2,324 research outputs found

    Decentralized Hybrid Formation Control of Unmanned Aerial Vehicles

    Full text link
    This paper presents a decentralized hybrid supervisory control approach for a team of unmanned helicopters that are involved in a leader-follower formation mission. Using a polar partitioning technique, the motion dynamics of the follower helicopters are abstracted to finite state machines. Then, a discrete supervisor is designed in a modular way for different components of the formation mission including reaching the formation, keeping the formation, and collision avoidance. Furthermore, a formal technique is developed to design the local supervisors decentralizedly, so that the team of helicopters as whole, can cooperatively accomplish a collision-free formation task

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    Get PDF
    Recent years have seen rapidly growing interest in the development of networks of multiple unmanned aerial vehicles (U.A.V.s), as aerial sensor networks for the purpose of coordinated monitoring, surveillance, and rapid emergency response. This has triggered a great deal of research in higher levels of planning and control, including collaborative sensing and exploration, synchronized motion planning, and formation or cooperative control. In this paper, we describe our recently developed experimental testbed at the University of Pennsylvania, which consists of multiple, fixed-wing UAVs. We describe the system architecture, software and hardware components, and overall system integration. We then derive high-fidelity models that are validated with hardware-in-the-loop simulations and actual experiments. Our models are hybrid, capturing not only the physical dynamics of the aircraft, but also the mode switching logic that supervises lower level controllers. We conclude with a description of cooperative control experiments involving two fixed-wing UAVs

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation
    • …
    corecore