manager (M) Chooses random α. Computes: PSK = {α, gα},
PPK =

{
G0, g, g

β, g
1
β , e(g, g)α

}
Chooses random r.

Computes: D = g
(α+r)
β , and DSK based on attributes A.

Distributes DSK to user B.

Cloud (CSP) Publishes PPK and GPK in a public directory.

Optionally performs a pairing and computes CT0 from CTown and GPK.

Stores CT0 in the permanent data store.

Recipient (B) Downloads CT0 and decrypts it using the DSK and GSK.

Table 5.2: A summary of the key material in the attribute-based model.

5.4 Optional Features

The original CP-ABE scheme defined delegation, where following the generation of the

data secret key DSK, the manager may choose to delegate access to a user possessing

a particular subset of the required attributes. For completeness, the integration of this

optional operation with the proposed technique is shown:

Delegate(DSK,S ′) → DDSK:

The delegation algorithm first takes as input a data secret key for a set of attributes

A, and a subset A′ ⊆ A. The manager chooses a new random r′ ∈ Z∗p and computes the

result:

D′ = D · (g
1
β)r

′

86

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

The manager then chooses a new random r′k for each attribute k in the subset S ′ to form

the next sub-part, and creates a new secret delegation data key DDSK for S ′:

DDSK =
(
D′ = D · (g

1
β)r

′
,∀k ∈ A′ : D′k = Dk · gr

′ ·H(k)r
′
k , D′′k = D′k · grk

)
Since the delegation key is randomized with the value r′, it is equivalent in its level of secu-

rity to the original key DSK. Note that the data owner is not involved in this operation.

5.5 Discussion

The proposed scheme offers a dual layer of security through attribute-based encryption and

also public key encryption which may be optionally applied. If the secret group key GSK is

compromised, the data is still safeguarded; only the users that have the required attributes

will be able to decrypt it. The interception of any key components over the network,

including the re-encryption key, will not yield useful information to the attacker, as no

private keys are transmitted in the clear. Furthermore, the algorithm achieves collusion

resistance because the e(g, g)αs term of the ciphertext cannot be recovered by an attacker

even if the manager’s or a user’s private keys are compromised.

Any user may encrypt data using the public partition key PPK stored in the cloud.

However, the cloud provider is unable to decrypt any user data stored on its premises as it

cannot access the secret owner and data keys OSK and DSK. Nor is useful information

revealed to the CSP during the re-encryption process. The encryptor of a message may

restrict its eligible readership by not only selecting a required set of attributes, but also

through the optional use of a public group key which may be shared by a group or simply

possessed by a single user; the trade-off made is the required distribution of the group key

and the extra pairing operation required during the encryption phase, but it is advanta-

geously computed by the cloud provider. The manager can also assist with distribution.

Critically, the performance implications are modest for the mobile users. The data

owner must only perform exponentiation operations during its key generation phases, while

the manager performs the more expensive pairing operation during partition key generation

in the Setup algorithm. Also, with the assistance of the manager, the user performs only

a single pairing operation on decryption.

87

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Alice (Uo) Cloud (CSP) Manager (M) Bob (∈ Ur)
1 Generates private

owner key OSK

and sends public

component OPK to

M to form partition

key PPK. Gen-

erates private and

public group keys

GSK and GPK to

share with trusted

users and CSP ,

respectively.

Stores partition key

PPK obtained from

M in a public direc-

tory for dissemina-

tion to all authorized

users. Also stores

the public group key

GPK that it obtains

from Alice.

Generates private

and public partition

keys PSK and

PPK, the latter

with assistance from

Alice, and uploads

PPK to CSP .

Obtains GSK from

Alice as a trusted

user.

2 Assuming that Alice

is also the encryp-

tor, encrypts mes-

sage m, with PPK

and under tree T ,

as CTown, and up-

loads it to CSP for

storage. Also gener-

ates a component for

data key DSK from

OSK.

May assist the en-

cryptor with gener-

ation of ciphertext

CTown. Computes

CTo from CTown and

GPK, and stores

it as ciphertext ver-

sion 0 in permanent

storage, for dissemi-

nation to all autho-

rized users.

Generates data

key DSK from its

private partition

key PSK based

on attributes A,

with assistance from

Alice. Distributes

the DSK to all

authorized users.

Obtains the DSK

from Alice or M .

3 Downloads CTo
from CSP and

decrypts it to yield

the plaintext m.

Table 5.3: A summary of operations in attribute-based re-encryption, with participating

user actors shown, and assuming no additional re-encryption occurs.

88

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

5.6 Implementation

The proposed protocol was implemented and profiled to gauge its performance. It was

realized on popular existing commercial platforms, including the Google Android mobile

and the Google App Engine cloud platforms. A simulation calibrated to the performance

benchmarks was then run to examine the scalability of the proposed algorithm.

5.6.1 Performance Measurement

An existing implementation in Java [114] that relies upon the original CP-ABE scheme [17]

served as the baseline implementation. From this starting point, the implementation was

significantly rebuilt to reflect the proposed protocol described herein. The implementation

uses the Java Pairing-Based Cryptography Library (jPBC) version 1.2.1 [33], a port of the

PBC (Pairing-Based Cryptography Library) in C [76]. The use of Java 6 Standard Edition

permits the protocol to be ported to a wide range of computing environments.

The implementation was run on different computing hosts to assess their relative perfor-

mance. Refer to the implementation model in Figure 5.1. On the client end, a simulation

was run on a desktop platform consisting of an Apple iMac with a quad-core 64-bit 3.4 GHz

Intel Core i7 processor with 16 GB of RAM, running Mac OS X 10.8.2 (Mountain Lion).

Additionally, it was run on an older Google Nexus One smartphone with a 1 GHz Qual-

comm Scorpion processor with 512 MB memory running Android OS 2.3.6 (Gingerbread),

and a new Samsung Galaxy Note II smartphone with a quad-core 1.6 GHz ARM Cortex-A9

processor with 2 GB of RAM, running Android OS 4.1.1 (Jelly Bean). On the server end, a

lowest-class F1 front-end instance was run as a Java servlet application on the Google App

Engine (GAE) cloud, configured at the equivalent of a 600 MHz processor with 128 MB of

RAM. A connection was established between the desktop or mobile Android client and an

instance running on the GAE cloud via HTTP requests, using JSON for data interchange

and the Google Gson library for marshalling between Java objects (used by the Java client

and server implementations) and the JSON representation. Note that the security model of

GAE does not allow direct network connections and native code execution. Only a subset

of the Java 2 Standard Edition (J2SE) SDK 1.6 classes are whitelisted on Android and

GAE; fortunately, the required Java Cryptography Extension (JCE) classes are supported.

The simulation consisted of multiple iterations of encryption and decryption using the

89

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Google App
Engine cloud

Android Nexus phone

J
S
O
N

J
S
O
N

Deployed
server

instance

Internet
Native Java
client app

Android runtime

JCE and SSSJ libraries

HTTP requests
Java

servlet

Figure 5.1: A high-level model of the implementation of attribute-based re-encryption.

90

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

proposed functions defined in Section 5.3, using a single-attribute policy to configure an

environment that ran at the fastest possible speed. A Type A pairing was utilized in the

algorithm with a group order size of 160 bits and a base field order size of 512 bits, which

is the default curve configuration in the jPBC library test code, and is suitable for crypto-

graphic use. Performance benchmark results are shown in Table 5.4, showing the average

execution times of all main cryptographic operations calculated from simulation runs on

the same iMac desktop computer platform to permit direct comparison. Simulations from

the original BSW algorithm [17] as well as the proposed algorithms are shown; in the lat-

ter case, one set of runs was made using an optional group key to additionally secure the

plaintext, with a round of re-encryption included, and one set of runs was made without

the benefit of a group key, to permit comparison.

Next, operations were repeated on the appropriate platform (desktop, mobile, or cloud)

for each operation, to ascertain realistic timings in a mobile cloud computing system. A

user interface was built for the Android app to allow execution of all algorithms locally

or on a Google App Engine instance in the cloud, as depicted in Figure 5.2. The results

are summarized in Table 5.5, with the appropriate platform chosen to represent a typical

device executing each operation in question. Note that the underlying jPBC library is not

optimized for a constrained mobile operating environment; such optimizations may often

yield very significant performance improvements in practice. For instance, careful memory

allocation and maintenance of a small footprint may reduce the expensive garbage collection

events observed in the Android device system logs during execution. The comparative

benchmarking results are shown visually in Figure 5.3, with the following observations:

• In comparison to the baseline implementation, the key setup activity in the proposed

protocol is approximately evenly split between the data owner and the manager,

which is of high benefit given that the owner is presumed to be a resource-constrained

mobile user.

• The key generation and encryption activities are approximately equal in terms of

computational requirements. The utilization of a group key only applies an approxi-

mately 30% penalty to encryption, which is borne by the CSP because it is responsible

for the pairing operation, not the data owner.

• Crucially, the data owner does not participate in the data secret key generation

activity in the proposed protocol; the manager does so instead.

91

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Algorithm Task Timings (in ms)

µ σ s LB UB

Baseline (BSW)

Owner setup 47.5 28.1 787.0 0 102.5

Keygen 70.0 3.7 13.6 62.8 77.2

Owner encryption 61.3 2.9 8.2 55.7 66.9

Decryption 23.9 1.5 2.3 20.9 26.8

Proposed (no group key)

Owner setup 29.8 45.3 2,053.5 0 118.6

Manager setup 19.8 2.1 4.2 15.7 23.8

Keygen 74.6 5.4 28.7 64.1 85.1

Owner encryption 65.0 4.9 24.2 55.3 74.6

Decryption 24.5 2.5 6.1 19.6 29.3

Proposed (with group key)

Owner setup 37.6 26.7 710.4 0 89.8

Manager setup 18.8 1.2 1.5 16.4 21.2

Keygen 70.0 3.6 12.7 63.0 77.0

Owner encryption 60.8 2.3 5.2 56.3 65.2

Cloud encryption 18.6 1.0 1.0 16.6 20.5

Decryption 42.8 2.1 4.6 38.6 47.0

Reencryption setup 21.6 1.0 0.9 19.7 23.5

Reencryption 7.5 0.6 0.4 6.2 8.8

Table 5.4: The performance results obtained from the attribute-based implementation

running on an iMac desktop computer. The following symbols are used: µ is the sample

mean, σ is the sample standard deviation, s is the sample variance, and LB and UB are

the lower and upper bounds, respectively, of the 95% confidence interval, for each set of

runs using each of the baseline and proposed algorithms. 100 runs were executed using

each technique, and all operations were performed using a single-attribute policy. The data

owner performed a pairing operation on encryption in all cases, without assistance, which

accounts for its slower operation.

• Furthermore, the data owner is not required to perform costly pairing operations,

including in the generation of ciphertext (although it does so in the implementation).

• The optional re-encryption operation is only a fraction, approximately 40%, of the

total encryption operation in terms of the period of computation, and is also per-

formed by the CSP without burdening the data owner; also, it has the potential to

be scaled by allocating additional cloud instances as required.

92

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Figure 5.2: The user interface of the mobile client app in attribute-based re-encryption.

Cryptographic function Device Baseline Proposed Proposed

(BSW) (no GK) (with GK)

Setup by data owner. Note II 1157 396 586

Setup by manager. GAE n/a 278 219

KeyGen. GAE 791 749 786

Encrypt by data owner. Note II 1273 1250 1239

Encrypt by CSP. GAE n/a n/a 657

Decrypt. Note II 1364 1391 2043

Re-Encrypt setup. GAE n/a n/a 247

Re-Encrypt. GAE n/a n/a 130

Table 5.5: The performance benchmarks used for calibration of the attribute-based simu-

lation. All timings are in ms, with “Note II” denoting the Galaxy Note II mobile phone,

and “GAE” denoting an F1 instance running on a GAE cloud servlet.

93

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

5.6.2 Simulation

A custom simulation program was developed that permits an assessment of the scalability

potential of the proposed scheme. The simulation program was executed on a desktop

computer but was calibrated with the function timing results from the benchmarks obtained

as described in the previous section; that is, the timings served as the basis for calculating

the accumulated processing workload of the various entities in the system as a result of

performing the various defined cryptographic operations in response to simulated user

actions. Various parameters may be adjusted in the simulation to highlight the differences

in the algorithms discussed, including the original CP-ABE and the proposed schemes.

An initial unauthorized user population is modelled, and in each round of the simu-

lation, users randomly join or leave a user set that is authorized to access a particular

data record. A single data owner responsible for data encryption is modelled. Each user

randomly takes an action each round, with some predefined probability; actions include

accessing the encrypted data and performing a decryption, or joining or leaving the au-

thorized user set and thus triggering appropriate key generation activities. The encrypted

data record stored in the cloud may also be replaced in a round by the data owner, once

it has outlived its usefulness, with more recent data; this initiates a new key setup phase.

In Figures 5.4, 5.5, 5.6, and 5.7, the simulation results for one typical simulation run of

each algorithm are shown, with the processing workload shown over time for each entity

(the data owner, the manager, the CSP, and the total set of users involved in accessing the

data record stored in the cloud). The workloads are directly based on the cryptographic

function profiling results found in Section 5.6.1 so that calibration was done with real-world

data obtained from the practical implementation. The simulation was run with values for

adjustable parameters as specified in Table 5.6. The irregularities found in the plots are

due to the probabilistic nature of the events executed in one sample simulation execution.

The following observations may be made with respect to the results of the illustrated

runs showing various dominant roles in the system:

1. In the original BSW algorithm [17], the dominant workload is undertaken by the

data owner, which participates in not only the encryption of the user data, but also

in the data secret key generation for each new user, as shown in Figure 5.4. The

owner must also re-generate keys for all users whenever a revocation occurs, without

94

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

0	

50
0	

10
00
	

15
00
	

20
00
	

25
00
	

Se
tu
p	

(o
w
ne

r)
	

Se
tu
p	

(m

an
ag
er
)	

Ke
yG

en
	
 	
 	

	
 	
 	

	
 	
 	

	

En
cr
yp
t	
 (
ow

ne
r)
	

En
cr
yp
t	
 (
cl
ou

d)
	

De
cr
yp
t	

Re
-­‐E
nc
ry
pt
	
 (s
et
up

)	

Re

-­‐E
nc
ry
pt
	

Average	
 (me	
 (ms)	

Cr
yp
to
gr
ap

hi
c	

op

er
a(

on
s	

Pr
oc
es
si
ng
	
 d
ur
a(

on
	
 o
f	
 c
ry
po

gr
ap

hi
c	

op

er
a(

on
s	

Ba
se
lin
e	

Pr
op

os
ed

	
 (n
o	

GK

)	

Pr
op

os
ed

	
 (w
ith

	
 G
K)
	

F
ig

u
re

5.
3:

T
h
e

p
er

fo
rm

an
ce

re
su

lt
s

ob
ta

in
ed

fr
om

th
e

at
tr

ib
u
te

-b
as

ed
im

p
le

m
en

ta
ti

on
,

sh
ow

in
g

th
e

p
ro

-

ce
ss

in
g

ti
m

e
of

cr
y
p
to

gr
ap

h
ic

op
er

at
io

n
s

in
th

e
b
as

el
in

e
an

d
p
ro

p
os

ed
p
ro

to
co

ls
.

95

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

1	

10	

100	

1000	

10000	

100000	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

To
ta
l	
 h
ou

rs
	
 o
f	
 p

ro
ce
ss
in
g	

(lo

g	

sc
al
e)
	

Hours	
 elapsed	

Processing	
 Workload	
 for	
 the	
 Mobile	
 Data	
 Owner	

BSW	

Proposed	

Proposed	
 (with	
 group	
 key)	

Figure 5.4: The processing workload for the data owner in the attribute-based model.

1	

10	

100	

1000	

10000	

100000	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

To
ta
l	
 h
ou

rs
	
 o
f	
 p

ro
ce
ss
in
g	

(lo

g	

sc
al
e)
	

Hours	
 elapsed	

Processing	
 Workload	
 for	
 the	
 Manager	

BSW	

Proposed	

Proposed	
 (with	
 group	
 key)	

Figure 5.5: The processing workload for the manager in the attribute-based model.

96

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

0	

1	

2	

3	

4	

5	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

To
ta
l	
 h
ou

rs
	
 o
f	
 p

ro
ce
ss
in
g	

Hours	
 elapsed	

Processing	
 Workload	
 for	
 the	
 Cloud	
 Provider	

BSW	

Proposed	

Proposed	
 (with	
 group	
 key)	

Figure 5.6: The processing workload for the cloud provider in the attribute-based model.

0	

50	

100	

150	

200	

250	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

To
ta
l	
 h
ou

rs
	
 o
f	
 p

ro
ce
ss
in
g	

Hours	
 elapsed	

Processing	
 Workload	
 for	
 the	
 Mobile	
 Users	
 (Readers)	

BSW	

Proposed	

Proposed	
 (with	
 group	
 key)	

Figure 5.7: The processing workload for the user population in the attribute-based model.

