2,042 research outputs found

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    Random Access in C-RAN for User Activity Detection with Limited-Capacity Fronthaul

    Full text link
    Cloud-Radio Access Network (C-RAN) is characterized by a hierarchical structure in which the baseband processing functionalities of remote radio heads (RRHs) are implemented by means of cloud computing at a Central Unit (CU). A key limitation of C-RANs is given by the capacity constraints of the fronthaul links connecting RRHs to the CU. In this letter, the impact of this architectural constraint is investigated for the fundamental functions of random access and active User Equipment (UE) identification in the presence of a potentially massive number of UEs. In particular, the standard C-RAN approach based on quantize-and-forward and centralized detection is compared to a scheme based on an alternative CU-RRH functional split that enables local detection. Both techniques leverage Bayesian sparse detection. Numerical results illustrate the relative merits of the two schemes as a function of the system parameters.Comment: 6 pages, 3 figures, under revision in IEEE Signal Processing Letter

    Inferring Sparsity: Compressed Sensing using Generalized Restricted Boltzmann Machines

    Get PDF
    In this work, we consider compressed sensing reconstruction from MM measurements of KK-sparse structured signals which do not possess a writable correlation model. Assuming that a generative statistical model, such as a Boltzmann machine, can be trained in an unsupervised manner on example signals, we demonstrate how this signal model can be used within a Bayesian framework of signal reconstruction. By deriving a message-passing inference for general distribution restricted Boltzmann machines, we are able to integrate these inferred signal models into approximate message passing for compressed sensing reconstruction. Finally, we show for the MNIST dataset that this approach can be very effective, even for M<KM < K.Comment: IEEE Information Theory Workshop, 201

    Approximate Message Passing with Restricted Boltzmann Machine Priors

    Full text link
    Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernouilli prior which utilizes a Restricted Boltzmann Machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple iid priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance

    Blind Sensor Calibration using Approximate Message Passing

    Full text link
    The ubiquity of approximately sparse data has led a variety of com- munities to great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them on real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal ac- quisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measures. Cal-AMP shares the scalability of approximate message passing, allowing to treat big sized instances of these problems, and ex- perimentally exhibits a phase transition between domains of success and failure.Comment: 27 pages, 9 figure
    • …
    corecore