97

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

Parameter Value

Initial unauthorized user population 10,000 users

Length of each round 1 hour

Total length of all rounds simulated 1 year

Probability of a user joining the authorized set 0.5%

Probability of a user leaving the authorized set 0.5%

Probability of a user downloading the cloud data 5%

Probability of the cloud data being replaced 5%

Total joins in simulation run 397,000

Total accesses in simulation run 396,000

Total leaves in simulation run 40,000

Total data replacements in simulation run 419

Table 5.6: The parameters used for the attribute-based simulation.

assistance of any other network entity, based on the assumption that revocation is

only possible through modification of attributes for the user in question. Since the

data owner is presumed to be a mobile device in the assumed system model, the

scalability potential appears inadequate.

2. In the proposed algorithm without the use of a group key, the manager becomes

responsible for the main workload of the key re-generation activity, which entails

a pairing operation, as shown in Figure 5.5. The manager is expected to be able

to scale accordingly to meet the processing demands, but requires sufficient client

infrastructure to do so, which may be uneconomical.

3. In the proposed algorithm with the use of a group key, the manager is still responsi-

ble for most of the key re-generation activity, but revocation is now handled through

re-encryption of the group key, a task performed mainly by the cloud provider, as

shown in Figure 5.6; this results in a much lower overall workload in the system. The

additional decryption cost for the reader population is significant but acceptable, as

shown in Figure 5.7. In practice, a decryption will only occur if data has been mod-

ified and has to be fetched from the cloud again. Hence, this algorithm is considered

the best candidate for a highly scalable mobile cloud computing application within

the system model described.

98

CHAPTER 5. HYBRID ATTRIBUTE- AND RE-ENCRYPTION-BASED KEY MANAGEMENT

5.7 Summary

A key management system has been proposed for secure data outsourcing applications,

whereby attribute-based encryption effectively permits authorized users to access secure

content in the cloud based on the satisfaction of an attribute-based policy. The scheme has

been modified so that a data owner and a trusted authority co-operate in the key generation

and encryption processes such that computationally-intensive cryptographic operations and

requests are minimized for the data owner; this is of importance to a population of mobile

users that must conserve their consumption of battery and usage of wireless communication.

In particular, the user is not required to perform costly pairing operations; instead, they are

delegated to the manager and cloud provider. Also, the manager computes the decryption

key, not the data owner, and it assists with key distribution on behalf of the owner.

Furthermore, a hybrid protocol is proposed that optionally allows message encryption

based on a group key, allowing the user membership to be further refined for highly sensitive

data. Additionally, it allows re-encryption to occur, and thus revocation to become efficient

without necessitating existing common remedies and their limitations; an example is the

expiration of attributes specified in the attribute-based policy that leads to constant key

updates as time elapses. The proposed protocol is similar in overall performance to the

original ciphertext-policy attribute-based-encryption idea, while significantly lessening the

computational and traffic burden on the mobile data owner in a system where data updates

and encryption activities are frequent and dominant. Thus, the proposal is useful for

securing mobile cloud computing with very large user populations.

99

Chapter 6

Cloud-Hosted Key Sharing

6.1 Introduction

The key management schemes proposed thus far have involved performing compu-

tationally intensive key re-generation operations within the cloud to take advantage of

its scalability; these computations, however, may prove too costly in certain cloud systems

where such processing overhead cannot be justified. This chapter suggests utilizing the

principle of key sharing and thus concentrating on the utility of another highly economical

asset of a cloud system: its permanent replicated storage, which can scale according to

client demand, and is typically billed at a small fraction of a dollar per GB of data per

month [6]. The key design factors for a cloud-based secure storage system that motivate

this chapter include: no additional server-side logic being required on the cloud provider

end to support cryptographic functions; fine-grained data access; highly scalable sharing

among multiple readers and writers; minimal computation required by mobile users; mini-

mal communication required with the cloud provider; and no inherent trust of the provider

existing, in terms of the administrator having unrestricted access to stored user data. The

system model described in Section 2.2.2 on page 14 and the adversary and threat model

described in Section 2.4.1 on page 19 are assumed.

In this chapter, related work on key sharing is presented in Section 6.2. Next, a key

management scheme based on cloud-hosted key sharing is proposed in Section 6.3. Options

applicable to various additional use cases and cloud variants are presented in Section 6.4. A

100

CHAPTER 6. CLOUD-HOSTED KEY SHARING

practical implementation with benchmarking results, as well as an additional simulation to

assess scalability, are discussed in Section 6.5. Concluding remarks are made in Section 6.6.

The content of this chapter is based on work that has been published [110].

6.2 Related Work on Key Sharing

NIST, in its Electronic Authentication Guideline [21], recommends secret sharing to protect

long-term credentials in its level 3 security definition for a CSP. Secret key sharing allows a

secret such as key information to be divided into multiple shares [98]; these shares may be

distributed among key generators using the concept of threshold decryption [19], or portions

of a private key are distributed among users [10]. The challenge is that the client must

assemble a key from multiple sources, potentially resulting in expensive communication

overhead. Rather than key shares being distributed on-demand by some authority, it has

been proposed that they be distributed across a network of nodes whose accessibility is

subject to degradation over time. The Vanish system [41] distributes shares onto a DHT

(Distributed Hash Table) that underlies a peer-to-peer file sharing network. It suggests

the concept of self-destructing data, where copies of data become unreadable over time

due to the effect of user churn on the index. The problem with adapting the scheme to a

cloud-based context is that it relies upon the availability of the shares among the nodes,

which cannot be guaranteed. It requires that each user obtain key shares from multiple

other nodes that form the index, which is an expensive proposition if the user is operating

a mobile device. In the DepSky storage system [16], shares are necessarily distributed

across multiple clouds to form distributed trust and to restrict access. Each cloud provider

has access to a single share and thus cannot decode the stored data; this requires support

for a cloud-of-clouds. Also, because the data shares are unencrypted, each cloud must

be independent and collusion assumed to be impossible. SafeVanish is a system for self-

destructing data in the cloud that prevents a sybil attack to which the original Vanish

system is vulnerable [121]; however, it is still reliant upon a DHT implementation; whether

the DHT is publicly or privately hosted, the process of key destruction is never under the

direct control of the client in such a system, thus limiting its flexibility.

101

CHAPTER 6. CLOUD-HOSTED KEY SHARING

6.3 Proposed Algorithm

The following algorithm is based on the principle of limiting access to encrypted data in

the cloud through the process of storing and removing encrypted key shares in the cloud.

Additional variants are also presented, such as the usage of a cloud-of-clouds to distribute

the key shares, and a trusted manager to perform key rotation and remove this burden

from the data owner. Table 6.1 provides the meaning of symbols used in the discussion.

6.3.1 Main Technique

Key Generation and Encryption

Consider a technique based on Shamir’s secret sharing [98]. U is the set of users accessing

the cloud, and an access structure ΓU is a list of subsets of U such that each subset is

trusted. Any trusted subset Utr of parties, where Utr ∈ ΓU , can recover the secret from

the set KS of shares stored in the cloud. Any untrusted subset, however, cannot obtain

information about the secret. The access control structure can be defined such that any

(t + 1) or more parties in U can recover the secret, while any t or less cannot do so; this

secret sharing scheme is threshold-based (as defined in [98]).

Refer to Algorithm 6.3.1. In the Encrypt operation, Alice, or user A, proceeds to

generate key shares and encrypt a message m to be stored in the cloud and identified

with a unique identifier mid. User A generates a symmetric key K (such as an AES, or

Advanced Encryption Standard, key) and divides it into multiple shares KS[1] to KS[n],

where n is the current total number of shares; a minimum of t+ 1 shares are required for

decryption, where t+ 1 ≤ n. Parameter t may be decreased or increased in value to adjust

the level of security, while parameter n determines the number of users supported and the

storage requirements for the shares. Each share KS[i] is encrypted as EKS[i], using a

symmetric encryption key AK[i] (such as an AES key) belonging to user A, known as an

access key; it is also possible for the same access key AK[i] to protect multiple shares to

conserve storage and communication costs. The encrypted shares are stored in a public key

database in the cloud and cannot be read in plaintext form by the provider, although they

remain accessible for download by users. A requests sufficient storage in the cloud to hold

n shares, which represents an upper bound; as described later, a replacement strategy will

102

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Symbol Description

Utr Authorized user set.

M Trusted manager.

A,B,C Users Alice, Bob, and Charlie in Utr.

GenKey() Function to generate a random key of some predetermined length.

K Symmetric data key.

KS[i] Share i of key K.

v[i] Version associated with a key share KS[i].

EKS[i] Encrypted key share i.

EKS[i]hdr Metadata header for key share KS[i].

Partition(K, i, n) Function to generate share i of key K, where n is the total number of

shares.

EncryptSymy(x) Function to encrypt data x using symmetric key y (such as AES).

DecryptSymy(x) Function to decrypt data x using symmetric key y (such as AES).

Hash(x) Compute the digest of message x.

Reconstruct([z]) Function to reconstruct secret key from shares in array z[].

AK[i] Access key to unlock share KS[i].

m Plaintext of user data.

mid Unique plaintext record identifier.

c Ciphertext of user data.

t The threshold number of key shares KS, above which (at t+1 or greater),

there is a sufficient number to compute K.

n The total number of key shares KS generated for a particular data record.

L A description key identifying the set of key shares eligible to decrypt c.

PKX Public key of user X.

SKX Private (secret) key of user X.

Table 6.1: A legend for the symbolic notation used in the key-sharing model.

103

CHAPTER 6. CLOUD-HOSTED KEY SHARING

replace older shares with newer ones while utilizing the same total capacity. The message

flow is summarized in Table 6.2, encompassing the usage of a single version of a data key.

A high-level data flow diagram appears in Figure 6.1 for reference in the discussion

that follows. As will be elaborated, a mobile data owner is responsible for generating and

uploading content intended for encrypted storage in the cloud; it also creates key material

that can be used to decrypt the cloud data, and this material is also securely deployed

in the cloud. Multiple mobile readers of the same content exist, and access portions of

the key material to carry out read operations on the cloud data that they download.

Concurrently, a cloud application manages access to the stored user data and performs

required maintenance activities on the key material that it holds on behalf of users. A

trusted intermediary is not required in the basic system model.

Algorithm 6.3.1: Encrypt(m,mid)

comment: Generate the encrypted data and access keys.

K ← GenKey()

for i← 1 to n

do


KS[i]← Partition(K, i, n)

AK[i]← GenKey()

EKS[i] = EncryptSymAK[i](KS[i])

EKS[i]hdr = {mid ‖ i ‖ v[i]}

comment: Encrypt the plaintext message.

c← EncryptSymK(m)

The plaintext user data m requiring protection is assigned a unique record identifier

of mid and encrypted by A as ciphertext c using K; it is uploaded to the provider and

is stored in the cloud. Since the cloud provider cannot unlock any share stored in the

key database, it is unable to decode c. To the ciphertext of the user data is appended a

description key L identifying the set of key shares eligible to decrypt the data, of which

only the threshold amount is required by any user.

104

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Data owner

Cloud storage

Encrypted
key shares Cloud application

Reader

DeletionStorage

Encrypted
key shares

Access keys

Encrypted
user data

Encrypted
user data

Figure 6.1: The high-level data flow in the key-sharing system.

105

CHAPTER 6. CLOUD-HOSTED KEY SHARING

A
C

lo
u

d
B

E
n
c
r
y
p
t

(m
)
[c,L

,E
K
S

[0
..
n

]]
−−
−−
−−
−−
−−
−−
→

S
to

re
c,
L
,E
K
S

[0
..
n

].

A
K

[x
]

to
A
K

[y
]

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

(w
h
er

e
y
−
x
≥
t)

[c,L
,E
K
S

[x
..
y
]]

−−
−−
−−
−−
−−
−−
→

D
e
c
r
y
p
t

(c
)

P
er

io
d
ic

al
ly

er
as

e
sh

ar
es

fr
om

0
to
n

.

O
p
ti

on
a
ll
y

re
q
u
es

t
ad

d
it

io
n
al

sh
ar

es
to

sa
ti

sf
y

th
re

sh
ol

d
t

+
1.

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

D
e
c
r
y
p
t

(c
)

T
ab

le
6.

2:
T

h
e

m
es

sa
ge

fl
ow

in
th

e
ke

y
-s

h
ar

in
g

m
o
d
el

.

106

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Metadata

A will create a metadata header EKS[i]hdr for each share i and upload it with the encrypted

share payload. The metadata will consist of the following fields: the record identifier mid,

the key share identifier i ∈ {1..n}, and the key share version v.

The assumed adversary model does not require integrity controls, as the cloud provider

is regarded as being honest-but-curious. However, if this assumption does not hold true,

and verifiability of the downloaded shares is required, then a digital signature of the key

share may be created. A mechanism for utilizing the header as a signature is proposed

in [110], such that tampering of c is detected through a comparison of message digests; the

signing operation requires a supporting public key infrastructure such as RSA.

Decryption

Refer to Algorithm 6.3.2. Bob, or user B, wishes to access c, and so he executes the

Decrypt operation. Suppose that B is an authorized member of Utr. B obtains symmetric

access keys AK[x] to AK[y] from A, where the range of keys is of at least size t + 1, the

required threshold; this assumes that each key AK[i] permits decryption of the key share

KS[i] stored in the cloud, where i is in the range 1 to n, such that all shares are in L.

Again, it is also possible to have one access key unlock multiple shares, instead. Regardless,

every user is given a random set of access keys in the initial allocation; each set satisfies

the threshold at a minimum.

Algorithm 6.3.2: Decrypt(c,mid)

comment: Reconstruct the data key.

for i← 1 to t+ 1

do
{
KS[i]← DecryptSymAK[i]EKS[i]

K ← Reconstruct(KS[1, .., (t+ 1)])

comment: Decrypt the plaintext message.

m← DecryptSymK(c)

107

CHAPTER 6. CLOUD-HOSTED KEY SHARING

For instance, in one sample configuration, suppose that the total number of shares n

for a particular data record is 100, and that the number of shares required for decryption,

t + 1, is three. Refer to Figure 6.2. Data owner A will provide access key AK[1] to B,

which provides access to five shares stored in the cloud; only three are required. B may

download the ciphertext, as well as all three encrypted key shares, directly from the cloud

and within the same request. B will then be able to decrypt the required user data.

EKS[5] EKS[n]...

AK[1]

Encrypted key shares stored in cloud

Access keys
belonging
to user B

EKS[1] EKS[2] EKS[3] EKS[4]

Threshold key set to compute K

Figure 6.2: An example of key assignment in the key-sharing model.

The entire user population may be significantly greater in number than the total number

of shares n; thus, the same key shares may be randomly assigned to multiple users. For

instance, Charlie, user C, is also an authorized member of Utr and is allowed to access the

ciphertext c. Owner A may issue the same access key AK[1] to C, to unlock the same key

shares in common with user B. Note that if an access key unlocks only a single key share,

instead, then finer-grained control is attained; in that case, user B can be given access keys

AK[1] to AK[5] to unlock shares EKS[1] to EKS[5], and user C can be given access keys

AK[3] to AK[7] to unlock partially overlapping shares EKS[3] to EKS[7]. However, this

flexibility is at the cost of additional storage for each user.

108

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Key Share Deletion

Over time, individual key shares in the cloud are independently deleted by the cloud

provider. This process can occur at regularly scheduled time intervals, such that a random

share is deleted every day, for instance. If user B had locally cached all decrypted key

shares, then B will continue to be able to decrypt data from the cloud until his cache

needs to be refreshed, or the entire key store expires.

Suppose that key share KS[1] is erased and that B needs to re-fetch key shares from the

cloud. B will find that EKS[1] (the encrypted version of KS[1]) is no longer available, and

so another key share must be randomly chosen from the available set. B will be required

to use an appropriate access key in the set AK[x] to AK[y] to access another available

key share outside of the initial three, such as KS[4]. Any users that hold the same deleted

share may also need to do the same. If three key shares of the initial set of five are deleted,

then user B cannot satisfy the threshold, and will be unable to decrypt the user data. If B

holds no other access keys, he may optionally obtain AK[z] from A, where z is an access

key that was not previously held, and which unlocks a valid remaining key share from the

cloud. B may obtain this key from A or from another user in Utr. Otherwise, B must wait

for the key store to expire and new valid key shares to become available.

Through the process of gradual share deletion in the cloud, users eventually lose access

to the cloud data as a consequence of falling below the share threshold. In this way, revoca-

tion is handled without the participation of the data owner. Authorized users may obtain

additional shares or wait for share re-generation in order to retain access; discontinuity of

access can therefore occur as a side effect for authorized users, but it is temporary.

Keys may be deleted according to different schedules, such as based on regular time

intervals, or based on the number of accesses of the user data, or the number of joins and

leaves of users in the user set. The size of the valid remaining key store in the cloud will

decrease from the initial maximum until the store is re-generated. Access keys must only

be re-generated for shares that belonged to users whose access rights were revoked from

the last time that shares were generated. In other words, if no user left the authorized user

membership Utr in the last round, then key shares will require replacement after deletion,

but the access keys held by users need not be updated. To effect control over access key

replacement, an expiration flag may be set by the data owner for each access key, if the

key unlocks a share that was assigned to a user whose access rights have been revoked; the

tradeoff made is between additional record-keeping and the computation of new keys.

109

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Key Share Replacement

Once the number of outstanding valid shares in the cloud subject to random replacement

decreases to t, it becomes impossible for all users to download sufficient valid shares to

replace those that are deleted, even if additional access keys are obtained from the data

owner or other users. The key stored in the cloud then expires; this event can also occur

at a prearranged point before the threshold is reached. The content owner A can then

proceed to replace the deleted shares in the cloud with newly-generated valid shares of a

new version of the symmetric key K ′. A new access key will also be generated for each

share, or set of shares, to protect them from the cloud provider, unless the corresponding

key share did not belong to a user revoked in the last round. Thus, for instance, key

AK ′[1] will protect the new key shares KS ′[1] to KS ′[5], from 1 to 5, and so on; a total of

n key shares are again stored in the cloud with headers reflecting the new version. In this

case, the user data that is stored in the cloud and encrypted with the older key K must

be replaced with a version that is encrypted with the new key K ′; this may be done by

user A, or by a trusted manager M . To avoid a key consistency issue, the ciphertext may

be appended with information on the key version required to decrypt it. A new cycle of

the interactions shown in Table 6.2 is repeated, for the new version of the data key. In the

special case where user data is time-sensitive in nature, such as a stock market transaction,

no replacement of key shares may be undertaken. Rather, all users eventually lose access

to the data due to share deletion, at which point it is made public or has no intrinsic value.

Revocation

Suppose that user A decides that B should no longer have access to the encrypted user data

stored in the cloud. B will be unable to obtain additional access keys from A to obtain

more shares, will be unable to obtain updated access keys once the key store expires,

and thus will be unable to decrypt shares of the new key K ′ from the cloud. B will not

immediately lose access rights to the originally given shares; he will eventually do so when

sufficient shares are deleted non-deterministically by the cloud provider and B’s key cache

cannot be refreshed. To conserve communication, it is unnecessary for B to poll the cloud

provider to discover a new key version to replace an expired one. B may issue a request

for new key shares when they become available, and have the cloud provider send them in

response in asynchronous push-based fashion, while B is still authorized.

110

CHAPTER 6. CLOUD-HOSTED KEY SHARING

6.3.2 Discussion and Analysis

The main use envisioned with the proposed scheme is the management of continuous access

to encrypted user data in a highly scalable manner with minimal coordination, as users

join and leave the system. Another use is in allowing access to user data for a finite period

of time. In the latter case, once insufficient key shares remain, the encrypted data stored in

the cloud is no longer useful to the authorized user set. The data owner will not re-generate

a new data key, and the ciphertext c may simply be discarded at the end, as it cannot

be decrypted with the remaining shares; another possibility is to simply reveal the data

key to the cloud provider and allow global unrestricted access to the user data, as it is no

longer considered sensitive once enough time has passed.

The main advantages of the technique are summarized:

1. Expensive key re-generation and re-distribution does not occur every time a single

user’s access is revoked. The revocation process relies upon the gradual but pre-

dictable disappearance of key shares, incurring no cost for the data owner upon each

such occurrence.

2. Storage of key shares in the cloud takes advantage of the cloud provider’s high avail-

ability, which is not the case with techniques relying upon the distribution of shares

across a peer-to-peer network. The key shares may be replicated onto multiple cloud

providers, if available, to increase redundancy.

3. The key re-regeneration process is not required to be undertaken by the data owner

(user A in the example); once sufficient key shares have been depleted, a trusted

manager M may be employed to perform it, if such an entity exists within the

system, thus removing the communication burden from the data owner.

4. Since the key shares are securely stored in a centralized cloud location, the rate of

share deletion is deterministic. It may even be dynamically controlled by the data

owner through appropriate instructions to the cloud provider; key shares can also be

forced to expire at any time if a security breach occurs. Caching of key shares for a

mobile device user is limited by local storage, and thus it is expected that a user will

need to fetch shares from the cloud regularly. Regular back up of shares by a user to

another server for safekeeping would entail a prohibitive communication cost.

111

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Key shares are stored securely in the cloud. Even if the provider attempts to collude

with an authorized user, every key share is protected with a unique access key, and the

access keys are never shared with the cloud provider; the user is unable to glean any new

and useful information from the cloud provider. If a user shares an access key with the

cloud provider in an unauthorized manner, then only a limited number of key shares will

be temporarily accessible to the provider until they are deleted; even if the secret data

key K is decoded by the provider, it will eventually be rotated and the ciphertext will

be replaced. The same safeguard applies to key material stolen from a compromised user.

Also, because key shares are encrypted, then even if the provider is malicious, disobeying

deletion rules and retaining them in the cloud is uneconomical to the provider and confers

no benefit other than prolonging revocation until the next key update.

It is impossible to predict with certainty at what point a user will lose access to key

material such that the user will be unable to refresh his or her local copy of key shares from

the cloud, as the deletion of any particular share is normally non-deterministic. This is not

of great concern, however, as it is likewise impossible to know when a device user will need

to update his or her local cache of key shares. From basic probability theory, the chance

that any user will have access to a sufficient number of shares is given in Equation 6.1:(∏
0≤i≤d

(
n− i− w
n− i

) ∣∣∣0 ≤ d ≤ (n− t)

)
(6.1)

where d is the total number of deletions thus far, and w is the amount of shares generated

for the user in question, assuming in this case that it is equivalent to the threshold t+ 1.

A compromise in the proposal is the cost of storage on the user’s device, not only of key

shares, but also of their corresponding access keys; the costs borne are shown in Table 6.3.

It is possible to configure the protocol such that an access key is required for each key

share, or an access key unlocks more than one share. The advantage of the latter method

is a lesser storage penalty; the disadvantage is that a user may continue to have access to

a threshold number of shares for longer, i.e. throughout a greater number of share deletion

events, adversely affecting the scheme’s revocation efficacy. In any case, the key material

storage cost is not high, and does not vary with the size of the data being protected.

If all key shares of a data key are stored in a single cloud provider’s data store, as

in the default scenario described, then the access keys are necessary to prevent the cloud

provider from reconstructing the data key itself from a threshold number of shares. Even

112

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Key material Size Assumption

Each access key. 16 bytes 128-bit AES.

Each key share. 16 bytes 128-bit equivalent.

Each encrypted key share. 16 bytes 128-bit AES.

Table 6.3: The cost of storage of key material in the key-sharing model.

if the shares were to be distributed across multiple cloud providers, then less than the

required threshold number would need to be stored on each if access keys were not used; in

addition, the cloud providers could not collude. As a disadvantage, the data owner bears a

significant cost in distributing access keys to recipients; however, this cost may be reduced

by storing the access keys in the cloud for dissemination, encrypted with the recipient’s

public key (if a supporting infrastructure such as RSA is available), so that only a one-time

upload of all access keys by the data owner is needed. Another possibility is to employ a

trusted intermediary, as in previous chapters, for the purpose of access key generation and

distribution. The initial key distribution costs are therefore no worse in this model. Also,

the data owner does not need to retain access keys after they are distributed.

A consideration is the communication overhead of recipients requesting multiple key

shares, the amount influenced by the threshold value; these requests are made directly

against the cloud, however, and the responses containing the shares may be bundled with

the downloaded user data to minimize overhead.

Continuous share expiration results in users undergoing access revocation at different

times; hence, resulting communication sessions are evenly distributed over time. If all

shares expired simultaneously, then users would make requests for additional shares all at

once, which could result in a flooding of the network or of the data owner.

An alternative to the proposed scheme is a coarser-grained approach where multiple

data keys are stored in whole in the cloud, rather than shares of these keys. Each such

key may be assigned to multiple users, and the keys may still self-erode. This modification

reduces the complexity of the overall scheme and does not require the expense of recon-

struction of the data key from shares by each recipient. However, such a scheme is less

flexible for the following reasons, which may make it unsuitable for some systems:

1. It does not permit different portions of key material (i.e. shares) to be stored in

different locations such as across multiple cloud providers; such a deployment may be

113

CHAPTER 6. CLOUD-HOSTED KEY SHARING

useful in preventing a cloud provider from reconstructing the data key in case access

keys are compromised, because insufficient shares may be stored on its premises and

collusion with another cloud provider to obtain more shares is impossible.

2. It does not permit some users to be assigned a greater amount of key material initially,

which is useful in supporting prioritization of users, as is suggested in a variant below.

3. Authorization for a user depends on having access to a whole key, and re-gaining

access after deletion requires obtaining a new key. In the case of key shares, how-

ever, users may incrementally grow their key material through requests for additional

shares from the cloud provider, the data owner, or other users; permission for doing

so may be controlled dynamically. To achieve information-theoretic secrecy, the key

shares must be of length at least equal to the data key itself that is fragmented;

however, if computational secrecy is sufficient, then this restriction is relaxed and

significant storage cost savings are achieved: the size of the key share store grows

by a factor of the number of shares divided by the threshold [65]. Thus, the overall

amount of data transferred on key downloads when utilizing key shares may be less.

Even with the use of whole keys, the concept of self-eroding key material under the

control of the cloud provider remains a significant contribution of the proposed work.

6.4 Variants

The basic scheme presented may be optionally extended with the following variants if

additional network components are present, to improve its performance or reliability:

Priority Classes of Users

Shares need not be evenly distributed across all users. Higher-priority or more trustworthy

users could retain key shares for longer; one way to accomplish this is to assign a different

class of shares to these users such that the shares undergo a slower rate of deletion than

do regular shares assigned to the rest of the user population. Another way is to simply

assign a greater number of shares to priority users so that they are less likely to suffer

the effect of insufficient shares prior to share re-generation; furthermore, the lock-out of

114

CHAPTER 6. CLOUD-HOSTED KEY SHARING

access due to insufficient shares in this case is shorter-lived. The relative priority of a user

class will dictate the rate of deletion of its shares, or the number initially assigned to each

represented user, depending on the variant chosen.

Distribution Across a Cloud-of-Clouds

Recently, cloud brokering has been introduced, permitting access to a cloud-of-clouds.

The advantage is that a client need not rely upon a single cloud infrastructure to provide

reliable and continuous service. A broker acts as an intermediary, arbitrating between

multiple providers. To take advantage of this concept, key shares may be distributed

across the repositories of different providers. Each user is given a range of access keys to

shares of a single provider to retain communication efficiency. However, other users will be

given access to shares stored in another provider; if one is adversely affected by an outage,

it need not disrupt service to all users, thus improving the reliability of the system.

Manager-Assisted Key Shares

The protocol described thus far relies on the data owner re-generating new key shares for

storage in the cloud. Although this permits the key management system to rely only on the

data owner and no additional network entity, the data owner may be subject to occasional

unavailability due to its mobility. A highly-available trusted manager could be a beneficial

addition to this scheme. For instance, suppose that key shares must be generated or re-

generated. User A, the data owner, would generate the ciphertext c and description key L;

the manager would then create the key shares and access keys that unlock them. The

manager would upload the key shares to the cloud, and the access keys to all users in Utr.

When the shares would expire and need to be re-generated, A would request the manager

to repeat the procedure with a new batch of key material; full trust in the manager is

required.

115

CHAPTER 6. CLOUD-HOSTED KEY SHARING

6.5 Implementation

6.5.1 Performance Measurement

A prototype of the proposed scheme was implemented to assess its performance. The imple-

mentation was realized on popular existing commercial platforms: the Android mobile and

the Google App Engine (GAE) cloud platforms. Refer to the system model in Figure 6.3.

The Shamir Secret Sharing in Java (SSSJ) library [107] provided the implementation of

the underlying cryptographic algorithms; in particular, it implements the LaGrange In-

terpolating Polynomial Scheme [97]. The implementation was run on different clients to

assess their relative performance: an Apple iMac 3.4 GHz quad-core Intel Core i7 desktop

computer with 16 GB RAM, an Apple MacBook Pro 2.2 GHz dual-core Intel Core 2 Duo

with 4 GB RAM, and a Google Nexus One phone with a 1 GHz Qualcomm Scorpion pro-

cessor with 512 MB memory. The AES cryptographic algorithm was provided by the Java

Cryptography Extension (JCE) library. 128-bit AES keys were used as the access keys

used to encrypt and decrypt the shares of a 112-bit data key. Performance benchmark

results are shown in Table 6.4, for 100 key shares generated with a threshold number of 5.

On the server end, an F1-class front-end instance was run as a Java servlet on the GAE

cloud, configured at 600 MHz processing and 128 MB of RAM. A connection was estab-

lished between the desktop or mobile Android client and an instance running on the GAE

cloud via HTTP requests, using JSON for data interchange and the Google Gson library

for marshalling between Java objects (used by the Java client and server implementations)

and the JSON representation. Note that the security model of GAE does not allow direct

network connections and native code execution. Only a subset of the Java 2 Standard Edi-

tion (J2SE) SDK 1.6 classes are whitelisted on Android and GAE; fortunately, the required

JCE classes are supported. The performance data from the GAE server logs are shown in

Table 6.5. The benchmark results show that the processing demands on the mobile device

and cloud server are not onerous at all.

116

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Google App
Engine cloud

Android Nexus phone

J
S
O
N

J
S
O
N

Deployed
server

instance

Internet
Native Java
client app

Android runtime

JCE and SSSJ libraries

HTTP requests
Java

servlet

Figure 6.3: A high-level model of the implementation of key-sharing.

6.5.2 Simulation

Through an additional custom simulation program written in Java, various parameters

were modified to understand their effect on performance. One effect studied was the rate

of share depletion on revocation. Starting with an initial population of 10,000 authorized

users, 100 total shares, and a minimum threshold (t+ 1) value of 5, shares were randomly

allocated to each user. The initial number of shares allocated was increased by a factor

of five across the trials. One random share deletion occurred per round of the simulation;

users were not allowed to request additional shares and a user became unauthorized once

his or her remaining shares fell below the threshold. The results are found in Figure 6.4.

Increasing the initial allocation of shares results in a delayed need for additional shares

from users at peril of becoming unauthorized, at the cost of delayed revocation and greater

up-front storage and communication for key exchange.

117

CHAPTER 6. CLOUD-HOSTED KEY SHARING

Cryptographic operation Desktop Notebook Mobile

Generation of encrypted key shares. 42 ms 56 ms 617 ms

Decryption of encrypted key shares.
.
= 0 ms

.
= 0 ms 22 ms

Decryption of encrypted user message. 8 ms 46 ms 163 ms

Table 6.4: The client performance results obtained from the key-sharing implementation.

Cryptographic operation Response time CPU time Response size

Upload of encrypted key shares. 98 ms 38 ms -

Download of encrypted key shares. 36 ms 38 ms 11.6 kb

Table 6.5: The server performance results obtained from the key-sharing implementation.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Pe
rc
en

ta
ge
	
 o
f	
 d

ea
ut
ho

riz
ed

	
 u
se
rs
	

	

Percentage	
 of	
 shares	
 deleted	

Rate	
 of	
 user	
 deauthoriza4on	
 based	
 on	
 share	
 alloca4on	

(t+1)	
 shares	
 per	
 user	

2(t+1)	
 shares	
 per	
 user	

3(t+1)	
 shares	
 per	
 user	

4(t+1)	
 shares	
 per	
 user	

5(t+1)	
 shares	
 per	
 user	

Figure 6.4: The rate of user deauthorization based on share allocation in key-sharing.

118

CHAPTER 6. CLOUD-HOSTED KEY SHARING

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

N
um

be
r	
 o

f	
 s
ha

re
	
 re

qu
es
ts
	
 /
m
es
	
 th

re
sh
ol
d	

(t
+1
)	

	

Percentage	
 of	
 shares	
 deleted	

Total	
 share	
 downloads	
 based	
 on	
 ini/al	
 alloca/on	

5(t+1)	
 shares	
 per	
 user	

4(t+1)	
 shares	
 per	
 user	

3(t+1)	
 shares	
 per	
 user	

2(t+1)	
 shares	
 per	
 user	

(t+1)	
 shares	
 per	
 user	

Figure 6.5: The total share downloads based on the initial allocation in key-sharing.

It is also instructive to study the effect of allowing users to request additional shares so

that they meet the threshold, assuming that they remain authorized at all times. Keeping

the same starting parameters, the initial allocation of shares was varied across the trials

from a multiple of five of the threshold amount to a multiple of one; an unlimited number

of random shares was allowed to be requested by each user. Regardless of the initial

allocation of shares, a request was only made if the user fell below the threshold. The

results are shown in Figure 6.5; only the requests subsequent to the initial assignment

are shown. There is a trade-off between the amount of shares initially allocated, and the

amount of shares requested later to maintain the threshold. Assigning fewer initial shares

is more optimal in terms of the average shares requested per user at the end, due to the

replacements being randomly drawn from a pool consisting of shares that are still valid.

The rate of key re-generation affects the minimum number of valid users present at any

time in the system. Keeping the same starting parameters as in the first experiment, with

five shares initially allocated to all users, the number of rounds between key re-generation

(and re-population of all shares) was varied; the minimum number of valid remaining users

was observed as shares were randomly deleted. The results appear in Figure 6.6. When the

119

CHAPTER 6. CLOUD-HOSTED KEY SHARING

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0%	
 10%	
 20%	

Pe
rc
en

ta
ge
	
 o
f	
 a

ut
ho

riz
ed

	
 u
se
rs
	

	

Percentage	
 of	
 original	
 number	
 of	
 shares	
 deleted	

Minimum	
 valid	
 users	
 based	
 on	
 share	
 re-­‐genera8on	
 frequency	

Re-­‐gen.	
 a4er	
 25%	
 deleted	

Re-­‐gen.	
 a4er	
 20%	
 deleted	

Re-­‐gen.	
 a4er	
 15%	
 deleted	

Re-­‐gen.	
 a4er	
 10%	
 deleted	

Re-­‐gen.	
 a4er	
 5%	
 deleted	

Figure 6.6: The minimum valid users based on the re-generation frequency in key-sharing.

key shares lasted for 5 rounds until they were all re-generated (i.e. after 5% of all shares

were deleted), the number of valid users always remained above approximately 72%; when

the key shares lasted for 25 rounds, equivalent in number to the threshold share value times

five, the minimum number of valid users at times dropped to approximately 21%. Thus,

increasing the frequency of key re-generation results in fewer authorized users being locked

out, at the cost of more frequent downloads of valid key shares.

Refer now to Figure 6.7. In the case where key shares lasted for 5 rounds, each user

requested approximately 18 times the initial threshold amount of 5 shares over a run of

100 deletion events, compared to only approximately 5.1 times the amount of 5 shares

where key shares lasted for 25 rounds (i.e. five times longer). Although more frequent key

re-generation decreases access wait times for authorized users, it results in more frequent

share downloads, which are costly.

If the user population is segmented into multiple classes of different priorities, then the

relative rates of user de-authorization will vary. In one experiment, the population was

evenly distributed across five priority classes with various initial share allocations; users of

the highest priority level 5 were assigned five times the number of shares of users of priority

120

CHAPTER 6. CLOUD-HOSTED KEY SHARING

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

N
um

be
r	
 o

f	
 t
ot
al
	
 sh

ar
e	

re
qu

es
ts
	
 fo

r	
 e
ac
h	

us
er
	
 	

ac
ro
ss
	
 a
ll	

ke
y	

ro
un

ds
,	
 6

m
es
	
 th

re
sh
ol
d	

(t
+1
)	

	

Percentage	
 of	
 original	
 number	
 of	
 shares	
 deleted	

Total	
 share	
 downloads	
 based	
 on	
 key	
 re-­‐genera6on	
 frequency	

Re-­‐gen.	
 a4er	
 25%	
 deleted	

Re-­‐gen.	
 a4er	
 20%	
 deleted	

Re-­‐gen.	
 a4er	
 15%	
 deleted	

Re-­‐gen.	
 a4er	
 10%	
 deleted	

Re-­‐gen.	
 a4er	
 5%	
 deleted	

Figure 6.7: The total share downloads based on the re-generation frequency in key-sharing.

level 1, and so on. The key and all shares of it were re-generated every 75 rounds, and

additional share requests were disallowed; the effect on the number of outstanding users

in the system is observed in Figure 6.8. In the lowest priority class, all users typically lost

authorization before the next re-generation round, while in the highest priority class, only

approximately 20% lost authorization. Thus, although higher priority classes incur higher

initial share downloads, they can retain near-constant authorization to the system and

less interruption to their service; because they tend to be of higher trust, it is appropriate

for their revocation to be delayed till the next key re-generation. Observe, however, that

even if an authorized user, irrespective of priority, loses access to shares initially assigned,

then it is permissible for that user to obtain additional access keys from the data owner

or a trusted manager to regain a threshold of shares and maintain continuous access to

encrypted data in the cloud; such requests were omitted from the experiment in question.

The various parameters discussed in the simulation results should be tweaked as ap-

propriate to fit the user application that is being secured.

121

CHAPTER 6. CLOUD-HOSTED KEY SHARING

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	
 220	
 240	
 260	
 280	
 300	

Pe
rc
en

ta
ge
	
 o
f	
 a

ut
ho

riz
ed

	
 u
se
rs
	

Number	
 of	
 share	
 dele6on	
 events	

Minimum	
 valid	
 users	
 based	
 on	
 priority	
 class	

Priority	
 class	
 1	

Priority	
 class	
 2	

Priority	
 class	
 3	

Priority	
 class	
 4	

Priority	
 class	
 5	

Figure 6.8: The minimum valid users based on the priority class in key-sharing.

6.6 Summary

It has been demonstrated that scalable key management may be attained by leveraging the

inexpensive storage capacity and high accessibility offered by a cloud provider. Through

the use of self-eroding key shares in the cloud, efficient revocation is achieved for mobile

device users without requiring the involvement of a data owner or trusted intermediary.

The cloud provider does not have direct access to unencrypted data since it is unable to

generate decryption keys itself as the shares are protected through access keys. All key

material is stored securely and cheaply in the cloud, rather than among the user population

itself. Access by mobile users is accomplished through a direct connection to the cloud and

is enabled solely through the possession of appropriate access keys to unlock the shares.

One of the benefits of using centralized and reliable cloud storage for key shares is that

there is full control over share management; it is not subject to outside factors such as

user churn. Various heuristics may be implemented to control the timing and rate of share

deletions, to fit the mobile application being executed. Options exist for different cloud

usage scenarios including the case of different priority classes of users being present.

122

Chapter 7

Query Privacy for

Location-Based Services

7.1 Introduction

Prior chapters were concerned with key management methods that guarantee that

data outsourced to a cloud server is always kept confidential from the cloud provider.

This chapter considers the case where information stored in the cloud is public or permit-

ted to be shared with the provider. This scenario has numerous practical uses: the cloud

provider may continuously update its database from external sources, and perform various

work on it such as sorting, filtering, and transforming it as required by the application,

taking advantage of the cloud’s scalable means of computation. However, confidentiality

remains a concern for users. The specific information retrieved from the cloud can some-

times reveal much about a user to the cloud provider, beyond his or her identity, and to his

or her risk and detriment. Hence, a scheme that allows mobile users to retrieve information

in a confidential manner is presented in this chapter such that query privacy is assured.

The chosen application context is a location-based service, which is a highly popular cloud

application that enjoys significant network effects, where participating mobile users can

increase the value of the service to others, and effectively illustrates how the proposed

techniques may be applied in practice; other application contexts are possible, however.

The privacy requirements for location-based services are detailed in Section 7.2. Related

work on query privacy is described in Section 7.3. The proposed solution for private

123

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

information retrieval is detailed in Section 7.4. An implementation on multiple platforms

is discussed in Section 7.5, and the work is summarized in Section 7.6.

The content of this chapter is based on work that has been published [88,89].

7.2 Privacy Requirements of Location-Based Services

Users of mobile devices frequently have a need to find POIs (Points Of Interest), such as

restaurants, hotels, or gas stations, in close proximity to their current locations. Collections

of these POIs are typically stored in databases administered by LBS (Location Based

Service) providers, and are accessed by the company’s own mobile client applications or

are licensed to third-party independent software vendors. A user first establishes his or her

current position on a smartphone through a positioning technology such as GPS (Global

Positioning System) or cell tower triangulation, and uses it as the origin for the search.

The problem is that if the user’s actual location is provided as the origin to the LBS

server, running in a cloud, which performs the lookup of the POIs, then the server will

learn of that location. In addition, a history of locations visited may be recorded and

could potentially be used to target the user with unexpected content such as local adver-

tisements, or worse, used to track him or her. The user’s identity may be divulged through

the inclusion of the originating dynamic IP address, e-mail address, or phone number in

requests to the LBS server so that the results of an LBS query can be routed back to the

correct user via a TCP data connection, e-mail reply, or SMS reply, respectively. If a lo-

cation can always be correlated to each request, then the user’s current pattern of activity

and even personal safety is being entrusted to a third-party, potentially of unknown origin

and intent. Although search engines routinely cache portions of previous queries in order

to deliver more relevant results in the future, concern occurs when the user’s exact location

history is tracked, and not just the key words used in the search. For many users, this

constitutes an unacceptable violation of privacy, and efforts should be made to avoid it.

As location technology becomes commonplace, users will become increasingly aware of

and become concerned about location privacy. Not only are privacy and personal safety

important considerations, but recent advances in mobile advertising have even opened up

the possibility of location-based spam. The challenge has been to design a system whereby

a user can retrieve useful POI information without having to disclose his or her exact

124

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

location to a third-party such as the LBS server running in the cloud. The user should

also not have to reveal what particular POIs were searched for and found, as each POI

record typically includes precise location coordinates. Thus, the server should be unable

to infer the user’s current location or likely destination, or accumulate a history of requests

made for profiling purposes. Generally speaking, a user will typically be comfortable with

a certain degree of privacy, meaning that the user could be expected to be anywhere within

a certain geographic area, such as a city or neighbourhood, without fear of discovery.

Today’s smartphones have processors that are suitable for cryptographic operations that

can enable location privacy. However, these devices have limited memory and bandwidth.

For instance, typical 3G smartphone limits are 128 MB of dynamic RAM, 32 GB of flash

memory, and operation on 3G wireless networks no faster than the (theoretical) 7.2 Mbps

HSDPA network. Consider these data limits with respect to a typical commercial POI

database for the U.S. and Canada, which can contain 6 to 12 million entries and require

1 to 2 GB or more of flash data storage. Requiring that the smartphone download the entire

database for each request so as not to provide information about its current location is

clearly not practical [102]; nor is requiring that it periodically download just the updated

data to ensure accuracy of results, given practical bandwidth limits, data usage limits,

and associated overage charges (penalties for exceeding the limits) of smartphone data

plans. Thus, it is desirable to provide a cryptographic way for a mobile user to request

local information while preserving location privacy. Although extra server-side processing

demands must be anticipated on a privacy-enhanced LBS server in the cloud, they may

easily be scaled in a cloud computing system at a reasonable tradeoff.

The system model described in Section 2.2.2 on page 14 and the adversary and threat

model described in Section 2.4.1 on page 19 are assumed, with the exception that a trusted

intermediary is not present, and the cloud provider retains full access to data, which the

user does not consider confidential itself. In addition, the cloud provider may collect sensi-

tive personal information about a user, including the user’s identity and content of requests,

unbeknownst to the user; this may constitute a violation of privacy and is considered a

threat against the user, depending on the amount and accuracy of information gathered.

The LBS server and cloud provider are still considered generally honest-but-curious.

125

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.2.1 Requirements and Assumptions

The basic scenario entails a mobile device user operating a smartphone with location tech-

nology and wireless data transfer capability. The user searches for nearby POIs (i.e. nearest

neighbours) by first constructing and sending a query to a known LBS server running as

a cloud application, over the wireless network. The server retrieves the query, performs a

search of its POI database, and returns a set of results to the user containing all POIs found

in the specified region. The proposed protocol should meet the following requirements:

1. The LBS server must not learn the user’s exact location. It may only identify a

general region that is large enough, in terms of area and the number of POIs it

contains, to confer a sufficient level of privacy to the user’s satisfaction.

2. There must be no third parties, trusted or otherwise, in the protocol between the

user and the server.

3. The implementation must be computationally efficient on hardware, such as a smart-

phone, which is resource-constrained. A user may be expected to tolerate a delay of

no more than several seconds for any kind of query.

4. The approach cannot rely on a secure processor that is not typically found on a

commercial smartphone.

Clearly, these requirements present the need for a mechanism to directly retrieve infor-

mation in a secure and private way without revealing the contents of the query results, and

without the need for an intermediary between the user and the database server to provide

some kind of a masking function. Fortunately, there is a branch of cryptography that is

associated with retrieving information from a database without revealing which item is

being retrieved; it is known as Private Information Retrieval (PIR) [25]. The proposed

solution in this chapter is sufficiently generic to allow an application to rely on any PIR

scheme. The same assumptions are made as those of the underlying PIR scheme where

retrieval is either by object index or keyword [27]. A server is described that can find the

relevant POI entries based on the user’s location of interest included in the request; this is

possible because the entries in the POI database are indexed by their location.

Although PIR satisfies the baseline privacy constraints described, current implemen-

tations of it fail to satisfy the third condition, which is usable performance on modern

126

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

smartphone hardware. The challenge has been to complement PIR with a new algorith-

mic approach that effectively reduces the amount of computation without significantly

sacrificing the user’s location privacy.

Note that no effort is made to hide the user’s identity from the location-based service.

It is assumed that it is acceptable to reveal the user’s identity for the purpose of routing the

response to a location-based request, and for offering a customized LBS experience. A user

that also wishes to hide his or her identity to some extent may wish to make use of an onion

router, such as Tor [36]. However, it is noted that there are application domains where

the protection of a user’s location using the proposed technique is superior to anonymizing

the user’s identity. For example, it is easy to try to identify a user who made a query

with a particular geographical coordinate, simply by looking up the user who lives at the

corresponding residential address and assuming the request did not originate elsewhere.

On the other hand, the proposed technique hides query contents from the LBS, and leaves

no useful clues for determining the user’s current location.

When a typical mobile phone accesses a third-party LBS provider through a wireless

3G or 4G data connection, it is assumed that it reveals only its identity and the query

itself to the provider. Unavoidably, a mobile communications carrier is always aware of

the user’s location based on the cell towers in contact, and so it must not collude with

the LBS provider; this assumption relies on the LBS provider not being integrated into

the carrier’s infrastructure, such as a traffic reporting service using cell tower data that

discovers a user’s location passively. This assumption is valid for the vast majority of

LBS applications, which are unaffiliated with the carrier; these include search portals,

social applications, and travel guides. When communicating with such an application, the

mobile user’s IP address is of no help in determining the user’s physical location, as it is

dynamically assigned independent of location. Only a central gateway that is administered

by the telecommunications carrier will be identified. It is assumed that no other information

will be gleaned by the LBS provider. In the case where a mobile user utilizes Wi-Fi instead,

the user will be assigned an address that points to the nearby access point, however, and

may need to employ other techniques, such as Tor, to mask the address.

127

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.3 Related Work on Location Privacy and PIR

A brief overview of cloaking- and PIR-based approaches for location privacy is provided. A

survey and classification of methods for location privacy in LBS can be found in [44,104].

7.3.1 Location Cloaking Techniques

Location cloaking seeks to prevent an attacker from being able to match queries to par-

ticular users and to thus compromise their privacy. The attacker may be able to observe

traffic flowing through the network or even be situated at the LBS provider endpoint.

One popular cloaking technique is based on the principle of k -anonymity, where a user

is hidden among k-1 other users. Queries from multiple users are typically aggregated at

an anonymity server which forms an intermediary between the user and the LBS provider.

This central anonymity server can provide spatial and temporal cloaking functions, so

that an attacker will encounter difficulty matching multiple queries that are observed with

users at particular locations and at particular points in time. Many cloaking solutions for

location privacy suggest either a central anonymity server as described [51, 117], or other

means such as decentralized trusted peers [29] or distributed k -anonymity [124].

The chief problem is that the anonymity server must normally be part of the trusted

computing environment and represents a single point of vulnerability. If it is successfully

attacked, or collusion with the LBS server occurs, then the locations of all users may be

divulged. It is also observed that although a cloaking technique by itself is advantageous

in that it does not result in increased computational cost on the server, it can carry with

it a high communication cost from the LBS provider to the client. This can mean a large

and unacceptable penalty for mobile phone users. Finally, if a reduced sample population

results from the number of active users in a particular geographic area, it may not suffice

to satisfy the desired degree of anonymity. If the anonymity server delays execution of

a request until the k -anonymity condition is satisfied, then this delay may prove to be

unacceptable to the user from a feature interaction point of view.

128

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.3.2 PIR-Based Techniques

A PIR technique can be used to ensure that queries and their results are kept private.

Specifically, PIR provides a user with a way to retrieve an item from a database, with-

out the database (or the database administrator) learning any information about which

particular item was retrieved. PIR satisfies the described requirements for privacy and

low communication cost. However, existing PIR techniques have drawbacks of high com-

putational cost for applications that require low latency. The PIR database is typically

organized as an n-bit string, broken up into r blocks, each n/r bits long. The user’s private

input or query is typically an index i ∈ {1, ..., r} representing the ith block of bits. A trivial

solution for PIR is for the database to send all r blocks to the user and have the user select

the desired block at index i, but this carries a maximum cost of communication and is

unsuitable in a resource-constrained environment such as a wireless network.

When the PIR problem was first introduced [25], it was proven that a single-database

solution with information-theoretic privacy and a sub-linear communication complexity

(between the user and the database) is impossible to achieve. Information-theoretic pri-

vacy assures user privacy even for an adversary with unlimited computational capability.

Using at least two replicated databases, and some form of restrictions on how the databases

can communicate, PIR schemes with information theoretic privacy are possible [15,48]. The

first single-database PIR scheme [26] only assures privacy against an adversary with limited

computational capability (i.e. polynomially-bounded attackers). The type of privacy pro-

tection known as computational privacy, where computational capability is expected to be

limited, is a weaker notion of privacy compared to information-theoretic privacy. Nonethe-

less, computational PIR (CPIR) [26, 67] offers the benefit of fielding a single database.

Basic PIR schemes place no restriction on information leaked about other items in the

database that are not of interest to the user; however, an extension of PIR, known as Sym-

metric PIR (SPIR) [83], adds that restriction. The restriction is important in situations

where the database privacy is equally of concern. The only work in an LBS context that

attempts to address both user and database privacy is [45]. Although, not strictly an SPIR

scheme, it adopts a cryptographic technique to determine if a location is enclosed inside a

rectangular cloaking region; the goal was to reduce the amount of POIs returned to the user

by a query. Unlike the approach presented in this chapter, it fails to guarantee a constant

query result size which defeats correlation attacks, and it requires dynamic partitioning of

the search space which may be computationally intensive. It also requires two queries to

129

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

be executed, whereas a single query-response pair is sufficient in the proposal herein.

PIR has been applied to solving the problem of keeping a user’s location private when

retrieving location-based content from a server database. This content typically consists

of POIs, with each entry consisting of a description of a place of interest as well as its

geographical location. A related work exists that does not utilize a third party [46], but it

differs from the PIR approach in this chapter in three important ways: first, the approach

is based on a dated computational PIR scheme [67] that is less efficient than more recent

schemes; second, it has a linear computational cost for a large number of entries, which is

too costly for low-bandwidth devices, without allowing users to specify a desired level of

privacy; third, it does not consider a privacy-preserving partitioning approach for the data

set. In contrast, the work in this chapter will be shown to use partitioning of POI data to

permit cloaking, and offers privacy protection when used in conjunction with PIR.

Most of the PIR-based approaches for location privacy rely on hardware-based tech-

niques, which typically utilize a secure coprocessor (SC) at the LBS server host [4, 53]

to realize query privacy; a major drawback is that it requires the acquisition of special-

ized tamperproof hardware and it usually requires periodic reshuffling of the POIs in the

database, which is a computationally-expensive operation [4, 56].

7.3.3 Hybrid Techniques

Hybrid techniques [44] permit privacy-efficiency tradeoff decisions to be made by combin-

ing the benefits of cloaking and PIR-based techniques. A tradeoff between privacy and

computational overhead has been conjectured [28] as a means of reducing the high compu-

tational overhead for some application areas of PIR. This chapter validates this conjecture

in the context of LBS, and shows how to reduce the performance overhead of current PIR

techniques. In particular, this chapter answers the open question of how to reduce the

processing cost of PIR without requiring the use of multiple CPUs to take advantage of

parallelization, as discrete parallel processors are not typically found on smartphones.

130

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.4 Proposed Solution

A hybrid solution was developed that utilizes PIR to achieve query privacy in the context

of a location-based service, and a cloaking technique to reduce the computational cost of

PIR to a feasible level. The proposed technique essentially describes how the user creates a

cloaking region around his or her true location, and performs a PIR query on the contents

of the cloaking region only. The benefits are numerous: the user’s location is kept hidden

from the cloud server to an acceptable degree regardless of the number of other users in

the area; there is no intermediary server that is responsible for cloaking and that would

need to be trusted; and the computational cost of the cryptographic algorithms employed

is still practical. It is ensured that the user downloads only the POIs that are of interest

to the smartphone, keeping wireless traffic to a minimum to reduce costs and conserve the

battery. The proposed solution is described in this section.

The approach that is proposed entails two phases. First, there is a pre-processing phase

in which the system is set up for use. The pre-processing operation must be carried out

whenever significant changes are made to the POI database on the server. In practice, it

can occur every few months during a period of low usage on the server such as nighttime

maintenance activities. Second, there is an execution phase, in which the LBS server

responds to queries for POIs. The pre-processing phase consists of the following steps:

1. A geographic region is projected onto a two-dimensional plane.

2. A suitable grid is formed on the plane.

3. A POI collection is saved in a database in the cloud such that each row corresponds

to one POI.

4. Each cell of the grid is mapped to a portion of the database, i.e., a particular set of

database rows (each containing a POI).

5. The grid structure is transmitted and saved on the client device in a local mapping

database so that it can be referenced in a subsequent query.

The execution phase, in which a query is made for a set of nearby POIs, consists of the

following steps:

131

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

1. The user determines the area of interest, either based on the current physical position

as determined through GPS, or some other arbitrary area of interest that the user

may be traveling to in the future.

2. The user chooses a desirable level of privacy.

3. The client creates a cloaking region corresponding to this level of privacy, which will

enclose the area of interest.

4. The client sends the cloaking region to the cloud server and identifies which portion

of the cloaking region contains the area of interest, in a way that is hidden from the

server itself.

5. The server receives the request, and finds the database portion corresponding to the

cloaking region. A block of rows is retrieved from this portion based on the user’s

specified location of interest. The POIs present in these rows are transmitted back

to the mobile client.

6. The client decodes the result, and automatically finds the nearest neighbour POI, or

presents the full list of POIs returned to the user to choose amongst.

7.4.1 Level of Privacy

To defeat a server’s ability to narrow down the search space for the item of interest to the

user, PIR protocols typically process every item, or POI, in the PIR database. This results

in a computational complexity that is linear in n (where n is the number of items in the

PIR database). This is the main hindrance to practical PIR deployment [102].

A tradeoff is proposed to make the PIR-based solution practical: users are given the

choice of trading off privacy for better query performance, by specifying the levels of privacy

that they want for their queries. A level of privacy for the query indirectly determines the

number of items that the PIR server must process in order to provide a response. Setting

levels of privacy is a common practice in several domains where privacy is important,

such as web browsing. In the specific case of location privacy, it is argued that resource-

constrained device users are willing to trade off privacy to obtain reasonable performance,

i.e. to trade off some levels of performance to gain some levels of privacy support.

132

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

A user sets the desired privacy level by specifying a subset of the entire database to be

queried. The privacy level can be specified in terms of cities or towns (i.e. city level), states

or provinces (i.e. provincial level), and so on, to enhance user-friendliness. The ratio of the

number of POIs inside this subregion to the number of POIs in the entire POI database

defines a privacy parameter ρ; a value of 1 indicates that the user desires query privacy

at the same level as that offered by a typical PIR protocol, which is maximum privacy at

maximum performance cost. Similarly, if a user sets the query privacy level to 0.25, for

example, then the PIR query will execute faster as the server only needs to process one

quarter of the entire database. Although the cost is still linear in the number of items in

terms of computational complexity, the constant term is modified (i.e. in terms of Big-O

notation), leading to significant performance gains. In this case, the server can only infer

that some portion of one-quarter of the entire database is of interest to the user. At the

same time, it will be disclosed to the server that three quarters of all items in this case

are not of interest; depending on the geographical coverage of the database, this leakage

of information will not necessarily constitute a significant breach of location privacy.

The cloaking region is thus identified as a subset of the entire world described by the

database. If it is imagined that the world is mapped as a grid of so-called geographic

grid cells that are equally distributed, then one of these cells will be chosen to comprise

the cloaking region. If a higher privacy level is desired, then the cloaking region may be

expanded to include multiple geographic grid cells, and thus a larger portion of the database

that describes the world. It is sufficient to identify each grid cell by its cell number if the

mapping is static and published. The process of mapping the world to a geographic grid

occurs during the pre-processing phase, described next.

7.4.2 Pre-Processing and Location Cloaking

The first step in the pre-processing phase is to represent a geographic area such as the

United States and Canada on a two-dimensional plane using a map projection method

such as the commonly-used Miller cylindrical projection [103]. Once that is done, the

user’s location of interest may be found on this plane. It is necessary to obscure the user’s

location by creating a cloaking area around the user’s true position or area of interest.

POIs will be found anywhere by the LBS server within this cloaking region. The cloaking

region must be sufficiently large in order to achieve sufficient privacy for the user, but at

133

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

the same time it must be sufficiently small to minimize the amount of computation required

on the cloud server to process the query results, and to achieve quicker response from it.

Several techniques allow POIs to be mapped to a cloaking region. One technique

is quad-tree mapping [51], but it has the disadvantage (from its use in Casper [84]) of

forming an unnecessarily large cloaking region which can impair performance [12]. Another

technique is called VHC (Various-size-grid Hilbert Curve) mapping [91], which suits the

purpose here. In particular, it solves the problem of the density of POIs varying by

geographic area. If the density of POIs is significantly higher for a given region (such as

a city), then a higher data traffic cost will result if the geographic size of the enclosing

cell that is retrieved is always constant, and the query will be slower, as a result. If on

the other hand, the density becomes significantly lower (such as in a sparsely populated

region like the countryside), then the result size for the queried region may be so minimal

that the server may guess the user’s likely destination with a high degree of confidence,

leading to loss of privacy. VHC solves this problem by creating variable-sized cells from

which a cloaking region is built; the boundaries of each cell are established according to

the density of the POIs in the geographic area that it encloses. Essentially, in VHC, the

two-dimensional geographic grid is mapped to a one-dimensional space such that there is

equal POI density in each VHC cell, or subspace, as shown in Figure 7.1 (a). Assume that

a typical POI database that covers the regions of Canada and the U.S. will have 6 million

POIs. If each VHC cell must contain the same number of POIs, such as 60, then there will

be a total of 100,000 VHC cells that will cover this geographic region. Suppose that the

lowest POI density found in the database is 60 POIs per 40,000 km2. Thus, the maximum

size of a VHC cell will be 40,000 km2. Now, a geographic grid is created overlaying the U.S.

and Canada regions with fixed-size square cells that are 200 km in length (the area of each

is 40,000 km2). Each such geographic grid cell corresponds to the maximum possible size

of a single VHC cell as described above. Each geographic grid cell, however, may contain

any number of smaller-sized VHC cells if the POI density of the region inside the grid cell

is greater, as shown in Figure 7.1 (b). The decomposition continues until all POIs present

within a geographic grid cell are mapped to VHC cells of various sizes and boundaries; each

VHC cell will contain the same number of POIs, with empty results padded if necessary.

During normal operation, the client determines a cloaking region based on a particular

privacy level by determining the number of geographic grid cells to include inside the

cloaking region queried by the user. Suppose that the client chooses a privacy level such

that the cloaking region consists of four geographic grid cells. The user’s true location is

134

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

(a) (b)

Figure 7.1: (a) An example of VHC mapping with uniform POI density. (b) A user’s true

position inside VHC cell 25 (shaded) and within a cloaking region bounded by the single

geo (geographical) grid cell 2. Only the POI results for VHC cell 25 will be returned in a

query. If a larger cloaking region consisting of geographic grid cells 1 to 4 was specified,

for greater privacy, then the same POI results would still be returned, but at the cost of

greater server-side computation and a longer transaction.

in one of these grid cells. Inside of the geographic grid cell, there is a set of variable-sized

VHC cells according to the distribution of the POIs in the geographic grid cell. The user’s

area of interest, for which POIs will be retrieved, will be the single current VHC cell found

inside one of the geographic grid cells. The number of POIs per VHC cell is known, and

in this case, it is 60. Thus, the user will initiate a request that will reference the cloaking

region, as well as the specific VHC cell in which the user is located or interested in. The

user will receive a set of 60 POIs that are found in his or her current VHC cell only. The

server will only know that the location of interest is somewhere within the cloaking region

defined by the four geographic grid cells.

The geographic grid is useful in specifying the size of the cloaking region and for iden-

tifying which VHC cells will comprise the cloaking region. The desired level of privacy

135

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

...

...

...

...

POI 1 POI 2 POI 60...

POI 61 POI 62 POI 120...

POI 180...

POI 240...

POI 300...

POI 360...

POI 420...

POI 480...

POI 121

POI 181

POI 241

POI 301

POI 361

POI 421

POI 122

POI 182

POI 242

POI 302

POI 362

POI 422

VHC cell 1

VHC cell 2

VHC cell 3

VHC cell 4

VHC cell 5

VHC cell 6

VHC cell 7

VHC cell 8

...

Geo cell 1

Geo cell 2

Figure 7.2: An example of POI database mapping in PIR, showing the relationship between

geographical grid cells, VHC cells, and POIs as stored in database rows in the cloud.

establishes the size of the cloaking region. The client then sends this cloaking region to

the server, by identifying the bounding coordinates (i.e., the longitude and latitude of the

top-left and bottom-right corners). The server will then be able to identify which VHC

cells belong to this cloaking region, and therefore which portion of the database must be

read. The client must also encode the identifier of the VHC cell containing the area of

interest inside the PIR query. (Each VHC cell in the system is uniquely identified by a

numeric value.) Figure 7.2 further illustrates the relationships among a geographical grid,

VHC cells and POIs.

Thus, the proposed cloaking technique provides a way of reducing the search space of

the POI database by employing multiple levels of database segmentation. The cloaking

region itself is described as a single, or multiple, geographic grid cell or cells. Inside each

geographic grid cell are found one or multiple VHC cells, the number depending on the

amount and distribution of POIs inside the geographic grid cell. The user’s true location

is inside one of these VHC cells, and the user retrieves POI’s corresponding to that VHC

cell only. As far as the LBS server is concerned, the user could be located anywhere within

the larger geographic grid cell, or multiple grid cells, that comprise the cloaking region.

136

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

The geographic grid is fixed. The initial grid cell dimensions are configured based on

the maximum size of each VHC cell, but once established, will not need to change. Both

the client and server must have the same knowledge of the geographic grid. It can be

distributed offline, along with the software for the user’s smartphone, or stored in a public

directory in the cloud. A simple approach to determining grid cell dimensions is to use a

geographic coordinate system such as Degrees-Minutes-Seconds (DMS) [62]. For instance,

each grid cell may be two latitude degrees in length, which roughly equates to 200 km at

the 30 degree latitude. A population of tens of thousands to millions of users may typically

inhabit and stay within the bounds of a grid cell that is 200 km2 in size, leading to excellent

privacy. Cells of larger size will afford province- and state-level privacy if desired.

Both the client and server must agree on the same VHC mapping, and this mapping

must be done off-line in advance. Because it is dependent on population density, it will

remain relatively static over time even as the population grows, and can be dynamically

updated on the client if necessary. In order to contain knowledge of the mapping to define

the cloaking region, the user may make use of a pre-computed map file that is stored locally

on the device. This mapping technique is an improvement over a cloaking region that is

simply based on cells of constant size, and ensures that a constant and predictable number

of results are returned for the user’s grid cell, so as not to leak information to the cloud.

The idea of using VHC to address the general problem of location privacy was proposed

in [91], but in a way that is very different from that of this chapter. Specifically, VHC was

used to map the user’s current location to a 1-dimensional space. Random perturbation

was then applied on the 1-dimensional value, which was then mapped back to 2-dimensional

space according to the VHC mapping, to represent the user’s true location. In essence, the

random perturbation was applied to create confusion for an attacker about the user’s true

location. The technique proposed here differs in that VHC is used for a different purpose;

it defines the storage of POI entries of interest within a geographic cell, which comprises

the cloaking region, in a way that allows proximate POIs to be stored as adjacent database

entries. This cloaking region is then utilized within the context of a privacy-preserving PIR

protocol. Perturbation of the location is not performed; it is argued that this would result in

decreased privacy. Indeed, a non-stationary user whose true location is randomly perturbed

is still subject to correlation attack. In the proposed approach, it is demonstrated that the

cost of computational and communication overhead through the use of PIR is acceptable,

as a method is provided for retrieving only a subset of entries of the entire POI database

for each query. The proposed technique is also impervious to correlation attacks.

137

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

The device must store a copy of the VHC map in local non-volatile memory, but the

storage requirements are very reasonable. The current geographic grid cell encapsulating

the user can be derived from the user’s current latitude and longitude coordinates, if the

mapping convention is known. A single coordinate for the intersection point of each VHC

cell inside (i.e. one of its corners) can then be recorded. Hence, a single coordinate would

suffice to store each VHC cell in device memory. For quick lookup and to minimize storage

requirements, the coordinates of all VHC cells only in the current geographic cell could be

stored. Assuming that the smallest VHC cell size is 1 km2 in size, then the worst case is

that 40,000 coordinates will need to be stored to account for all VHC’s. Two bytes will

be sufficient to store each VHC coordinate, because the origin of the geographic grid cell

is known, so that the total cost will be approximately 80,000 bytes to store all VHC cells.

This is the worst theoretical case; in practice, small VHC cells will only be encountered in

very dense metropolitan areas, and they will not occupy an entire geographic cell.

7.4.3 Variable Level of Privacy

The size of the cloaking region chosen and the subsequent performance of a query depend

on the user’s desired level of privacy. If the user wishes to obtain a higher level of privacy,

then the size of the cloaking region can be defined to be larger, and to encompass a larger

number of geographic grid cells (and thus VHC cells found inside), but the amount of

computation on the server will increase accordingly, delaying the response. Nevertheless,

the chief benefit is that the processing time of the query on the server is predictable,

because each VHC cell in each request contains the same number of POIs. The key fact

is that the amount of data transmitted will be roughly proportional to the number of

POIs in a single VHC cell (depending on the implementation details of the PIR scheme

being employed), but the server will only learn the client’s location to the resolution of the

cloaking region. The amount of variation allowed in the size of the cloaking region should

be kept to a minimum, as this variable may be used to form part of a fingerprint of a target

in a correlation attack. Allowing a one-cell or two-by-two-cell region only may be a good

compromise. The latter could be employed by the user on a permanent basis to avoid the

threat of inter-cell movement being discovered.

138

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.4.4 Algorithm

In this section, the algorithms that implement the proposal to allow a user to set his or

her level of query privacy (equivalent to the size of the cloaking region) are presented:

Let PIR = {PIREncode, PIRProcess, PIRDecode} be some PIR protocol where

PIREncode, PIRProcess, and PIRDecode are the query encoding, response processing,

and response decoding protocols, respectively. The following generic algorithms implement

the proposal for introducing levels of privacy in the PIR query.

Query Generation (By PIR Client)

Let n be the total number of items (or POIs) in the PIR database or databases (in the

case of a PIR protocol with replicated databases), σ be the number of VHC grid cells in

the map where each grid cell has n/σ items. Let i be the index of the database block that

the user wishes to retrieve, and ρ ∈ [0, 1] be a privacy parameter preset by the user that

determines the size of the cloaking region.

i. Compute l = dρne and set R = {r1, r2, r3, ..., rl} to be the set of indexes for the items

corresponding to the single or multiple geographical grid cells of the cloaking region.

For a standard PIR query, it will be the indexes of items in the database.

ii. Compute q = PIREncodeR(i) as the PIR query encoding for i, using only the item

indexes in R (i.e. not all the indexes in all geographical grid locations in the entire

map are required).

iii. Send {q, R} to the database (or PIR server). Instead of sending R, it may be more

efficient to send only the top left and bottom right coordinates of the bounding

rectangle that covers the cloaking region, or the range of identifiers (or numbers) for

the VHC grid cells that are within the cloaking region, or for the geographic cells that

contain them; in any of these cases, the PIR server can use the provided information

to determine R.

139

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

Response Encoding (By PIR Server)

i. Retrieve a database portion D = {d1, d2, d3, ..., dn}, where D[rj] = dj∀j, 0 ≤ j ≤ l,

from the database. Each item may consist of one (or more POIs) and each POI is a

data structure with attributes of longitude, latitude, name, address, phone, category,

web site address, and so on.

ii. Execute PIRProcessD′(q) to obtain response r, which is the block of POIs in the

user’s VHC grid cell, and return it back to the client.

Response Decoding (By PIR Client)

i Execute PIRDecodeR(i, r) to obtain a database response to the query. The response

should be the set of POIs that the query requested.

ii The client can locally compute the nearest neighbour using the set of POIs returned.

7.5 Implementation

7.5.1 Performance Measurement and Simulation

C++ and Java prototypes were developed using two available implementations of the PIR

protocol. The evaluation of the proposed approach in terms of feasibility and scalability

is based on the C++ prototype. The purpose of the Java prototype is to demonstrate

the successful porting of the implementation to a smartphone platform. It was not the

intention to compare these implementations or run them with the same set of parameters.

The C++ prototype is based on Percy++, an open source PIR protocol written in

C++ [47, 48]. The Percy implementation offers computational, information-theoretic and

hybrid (a mix of both) PIR. Percy++ was modified to support the proposal for allowing

PIR queries to be based on a database portion defined by the cloaking region. The com-

putational performance of the PIR algorithm is measured, taking into account different

levels of privacy and corresponding sizes of cloaking regions. The PIR implementation

was run against a database of 6 million synthetic POIs, the typical number of POIs in a

commercial POI database for the U.S. and Canada. It is noted that a similar experiment

140

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

in [46] considers a much smaller database consisting of only 10,000 and 100,000 POIs;

a head-to-head comparison with [46] is infeasible because different PIR implementations

and test data were used. Each POI consists of 256 bytes that were generated randomly;

this size is a conservative representation of practical POI sizes. In comparison, the POIs

from [46] are only 64 bits in length. The location coordinates are stored with each POI.

The Java prototype is based on a computational SPIR protocol implementation [96];

this SPIR protocol was derived from an oblivious transfer protocol [85] and appeared to

be the only publicly available Java implementation at the time of writing. This second

prototype development consists of both a server component and a client component that

was deployed on a smartphone platform. Specifically, the implementation from [96] was

ported to Google’s Android smartphone platform, which supports the Java programming

language. The only aspect of the implementation that could not be adapted without light

modification was the RMI mechanism, which was replaced with HTTP socket commu-

nication between the Android client process and a server process running on a desktop

computer.

7.5.2 Discussion

The query roundtrip times were measured for the C++ prototype on a machine with

a 2.91 GHz dual-core AMD CPU, 3 GB RAM, and running Ubuntu Linux. Since the

Percy++ PIR uses replicated databases, the number of databases was set to 2 [48]. Fig-

ure 7.3 shows query roundtrip times for varying sizes of cloaking regions and POI result

sizes. The number of POIs returned for each query is equivalent to the number of POIs

configured in a VHC cell. Similarly, the number of POIs returned by a query is equivalent

to the number of blocks (in bytes) that a traditional PIR query returns. For instance, a

block of 10 POIs is equivalent to 2560 bytes of data, as each POI consists of 256 bytes. The

query roundtrip or response times for block sizes 5, 10, 25, 50, 100, 250, and 500, where the

cloaking region is as large as the entire database itself for maximum privacy, are between

approximately 20 and 70 seconds; this is because each PIR request runs against the entire

database of 6 million synthetic POIs. However, the query roundtrip time improves with

lower levels of privacy. For example, the query response times for the above block sizes

with a privacy parameter of ρ = 0.17, and thus a smaller cloaking region, are between

approximately 4 and 12 seconds. One must observe that setting ρ to 0.17 is equivalent

to privately querying a block of POIs from a portion of the database consisting of 1.02

141

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

million POIs. If it is assumed that there are equal number of POIs in all the provinces

and states of Canada and US, this implies a cloaking region that covers approximately 10

provinces and/or states. Under a similar assumption, a user who intends to hide his query

in a cloaking region consisting of one province or state will simply set his query privacy

parameter ρ to a much lower value of 0.02. The query response time for this level of privacy

is approximately 0.3 seconds for an optimal block size, which in the testing configuration

consists of 256 POIs.

It is easy to observe from the graph that the block that consists of 250 POIs gives the

best performance. Furthermore, the worst performing block size is the one consisting of

5 POIs, the reason being that smaller block sizes require more rounds of computation to

process the individual blocks, compared to larger block sizes. On the other hand, large

block sizes, such as 500, carry performance penalties and overheads which depend on the

characteristics of the underlying PIR scheme, and also on the resource constraints of the

runtime hardware (e.g., RAM, disk and memory cache sizes, and network bandwidth). The

network cost was negligible since the measurements were taken on a LAN.

The client for the Java prototype was also installed on a G1 Android smartphone

that features a Qualcomm ARM processor running at 528 MHz, and includes 192 MB of

DDR SDRAM, and 256 MB of flash memory. Although the locked smartphone was capable

of running on T-Mobile’s 3G network in the U.S., it did not support the 3G frequency bands

in operation in Canada; hence, the tests were run using the Rogers EDGE network, which

is slower by up to a factor of ten. An Android application was created with a user interface,

shown in Figure 7.4, that allows the user to specify the server address and query parameters

such as the size of the cloaking region and the size of the portion of the cloaking region to

fetch. It was observed that when the cloaking region was reduced to a quarter of its original

size (i.e. a quarter of the POIs were returned), the query generation became 2.15 times

slower, but the roundtrip time became 3.32 times quicker. Overall, the implementation

was usable even though it had not been originally designed and optimized for the Android

platform, and it was restricted to a non-3G network.

The proposed solution preserves the privacy of the user’s location irrespective of the

number of other users initiating queries for the same location. The server can infer the

user’s location based on the cloaking region only. The user may adjust the size of the

cloaking region based on his or her personal preferences (i.e. the desired level of privacy,

query performance, and cost), because a larger region will entail more computation. The

142

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

Figure 7.3: The query roundtrip performance results obtained for different sizes of cloaking

regions, as determined by the privacy parameter ρ, and for different block sizes of POIs

returned per query. A single measurement was taken per data point.

143

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

Figure 7.4: The user interface of the mobile client app in PIR.

size of the cloaking region is based on a particular size of geographic area and does not

need to be adjusted based on the known distribution of POIs within the region. The user

only establishes a reasonable level of privacy based on the number of geographic grid cells

that define a geographic area. The boundary of the cloaking region utilized in a request

is established by the user and is based on the geographic cell map contained on the user’s

end as well as the privacy parameter. The size of the cloaking region and its boundaries

are dynamically adjustable and are not controlled by the server.

144

CHAPTER 7. QUERY PRIVACY FOR LOCATION-BASED SERVICES

7.6 Summary

In this chapter, an algorithm has been proposed for private information retrieval from a

cloud server that achieves a good compromise between user location privacy and com-

putational efficiency. The proposed algorithm has been implemented and evaluated and

shown to be practical on resource-constrained hardware. The proposed approach of using

a variable-sized cloaking region divided into VHC cells results in greater location privacy

than the traditional approach of a single cloaking region, while at the same time decreas-

ing wireless data traffic usage from an amount proportional to the size of the cloaking

region to an amount proportional to the size of a smaller VHC cell. It also allows the

user to dynamically choose from various levels of privacy. Although increasing the size

of the cloaking region does result in higher computation in processing the query on the

cloud server, it is maintained that this tradeoff is very reasonable, given that the cloud

provider is highly scalable; furthermore, only relevant results are transmitted over a rel-

atively slow and expensive wireless network, and the processing overhead for the mobile

user is negligible.

145

Chapter 8

Conclusions

The works in this thesis represent progress towards securing mobile cloud comput-

ing systems in a highly scalable manner. Confidentiality of sensitive and private user

data is ensured when exchanged between a cloud application and an authorized user, and

also when it is in storage. The cloud provider is conservatively considered largely untrusted.

Scarce resources for mobile device users are conserved, by delegating responsibilities to the

cloud provider, so that high scalability and economy can be achieved even in the context

of a dynamic user population. The proposed solutions are not implementation-dependent

and are applicable towards commercial cloud systems that are in operation today. In ad-

dition to key management, solutions have also been proposed for confidential information

retrieval of public data from clouds. The significance of the research conducted is ex-

plained in Section 8.1; a summary of contributions, referencing each major work, is given

in Section 8.2; finally, future directions of study for each are provided in Section 8.3.

146

CHAPTER 8. CONCLUSIONS

8.1 Significance of Research

Although cloud computing systems have garnered significant interest from industry and

the academic community from the perspective of their computation and storage capabil-

ities, the area of security is still in early and active development; yet, security concerns

have proved to be high barriers to adoption. The literature has yet to fully appreciate

the unique challenges posed by a massively scalable cloud computing system, and how

they invalidate traditional client-server encryption schemes. Solutions thus far have been

unable to cope with the efficiency demands of a user population primarily composed of

mobile devices, which is an evident trend in the marketplace. In a survey of work on

secure mobile cloud computing, it was concluded that most security frameworks examined

overlooked the tradeoff required between improved energy consumption on the mobile de-

vice, when offloading work to the cloud provider, and the increased expense of incurring

communication with the cloud as a result of having to use the cloud’s resources [63].

The work in this thesis proposes key management techniques that significantly reduce

computation and communication costs for mobile users, while conservatively considering

the cloud server to be untrusted. The mobile cloud applications being supported are

forward-looking in that they are highly collaborative in nature, and depend upon data

outsourcing and sharing; such applications differ from existing web-based systems that

utilize a trusted server and entail one-to-one exchange of information. Furthermore, the

thesis proposes how to deal effectively with additional important facets of cloud usage such

as privacy of information retrieved from public databases in cloud systems. Many optional

variants are presented throughout to support different cloud architectures, capabilities and

classifications of users, as well as security attributes of data. In all cases, algorithms have

been validated and benchmarked on popular smartphones and cloud systems in use today,

which is often not the case with other existing works. It is imperative to conduct tests on

actual device hardware, as performance factors such as throughput are difficult to simulate

accurately, and for sound conclusions to be drawn as a result. Furthermore, scalability

simulations have been run that extrapolate and help assess the viability of some of the

techniques beyond a small testbed of devices. Thus, the thesis presents viable and realistic

solutions for a significant amount of important use cases in mobile cloud computing.

147

CHAPTER 8. CONCLUSIONS

8.2 Review of Contributions

The following contributions have been made in this thesis, with reference to the proposals

and results detailed in previous chapters:

1. In Chapter 4, a novel solution is proposed that entails a key management scheme

based on re-encryption that effectively utilizes the cloud for the most intensive cryp-

tographic computation while preserving the confidentiality of data; other solutions

rely upon a less scalable trusted third-party that acts as an intermediary in requests.

Novel aspects are introduced to support a scalable and dynamic user population, such

as a versioning array, key material sharing tactics by users, and intelligent timing of

re-encryptions. A cloud-based prototype has been built to provide real world data

and demonstrate the viability of the approach.

2. In Chapter 5, a protocol for outsourcing data storage to a cloud provider in secure

fashion is provided. Authorized users qualify for access through possession of the

right attributes without arbitration by the data owner. Unlike other attribute-based

techniques, the protocol delegates computation and requests to a cloud provider

or trusted authority. Responsibility over key generation is divided between a mobile

data owner and a trusted authority; the owner is relieved of the highest computational

burden. Additional security is provided through a group keying mechanism where the

data owner controls access based on the distribution of an additional secret key; this

additional security measure is an optional variant applicable to highly sensitive data

subject to frequent access, resulting in a unique hybrid approach. Re-encryption

permits efficient revocation of users; it does not require removal of attributes and

subsequent key regeneration, and may be administered by a trusted authority without

involvement of the data owner. Real-world benchmarks have been measured on a

popular smartphone and cloud system, and calibrated simulations have been run to

assess the scalability potential of the scheme.

3. In Chapter 6, the cloud’s centralized data storage facility is used in novel fashion to

store encryption key material as shares such that the provider cannot use them to

decode user data also stored in the cloud. Unlike other key sharing techniques, the

proposal makes use of the cloud’s economical storage cost to maintain key material,

and to degrade it over time, so that the cost of key re-generation is minimized. The

148

CHAPTER 8. CONCLUSIONS

protocol uniquely exploits self-eroding key material in the cloud to achieve highly

scalable access management for mobile users. The protocol has been implemented

on a mobile cloud prototype, and a separate simulation program has demonstrated

the effects of various key allocation and removal strategies in a realistic environment

in which a large and dynamic mobile user population is modelled.

4. In Chapter 7, a novel hybrid technique is proposed that integrates location cloak-

ing and private information retrieval in the context of a location-based service that

leverages public data stored in the cloud. The proposal has been implemented on

a client-server as well as mobile device hardware to determine its practicality in a

resource-constrained environment. Users can achieve a good compromise between

privacy and computational efficiency with the proposed technique unlike other ex-

isting location-based service proposals that seek to provide privacy guarantees. In

particular, a trusted third-party is not needed to provide a cloaking function.

8.3 Future Work

Significant opportunities exist for advancing the research described in this thesis. Some

suggested directions are presented, with reference to the work already described:

1. In the proposed scheme in Chapter 4, although the focus of the protocol is on data

confidentiality, data integrity may be provided through the use of digital signaures or

a similar mechanism to achieve a holistic security solution in case the cloud provider

is deemed less trustworthy. Also, a hierarchical access control mechanism could be

found to support different user classes and privileges. Furthermore, the appropriate

timing of re-encryption activity in the cloud could be studied.

2. In the proposed scheme in Chapter 5, if a secret group key is utilized, it may be advan-

tageous for a trusted manager to compute new key versions and re-encryption keys,

and manage their storage and distribution. A suitable key versioning mechanism is

suggested for this purpose, such as the one found in Chapter 4.

3. In the proposed scheme in Chapter 6, various additional heuristics for key share

deletion may be explored, such as performing key re-generation functions in the

149

CHAPTER 8. CONCLUSIONS

cloud during cheaper off-peak hours. Additionally, key shares may be deleted not

based on the passage of time, but rather, based on the number of users that have

left the authorized user set since the last deletion event; this practice may be more

applicable for smaller populations.

4. In the proposed scheme in Chapter 7, the general scenario where the user retrieves

all of the POIs that belong to the VHC cell of interest could be modified. The user

could be allowed expand the search for POIs by searching in a broader geographical

area through an additional query, or the user could request POIs for all of the VHC

cells within a geographic grid cell to obtain useful results. Applicability of the scheme

to other application domains such as multimedia content could also be studied.

Although the use of data encryption appears to counteract the economic advantages

of running applications in an open and scalable manner in the cloud, it is a concession

made to prevent an untrusted cloud provider from learning any confidential information.

Operations by cloud applications on encrypted data, such as indexing and searching, is

an open research problem. Fully homomorphic encryption schemes have been proposed

that seemingly make this possible [43]; although they are still largely impractical, they

show promise. Furthermore, there is recent work on practical means of searching through

encrypted data stored in clouds based on fuzzy keyword search techniques [72, 95].

Finally, it would be interesting to apply the techniques proposed in this thesis to various

real-world mobile cloud applications to gauge their performance on realistic workloads and

user populations.

150

APPENDICES

151

Appendix A

Mobile and Cloud Computing Costs

Introduction

The techniques presented in this thesis strive to minimize energy consumption for

mobile device users; the importance of doing so is demonstrated in Section A.1. An-

other goal is conserving computation on a cloud computing server; although it is scalable,

its computational workload may be substantial and incur expenses for the client, as shown

in Section A.2. This appendix provides justification for optimizing these factors.

A.1 Mobile Device Energy Consumption

A useful consideration in security cost estimation is energy usage from the exchange of com-

munications. Smartphones consume considerable energy when transmitting and receiving,

as compared to their idle states. In the case of a mobile device operating in the 3G network

mode, current draw is approximately 100 mA in idle state, as measured on an HP iPAQ

smartphone [99]. The same study also found that when transmitting, current draw peaks

at approximately 300 mA on ramp-up, with an energy tail of approximately an average of

200 mA sustained for an additional 16 seconds, resulting in a considerable aggregate drain.

This is due to the fact that a 3G wireless radio is maintained in high-power active state

by the network to maximize responsiveness and minimize the signalling costs of additional

transmissions. Similarly, another study of energy consumption was conducted on Nokia

152

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

N95 phones, capable of HSDPA/UMTS and also operating in 3G mode [11]. It was found

that nearly 60% of energy, the so-called tail energy, is wasted in high-power states after

completing a transfer, while the initial ramp energy is small; the design motivation is to

reduce ramp-up delay in subsequent transfers. In comparison, the older and slower GSM

network operating mode is characterized by a tail time that is half that of the 3G mode.

Uploads were found to consume more energy than downloads; for example, the transfer

energy for uploads is nearly 30% greater, for 100 KB transfers [11].

Equation A.1 describes the energy consumption in a single upload request from a 3G

mobile device:

Etotal = R ·
[
S(M)

T
· tpeak · Cpeak + ttail · Ctail

]
(A.1)

where R is the number of requests, S(M) is the size of each wireless request, T is the

throughput, tpeak and ttail are the ramp-up and high-power state durations, respectively,

and Cpeak and Ctail are the peak and tail current draws, respectively. Figure A.1 illustrates

the components of energy consumption described.

Consider an example of the energy consumption of a mobile device with a typical

throughput of 1200 kbps on an HSDPA 3G network; this rate represents a realistic through-

put as determined in a mobile driving test of HSDPA downloads on a real network, per-

formed by Ericsson [34,99]. Assume an average capacity of 1200 mAh for a typical smart-

phone battery. For instance, the Apple iPhone 3GS includes an internal battery with a

capacity of 1219 mAh. Therefore, total battery consumption in mAh for a transfer request

is as follows:

Etotal = R ·

[
S(M) · 300mA

1200kb
s
· 3600 s

h

+
16s · 200mA

3600 s
h

]
Etotal = R ·

[
S(M) · 6.94 · 10−5 + 8.89 · 10−1

]
mAh

If the user initiates 100 requests of 1 MB each per day, such that:

R = 100, S(M) = 1MB

then the daily energy consumption is:

Etotal = 100 ·
[
1 · 103 · 6.94 · 10−5 + 8.89 · 10−1

]
mAh = 95.83mAh = 345C

153

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

Figure A.1: The energy consumption of a single transmission on a mobile device, in C
h

over a span of time (where 3.6C = 1mAh), illustrating the initial energy ramp-up during

packet transmission, followed by the tail of the high-energy state.

154

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

If this energy consumption is doubled to account for the receipt of responses or messages

from the cloud, then the total resultant energy consumption for radio communication alone

represents a significant 16.0% of a typical smartphone battery; this figure does not include

the energy cost of processing messages and storing them to flash memory. Given these

characteristics of energy consumption, it is advantageous to limit the number of small

transfers on mobile phones, each of which incur high overhead, in any security protocol.

In [11], it is suggested that scheduling changes can occur. For instance, transmissions

may be scheduled together in delay-tolerant applications so that the time spent in the high

power state is minimized. In addition, applications may prefetch data to minimize the

total number of transactions. Reduction of message traffic is a key goal in this work.

A.2 Cloud Server Cryptographic Workload

Another factor in cost estimation is the amount of cryptographic processing. To determine

the workload on the server for a cloud application serving a large user population, assume

a homogeneous stochastic Poisson process defined in Equation A.2:

P [(N(t+ τ)−N(t)) = k] =
(λτ)ke−λτ

k!
for k = 0, 1, ..., (A.2)

where λ is the expected number of elements, k is the number of events in the time interval

(t, t + τ] and λ is the expected number of elements per unit time. In the context of this

study, the elements are the number of users of the cloud application, and the events are

the requests that they initiate against the cloud application.

Consider an example of a workload calculation for an authentication server deployed

in the cloud; assume appropriate values for the parameters in the cloud usage scenario

as found in Table A.1. The usage frequency is hypothetical and intended to resemble an

active cloud application user. The encryption rates are derived from published results of

Crypto++, an open-source cryptographic library [31]. Benchmark tests were conducted on

random data blocks on an Intel dual-core 1.83 GHz desktop, using the Microsoft Vista OS.

The RSA operations are based on a key length of 2048 bits, and it is assumed that blocks

of 245 bytes (256 bytes less 11 for user data) are encrypted at a time, using PKSC #1

padding. The AES operations are based on CBC (Cipher Block Chaining) mode. The tests

omit memory operations; it is expected that slower times would be achieved in practice.

155

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

Symbol Definition Assumed values in

large-scale system

U Users accessing authentication server 1 million

Accesses per user per day 10

λ Expected event rate per server 1 million requests per day

τ Time interval (maximum wait tolerated

by mobile user)

10 s

msize Average message size 1 MB

renc RSA Encryption rate using RSA 0.0787 s per MB

renc AES Encryption rate using AES 0.0092 s per MB

rdec RSA Decryption rate using RSA 2.9921 s per MB

rdec AES Decryption rate using AES 0.0092 s per MB

µ Service rate 0.5

Table A.1: The parameters for the arrivals in a cloud application.

Suppose that a single authentication server can handle up to
[

60s
renc or rdec

· µ
]

requests

per minute, assuming a maximum sustained server utilization of 0.5, to maintain respon-

siveness. Choose an interval with a duration of 10 seconds, which is assumed to be the

maximum delay tolerated by a mobile user. With an average sustainable performance of

approximately 2 s
MB

on a cryptographic operation, this equates to a rate of 2.5 requests

per interval.

Assume a global population of users U accessing a set of authentication servers A with

frequency λ, further assuming an even distribution of requests. Given Equation A.2, the

estimated probability of exceeding an authentication server’s capacity is:

P (k > 2, τ) = 97.9% for 2000 servers,

= 88.9% for 1000 servers,

= 59.2% for 500 servers

The probability mass function is shown in Figure A.2. Thus, approximately one authen-

tication server per 500 users is required to handle cryptographic operations for the entire

user population. With a more conservative allocation, the cloud will be unable to meet

the desired throughput of user requests.

If the assumption about an evenly distributed workload is modified, and it is discovered

156

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

Figure A.2: A cloud server arrival model, where a Poisson probability mass function shows

the probability of a user request against an authentication server within an acceptable

delay interval.

157

APPENDIX A. MOBILE AND CLOUD COMPUTING COSTS

that requests substantially increase at peak times, then even greater capacity in the au-

thentication centre will be needed at additional expense. In fact, it has been demonstrated

that to achieve a high degree of on-demand availability in a cloud computing system, at

least twice the number of nodes in the largest collection of nodes under study in the system

(such as the servers responsible for authentication in this example), must be made available

during a busy period [52]; this analysis is based on the modelling, using a classic Erlang

loss model, of multiple resource classes in a cloud; these classes contain different numbers

of computational nodes that can be assigned to user tasks in a cloud system. Recall that

in cloud computing, a user will pay for the use of different classes of resources to achieve a

compromise between total processing time and cost. If such an allocation of servers cannot

be achieved, then the detrimental effect of blocking can occur; an incoming authentication

request from a user will be denied or simply dropped. Note that this behaviour is unlike

that of a grid computing system, in which immediate access to the system’s computational

resources are not generally expected, and therefore requests may be queued during times

of peak processing.

There is little question that authentication operations incur a considerable computa-

tional penalty on a server. In one test, Microsoft measured the performance implications

of client authentication on ProLiant web servers [35]. The throughput, in responses per

second given a 50 user load, was approximately 10 times worse when using basic SSL au-

thentication over non-authenticated anonymous requests. As well, the response time was

approximately four times worse.

Rather than attempting to expand the capacity of the authentication centre to achieve

a cloud system with highly scalable and available security, the option exists to reduce

the number of cryptographic requests through a different user authentication and data

encryption model, such as a co-operative one that off-loads cryptographic operations from

the cloud to a trusted manager entity at increased but manageable cost to the user.

158

References

[1] “Security Guidance for Critical Areas of Focus in Cloud Computing V2.1,” Cloud

Security Alliance, Tech. Rep., December 2009.

[2] “Oracle Enterprise Transformation Solutions Series: Cloud Reference Architecture,”

Oracle, Tech. Rep., November 2012.

[3] S. S. Al-Riyami and K. G. Paterson, “Certificateless public key cryptography,” Cryp-

tology ePrint Archive, Report 2003/126, 2003, http://eprint.iacr.org/.

[4] H. S.-M. Ali Khoshgozaran and C. Shahabi, “SPIRAL, a scalable private informa-

tion retrieval approach to location privacy,” in Proceedings of the 2nd International

Workshop on Privacy-Aware Location-based Mobile Services (PALMS), 2008.

[5] Amazon, “Amazon Web Services: Overview of Security Processes,” November 2009.

[Online]. Available: http://aws.amazon.com/security

[6] ——. (2012) Amazon S3 Pricing. [Online]. Available: http://aws.amazon.com/s3/

pricing/

[7] M. J. Atallah, K. B. Frikken, and M. Blanton, “Dynamic and efficient key manage-

ment for access hierarchies,” in CCS ’05: Proceedings of the 12th ACM conference

on Computer and communications security. New York, NY, USA: ACM, 2005, pp.

190–202.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed storage,” ACM Transactions of In-

formation and System Security, vol. 9, pp. 1–30, Feb. 2006.

159

http://eprint.iacr.org/
http://aws.amazon.com/security
http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/

REFERENCES

[9] J. Baek, J. Newmarch, R. Safavi-naini, and W. Susilo, “A survey of identity-based

cryptography,” in Proc. of Australian Unix Users Group Annual Conference, 2004,

pp. 95–102.

[10] J. Baek and Y. Zheng, “Identity-Based Threshold Decryption,” in Public Key Cryp-

tography – PKC 2004, ser. Lecture Notes in Computer Science, F. Bao, R. Deng, and

J. Zhou, Eds. Springer Berlin / Heidelberg, 2004, vol. 2947, pp. 262–276.

[11] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy con-

sumption in mobile phones: a measurement study and implications for network

applications,” in Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp.

280–293.

[12] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting anonymous location queries

in mobile environments with privacygrid,” in Proceeding of the 17th international

conference on World Wide Web, New York, NY, USA, 2008, pp. 237–246.

[13] Barker, E., et al, “Recommendation for key management,” NIST, Tech. Rep. NIST

Special Publication 800-57, March 2007.

[14] M. Behrendt, B. Glasner, P. Kopp, R. Dieckmann, G. Breiter, S. Pappe, H. Kreger,

and A. Arsanjani, “Introduction and Architecture Overview: IBM Cloud Computing

Reference Architecture 2.0,” IBM, Tech. Rep., 2011.

[15] A. Beimel and Y. Stahl, “Robust information-theoretic private information retrieval,”

J. Cryptol., vol. 20, no. 3, pp. 295–321, 2007.

[16] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky: dependable

and secure storage in a cloud-of-clouds,” in Proceedings of the sixth conference on

Computer systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 31–46.

[17] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based En-

cryption,” in Proceedings of the 2007 IEEE Symposium on Security and Privacy, ser.

SP ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 321–334.

[18] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryp-

tography,” in In EUROCRYPT. Springer-Verlag, 1998, pp. 127–144.

160

REFERENCES

[19] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in

Advances in Cryptology — CRYPTO 2001, ser. Lecture Notes in Computer Science,

J. Kilian, Ed. Springer Berlin / Heidelberg, 2001, vol. 2139, pp. 213–229.

[20] J. Brodkin, “Gartner: Seven Cloud-Computing Security Risks,” Network World, July

2008.

[21] W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk, S. Gupta, and

E. A. Nabbus, “Electronic Authentication Guideline,” National Institute of Stan-

dards and Technology (NIST), Tech. Rep. Special Publication 800-63-1, December

2011.

[22] A. Chakrabarti, Grid Computing Security. Secaucus, NJ, USA: Springer-Verlag

New York, Inc, 2007.

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. Gruber, “Bigtable: A Distributed Storage System for Struc-

tured Data,” in OSDI, 2006, pp. 205–218.

[24] D. Chappell, “Introducing the Windows Azure Platform,” Microsoft, Tech. Rep.,

2009.

[25] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,”

in Proceedings of the 36th Annual Symposium on the Foundations of Computer Sci-

ence, 1995, Oct 1995, pp. 41–50.

[26] B. Chor and N. Gilboa, “Computationally private information retrieval (extended

abstract),” in STOC ’97: Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, New York, NY, USA, 1997, pp. 304–313.

[27] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by keywords,” Dept.

of Computer Science, Technion, Israel, Tech. Rep. TR CS0917, 1997.

[28] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,”

J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

161

REFERENCES

[29] C. Chow, M. F. Mokbel, and X. Liu, “A peer-to-peer spatial cloaking algorithm for

anonymous location-based service,” in Proceedings of the 14th Annual ACM interna-

tional Symposium on Advances in Geographic information Systems, New York, NY,

USA, 2006, pp. 171–178.

[30] R. Chow, M. Jakobsson, Y. Niu, E. Shi, J. Molina, R. Masuoka, and Z. Song, “Au-

thentication in the clouds: a framework and its application to mobile users,” in ACM

Cloud Computing Security Workshop (CCSW), October 8, 2010 2010.

[31] W. Dai, “Crypto++ 5.6.0 benchmarks,” March 2009. [Online]. Available:

http://www.cryptopp.com/benchmarks.html

[32] Y.-S. Dai, X. Zou, and Y. Pan, Trust and Security in Collaborative Computing.

World Scientific, 2007, vol. Volume 2 of Computer and Network Security.

[33] A. De Caro, “Java Pairing-Based Cryptography Library,” 2012. [Online]. Available:

http://libeccio.dia.unisa.it/projects/jpbc/

[34] J. Derksen, R. Jansen, M. Maijala, and E. Westerberg, “HSDPA Performance and

Evolution,” Ericsson Review, vol. No. 3, p. 117, 2006.

[35] P. Dhawan, “Performance comparison: Security design choices,” Microsoft Developer

Network, Tech. Rep., October 2002.

[36] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-generation onion

router,” in SSYM’04: Proceedings of the 13th conference on USENIX Security Sym-

posium, Berkeley, CA, USA, 2004, pp. 21–21.

[37] J.-M. Do, Y.-J. Song, and N. Park, “Attribute based proxy re-encryption for data

confidentiality in cloud computing environments,” in Computers, Networks, Systems

and Industrial Engineering (CNSI), 2011 First ACIS/JNU International Conference

on, may 2011, pp. 248 –251.

[38] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New York,

NY, USA: Springer-Verlag New York, Inc., 1985, pp. 10–18.

[39] enStratus Networks, “enStratus Security Architecture: Design of the enStratus Sys-

tem and General enStratus Security Policies,” May 2010.

162

http://www.cryptopp.com/benchmarks.html
http://libeccio.dia.unisa.it/projects/jpbc/

REFERENCES

[40] Facebook, “Statistics,” 2010. [Online]. Available: ”http://www.facebook.com/

press/info.php?statistics”

[41] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: Increasing data privacy

with self-destructing data,” in Proc. of the 18th USENIX Security Symposium, 2009.

[42] F. Gens, “IDC’s New IT Cloud Services Forecast: 2009-2013,” October 5, 2009

2009. [Online]. Available: http://blogs.idc.com/ie/

[43] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford

University, 2009.

[44] G. Ghinita, “Understanding the privacy-efficiency trade-off in location based

queries,” in SPRINGL ’08: Proceedings of the SIGSPATIAL ACM GIS 2008 In-

ternational Workshop on Security and Privacy in GIS and LBS, New York, NY,

USA, 2008, pp. 1–5.

[45] G. Ghinita, P. Kalnis, M. Kantarcioglu, and E. Bertino, “A hybrid technique for

private location-based queries with database protection,” in SSTD ’09: Proceedings

of the 11th International Symposium on Advances in Spatial and Temporal Databases.

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 98–116.

[46] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, “Private queries

in location based services: anonymizers are not necessary,” in SIGMOD ’08: Proceed-

ings of the 2008 ACM SIGMOD international conference on Management of data,

New York, NY, USA, 2008, pp. 121–132.

[47] I. Goldberg, “Percy++ project on SourceForge,” http://percy.sourceforge.net/.

[48] ——, “Improving the robustness of private information retrieval,” in SP ’07: Pro-

ceedings of the 2007 IEEE Symposium on Security and Privacy, Washington, DC,

USA, 2007, pp. 131–148.

[49] Google, “Google App Engine,” November 2009. [Online]. Available: http:

//code.google.com/appengine/

[50] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” in Proceedings of the 13th ACM Conference

163

"http://www.facebook.com/press/info.php?statistics"
"http://www.facebook.com/press/info.php?statistics"
http://blogs.idc.com/ie/
http://code.google.com/appengine/
http://code.google.com/appengine/

REFERENCES

on Computer and Communications Security, ser. CCS ’06. New York, NY, USA:

ACM, 2006, pp. 89–98.

[51] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services through

spatial and temporal cloaking,” in MobiSys ’03: Proceedings of the 1st international

conference on Mobile systems, applications and services, New York, NY, USA, 2003,

pp. 31–42.

[52] T. J. Hacker, Cloud Computing and Software Services. CRC Press, 2011, ch. Toward

a Reliable Cloud Computing Service, pp. 139–152.

[53] U. Hengartner, “Hiding location information from location-based services,” in Mobile

Data Management, 2007 International Conference on, May 2007, pp. 268–272.

[54] J. Hur and D. K. Noh, “Attribute-Based Access Control with Efficient Revocation in

Data Outsourcing Systems,” IEEE Transactions on Parallel and Distributed Systems,

vol. 22, pp. 1214–1221, 2011.

[55] IDC, “Press Release: Worldwide Converged Mobile Device (Smartphone) Market

Grows 56.7% Year Over Year in First Quarter of 2010,” May 7 2010.

[56] A. Iliev and S. W. Smith, “Protecting Client Privacy with Trusted Computing at the

Server,” IEEE Security and Privacy, vol. 3, no. 2, pp. 20–28, 2005.

[57] S. Jahid, P. Mittal, and N. Borisov, “EASiER: encryption-based access control in

social networks with efficient revocation,” in Proceedings of the 6th ACM Symposium

on Information, Computer and Communications Security, ser. ASIACCS ’11. New

York, NY, USA: ACM, 2011, pp. 411–415.

[58] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing remote

untrusted storage,” in in Proc. Network and Distributed Systems Security (NDSS)

Symposium 2003, 2003, pp. 131–145.

[59] Juniper Research, “Mobile Cloud Applications & Services: Monetising Enterprise &

Consumer Markets 2009-2014,” Juniper Research, Tech. Rep., 2010.

[60] Kallahalla, M., et al, “Plutus: Scalable secure file sharing on untrusted storage,”

in Proceedings of the 2nd USENIX Conference on File and Storage Technologies.

Berkeley, CA, USA: USENIX Association, 2003, pp. 29–42.

164

REFERENCES

[61] S. Kamara, C. Papamanthou, and T. Roeder, “CS2: A Searchable Cryptographic

Cloud Storage System,” Microsoft Research, Tech. Rep. MSR-TR-2011-58, May 2011.

[62] M. Kennedy and S. Kopp, Understanding Map Projections. ESRI (Environmental

Systems Research Institute) press, 2000.

[63] A. N. Khan, M. L. M. Kiaha, S. U. Khan, and S. A. Madani, “Towards

secure mobile cloud computing: A survey,” 2012. [Online]. Available: http:

//dx.doi.org/10.1016/j.future.2012.08.003

[64] Kim, Y., et al, “Key establishment scheme for sensor networks with low communi-

cation cost,” in Autonomic and Trusted Computing, ser. Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2007, vol. 4610, pp. 441–448.

[65] H. Krawczyk, “Secret sharing made short,” in Advances in Cryptology - CRYPTO

’93, 13th Annual International Cryptology Conference, Santa Barbara, California,

USA, August 22-26, 1993, Proceedings, ser. Lecture Notes in Computer Science, vol.

773. Springer, 1993, pp. 136–146.

[66] R. L. Krutz and R. D. Vines, ”Cloud Security: A Comprehensive Guide to Secure

Cloud Computing”. Wiley Publishing, 2010.

[67] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database,

computationally-private information retrieval,” in FOCS ’97: Proceedings of the 38th

Annual Symposium on Foundations of Computer Science, Washington, DC, USA,

1997, p. 364.

[68] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?” Computer, vol. 42,

pp. 15–20, January 2009.

[69] T. Leighton, “White Paper: Akamai and Cloud Computing: A Perspective from the

Edge of the Cloud,” Akamai, Tech. Rep., 2009.

[70] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s Inside the Cloud?

An Architectural Map of the Cloud Landscape,” in CLOUD ’09: Proceedings of

the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 23–31.

165

http://dx.doi.org/10.1016/j.future.2012.08.003
http://dx.doi.org/10.1016/j.future.2012.08.003

REFERENCES

[71] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based authentication for cloud com-

puting,” in Cloud Computing, ser. Lecture Notes in Computer Science, M. Jaatun,

G. Zhao, and C. Rong, Eds. Springer Berlin / Heidelberg, 2009, vol. 5931, pp.

157–166.

[72] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword search

over encrypted data in cloud computing,” in Proceedings of the 29th conference on

Information communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press,

2010, pp. 441–445.

[73] X. Liang, R. Lu, and X. Lin, “Ciphertext policy attribute based encryption with

efficient revocation,” University of Waterloo, Technical Report BBCR, 2011.

[74] Q. Liu, G. Wang, and J. Wu, “Clock-based proxy re-encryption scheme in unreli-

able clouds,” in Parallel Processing Workshops (ICPPW), 2012 41st International

Conference on, sept. 2012, pp. 304 –305.

[75] C. Lynch and F. O. Reilly, “Processor choice for wireless sensor networks,” in RE-

ALWSN‘05: Workshop on Real-World Wireless Sensor Networks, 2005, pp. 1–5.

[76] B. Lynn, “PBC (Pairing-Based Cryptography) Library,” 2012. [Online]. Available:

http://crypto.stanford.edu/pbc/

[77] T. Mather, “Key Management in the Cloud,” January 2010. [On-

line]. Available: https://365.rsaconference.com/blogs/tim-mather/2010/01/07/

key-management-in-the-cloud

[78] T. Mather, S. Kumaraswamy, and S. Latif, “Cloud Security and Privacy.” O’Reilly,

2009.

[79] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” October 2009.

[80] J. V. D. Merwe, D. Dawoud, and S. McDonald, “A Survey on Peer-to-Peer Key

Management for Mobile Ad Hoc Networks,” ACM Comput.Surv., vol. 39, no. 1, p. 1,

2007.

[81] Microsoft, “Press Release: Microsoft and Living PlanIT Partner to Deliver Smart

City Technology Via the Cloud,” March 2011.

166

http://crypto.stanford.edu/pbc/
https://365.rsaconference.com/blogs/tim-mather/2010/01/07/key-management-in-the-cloud
https://365.rsaconference.com/blogs/tim-mather/2010/01/07/key-management-in-the-cloud

REFERENCES

[82] Y. Ming, L. Fan, H. Jing-Li, and W. Zhao-Li, “An efficient attribute based encryp-

tion scheme with revocation for outsourced data sharing control,” in Instrumen-

tation, Measurement, Computer, Communication and Control, 2011 First Interna-

tional Conference on, 2011, pp. 516–520.

[83] S. K. Mishra and P. Sarkar, “Symmetrically private information retrieval,” in IN-

DOCRYPT ’00: Proceedings of the First International Conference on Progress in

Cryptology, London, UK, 2000, pp. 225–236.

[84] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new Casper: query processing for

location services without compromising privacy,” in VLDB ’06: Proceedings of the

32nd international conference on Very large data bases, 2006, pp. 763–774.

[85] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,” in STOC

’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,

New York, NY, USA, 1999, pp. 245–254.

[86] K. Nohl and C. Paget, “Gsm: Srsly?” Presentation at 26th Chaos Communication

Congress, Berlin, Dec. 2009.

[87] OASIS, “Key Management Interoperability Protocol (KMIP): Addressing the Need

for Standardization in Enterprise Key Management,” 2009.

[88] F. Olumofin, P. K. Tysowski, I. Goldberg, and U. Hengartner, “Achieving Efficient

Query Privacy for Location Based Services,” Centre for Applied Cryptographic Re-

search (CACR), University of Waterloo, Tech. Rep. 22, 2009.

[89] ——, “Achieving Efficient Query Privacy for Location Based Services,” in Proceed-

ings of the 10th International Conference on Privacy Enhancing Technologies, ser.

PETS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 93–110.

[90] S. Pearson, “Taking Account of Privacy when Designing Cloud Computing Services,”

in CLOUD ’09: Proceedings of the 2009 ICSE Workshop on Software Engineering

Challenges of Cloud Computing. Washington, DC, USA: IEEE Computer Society,

2009, pp. 44–52.

[91] A. Pingley, W. Yu, N. Zhang, X. Fu, and W. Zhao, “CAP: A Context-Aware Pri-

vacy Protection System For Location-Based Services,” in 29th IEEE International

Conference on Distributed Computing Systems, Jun 2009.

167

REFERENCES

[92] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang, “Enabling Security

in Cloud Storage SLAs with CloudProof,” in USENIX Annual Technical Conference,

2011.

[93] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protect-

ing confidentiality with encrypted query processing,” in Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles, ser. SOSP ’11. New York,

NY, USA: ACM, 2011, pp. 85–100.

[94] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public cloud,” Internet

Computing, IEEE, vol. 16, no. 1, pp. 69–73, 2012.

[95] ——, “Toward secure and effective data utilization in public cloud,” vol. 26, no. 6,

2012, pp. 69–74.

[96] F. Saint-Jean, “Java implementation of a single-database computationally symmetric

private information retrieval (CSPIR) protocol,” Yale University, New Haven, CT,

USA, Technical Report YALEU/DCS/TR-1333A, 2005.

[97] B. Schneier, Applied Cryptography: Protocols, algorithms, and source code in C.

Wiley, 1994.

[98] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,

1979.

[99] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M. Belding,

“Cool-Tether: Energy Efficient On-the-fly WiFi Hot-spots using Mobile Phones,”

in CoNEXT ’09: Proceedings of the 5th international conference on Emerging net-

working experiments and technologies. New York, USA: ACM, 2009, pp. 109–120.

[100] Y. Shin, M. Gupta, and S. Myers, “A Study of the Performance of SSL on PDAs,”

in Proceedings of IEEE INFOCOM Global Internet Symposium (GI), 2009, pp. 1–6.

[101] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 3rd ed.

McGraw-Hill, 1999.

[102] R. Sion and B. Carbunar, “On the computational practicality of private information

retrieval,” in Proceedings of the Network and Distributed Systems Security Sympo-

sium, 2007.

168

REFERENCES

[103] J. P. Snyder, Flattening the Earth, two thousand years of map projections. University

of Chicago Press, 1993.

[104] A. Solanas, J. Domingo-Ferrer, and A. Mart́ınez-Ballesté, “Location privacy in

location-based services: Beyond TTP-based schemes,” in PiLBA, ser. CEUR Work-

shop Proceedings, C. Bettini, S. Jajodia, P. Samarati, and X. S. Wang, Eds., vol.

397, 2008.

[105] A. Stern, “Update From Amazon Regarding Friday’s S3 Downtime,”

Febuary 16, 2008 2008. [Online]. Available: http://www.centernetworks.com/

amazon-s3-downtime-update

[106] A. Tassanaviboon and G. Gong, “OAuth and ABE based authorization in semi-

trusted cloud computing: aauth,” in Proceedings of the second international workshop

on Data intensive computing in the clouds, ser. DataCloud-SC ’11. New York, NY,

USA: ACM, 2011, pp. 41–50.

[107] T. Tiemens. (2012, May) Shamir Secret Sharing in Java. [Online]. Available:

http://sourceforge.net/projects/secretsharejava/

[108] P. K. Tysowski and M. A. Hasan, “Re-Encryption-Based Key Management Towards

Secure and Scalable Mobile Applications in Clouds,” Cryptology ePrint Archive,

Tech. Rep. 668, 2011.

[109] ——, “Towards Secure Communication for Highly Scalable Mobile Applications in

Cloud Computing Systems,” Centre for Applied Cryptographic Research (CACR),

University of Waterloo, Tech. Rep. 33, 2011.

[110] ——, “Cloud-Hosted Key Sharing Towards Secure and Scalable Mobile Applications

in Clouds,” in 2nd International Conference on Computing, Networking and Com-

munications (ICNC), 2013.

[111] ——, “Hybrid Attribute-Based Encryption and Re-Encryption for Scalable Mobile

Applications in Clouds,” Centre for Applied Cryptographic Research (CACR), Uni-

versity of Waterloo, Tech. Rep. 13, 2013.

[112] P. K. Tysowski, P. Zhao, and K. Naik, “Peer To Peer Content Sharing on Ad Hoc Net-

works of Smartphones,” in Wireless Communications and Mobile Computing Con-

ference (IWCMC), 2011 7th International, July 2011, pp. 1445 –1450.

169

http://www.centernetworks.com/amazon-s3-downtime-update
http://www.centernetworks.com/amazon-s3-downtime-update
http://sourceforge.net/projects/secretsharejava/

REFERENCES

[113] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-

grained access control in cloud storage services,” in Proceedings of the 17th ACM

conference on Computer and communications security, ser. CCS ’10. New York,

NY, USA: ACM, 2010, pp. 735–737.

[114] J. Wang, “Java Realization for Ciphertext-Policy Attribute-Based Encryption,”

2012. [Online]. Available: http://github.com/wakemecn

[115] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesystem,” in Pro-

ceedings of the 4th ACM international workshop on Storage security and survivability,

ser. StorageSS ’08. New York, NY, USA: ACM, 2008, pp. 21–26.

[116] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key

graphs,” IEEE/ACM Trans. Netw., vol. 8, pp. 16–30, February 2000.

[117] T. Xu and Y. Cai, “Location anonymity in continuous location-based services,” in

Proceedings of the 15th Annual ACM international Symposium on Advances in Ge-

ographic information Systems, New York, NY, USA, 2007, pp. 1–8.

[118] L. Yan, C. Rong, and G. Zhao, “Strengthen Cloud Computing Security with Federal

Identity Management Using Hierarchical Identity-Based Cryptography,” in Cloud-

Com ’09: Proceedings of the 1st International Conference on Cloud Computing.

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 167–177.

[119] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained

data access control in cloud computing,” in Proceedings of the 29th conference on

Information communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press,

2010, pp. 534–542.

[120] ——, “Attribute based data sharing with attribute revocation,” in Proceedings of the

5th ACM Symposium on Information, Computer and Communications Security, ser.

ASIACCS ’10. New York, NY, USA: ACM, 2010, pp. 261–270.

[121] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved data self-destruction

for protecting data privacy,” in Cloud Computing Technology and Science (Cloud-

Com), 2010 IEEE Second International Conference on, 2010, pp. 521–528.

170

http://github.com/wakemecn

REFERENCES

[122] M. Zhang, C. Carroll, and A. Chan, “Analysis of is-95 cdma voice privacy,” in Selected

Areas in Cryptography, ser. Lecture Notes in Computer Science, D. Stinson and

S. Tavares, Eds. Springer Berlin / Heidelberg, 2001, vol. 2012, pp. 1–13.

[123] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data sharing over un-

trusted cloud storage providers,” in Proceedings of the 2010 IEEE Second Interna-

tional Conference on Cloud Computing Technology and Science, ser. CLOUDCOM

’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 97–103.

[124] G. Zhong and U. Hengartner, “A distributed k-anonymity protocol for location pri-

vacy,” in Proceedings of Seventh IEEE International Conference on Pervasive Com-

puting and Communication (PerCom 2009). Galveston, TX, 2009, pp. 253–262.

[125] P. Zimmermann, “Pretty good privacy: public key encryption for the masses,” in

Building in big brother, L. J. Hoffman, Ed. New York, NY, USA: Springer-Verlag

New York, Inc., 1995, pp. 93–107.

171

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Cloud Computing Services
	Functional Classification of Cloud Services
	Advantages of Cloud Computing

	Security Issues in Clouds
	Security Problem Definition
	Impact of Cloud Features on Security

	Overview of Contributions
	Outline of Thesis

	Background
	Cloud Organization
	Division of Resources
	Network Organization

	Cloud System Model
	Internal Cloud Architecture
	Network System Model

	Applications of Mobile Cloud Computing
	Use of Resource-Constrained Devices
	Use Cases in Mobile Cloud Computing

	Cloud Computing Trust Issues and Threats
	Adversary and Threat Model
	Security Issues in Grid Computing

	Design Factors for Cloud Security
	General Security Features
	Key Management Functions
	Comparison to Other Systems

	Performance Assessment Criteria

	Related Work on Key Management
	Body of Academic Literature
	Public Key Encryption
	Identity-Based Encryption
	Hierarchical Access Control
	Distributed Key Management
	Proxy Re-Encryption
	Encrypted File Storage
	Secure Cloud Storage

	Security Features in Commercial Clouds
	Summary

	Re-Encryption-Based Key Management
	Introduction
	Related Work on Proxy Re-Encryption
	Manager-Based Re-Encryption
	Introduction
	System Operation
	Discussion
	Novel Variants

	Cloud-Based Re-Encryption
	Introduction
	System Operation
	Discussion
	Variant

	Evaluation and Implementation of Models
	Qualitative Cost Comparison
	Performance Measurement

	Summary

	Hybrid Attribute- and Re-Encryption-Based Key Management
	Introduction
	Related Work on Attribute-Based Encryption
	Proposed Algorithm
	Optional Features
	Discussion
	Implementation
	Performance Measurement
	Simulation

	Summary

	Cloud-Hosted Key Sharing
	Introduction
	Related Work on Key Sharing
	Proposed Algorithm
	Main Technique
	Discussion and Analysis

	Variants
	Implementation
	Performance Measurement
	Simulation

	Summary

	Query Privacy for Location-Based Services
	Introduction
	Privacy Requirements of Location-Based Services
	Requirements and Assumptions

	Related Work on Location Privacy and PIR
	Location Cloaking Techniques
	PIR-Based Techniques
	Hybrid Techniques

	Proposed Solution
	Level of Privacy
	Pre-Processing and Location Cloaking
	Variable Level of Privacy
	Algorithm

	Implementation
	Performance Measurement and Simulation
	Discussion

	Summary

	Conclusions
	Significance of Research
	Review of Contributions
	Future Work

	APPENDICES
	Mobile and Cloud Computing Costs
	Mobile Device Energy Consumption
	Cloud Server Cryptographic Workload

	References

