87 research outputs found

    Passive Control Architectures for Collaborative Virtual Haptic Interaction and Bilateral Teleoperation over Unreliable Packet-Switched Digital Network

    Get PDF
    This PhD dissertation consists of two major parts: collaborative haptic interaction (CHI) and bilateral teleoperation over the Internet. For the CHI, we propose a novel hybrid peer-to-peer (P2P) architecture including the shared virtual environment (SVE) simulation, coupling between the haptic device and VE, and P2P synchronization control among all VE copies. This framework guarantees the interaction stability for all users with general unreliable packet-switched communication network which is the most challenging problem for CHI control framework design. This is achieved by enforcing our novel \emph{passivity condition} which fully considers time-varying non-uniform communication delays, random packet loss/swapping/duplication for each communication channel. The topology optimization method based on graph algebraic connectivity is also developed to achieve optimal performance under the communication bandwidth limitation. For validation, we implement a four-user collaborative haptic system with simulated unreliable packet-switched network connections. Both the hybrid P2P architecture design and the performance improvement due to the topology optimization are verified. In the second part, two novel hybrid passive bilateral teleoperation control architectures are proposed to address the challenging stability and performance issues caused by the general Internet communication unreliability (e.g. varying time delay, packet loss, data duplication, etc.). The first method--Direct PD Coupling (DPDC)--is an extension of traditional PD control to the hybrid teleoperation system. With the assumption that the Internet communication unreliability is upper bounded, the passive gain setting condition is derived and guarantees the interaction stability for the teleoperation system which interacts with unknown/unmodeled passive human and environment. However, the performance of DPDC degrades drastically when communication unreliability is severe because its feasible gain region is limited by the device viscous damping. The second method--Virtual Proxy Based PD Coupling (VPDC)--is proposed to improve the performance while providing the same interaction stability. Experimental and quantitative comparisons between DPDC and VPDC are conducted, and both interaction stability and performance difference are validated

    Position / force control of systems subjected to communicaton delays and interruptions in bilateral teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 65-68)Text in English; Abstract: Turkish and Englishix, 76 leavesTeleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedback from the remote environment is generated. Thus, the operator can handle the task as if the operator is in the remote environment relying on the relevant feedback. Since teleoperation deals with systems controlled from a distance, time delays and package losses in transmission of information are present. These communication failures affect the human perception and system stability, and thus, the ability of operator to handle the task successfully. The objective of this thesis is to investigate and develop a control algorithm, which utilizes model mediated teleoperation integrating parallel position/force controllers, to compensate for the instability issues and excessive forcing applied to the environment arising from communication failures. Model mediation technique is extended for three-degrees-of-freedom teleoperation and a parallel position/force controller, impedance controller, is integrated in the control algorithm. The proposed control method is experimentally tested by using Matlab Simulink blocksets for real-time experimentation in which haptic desktop devices, Novint Falcon and Phantom Desktop are configured as master and slave subsystems of the bilateral teleoperation. The results of these tests indicate that the stability and passivity of proposed bilateral teleoperation systems are preserved during constant and variable time delays and data losses while the position and force tracking test results provide acceptable performance with bounded errors

    Passive set-position modulation approach for haptics with slow, variable, and asynchronous update

    Full text link
    We consider the following problem in haptics: information update from the virtual world is slow w.r.t. the local servo-loop rate of the haptic device, and the information transmission/update between the haptic device and the virtual world is of variable rate and/or asyn-chronous. For this, we propose a novel control framework, that, by relying on our recently proposed passive set-position modulation (PSPM) and discrete-time passive non-iterative integrators, enables us to enforce two-port hybrid (i.e. continuous-discrete) passivity for such slow and variable/asynchronous haptics as well as to separate the virtual world simulation design from the device’s servo-loop tuning. Relevant experimental results are also presented.

    Posture-Dependent Projection-Based Force Reflection Algorithms for Bilateral Teleoperators

    Get PDF
    It was previously established that the projection-based force reflection (PBFR) algorithms improve the overall stability of a force reflecting teleoperation system. The idea behind the PBFR algorithms is to identify the component of the reflected force which is compensated by interaction with the operator\u27s hand, and subsequently attenuate the residual component of the reflected force. If there is no a priori information regarding the behaviour of the human operator, the PBFR gain is selected equal to sufficiently small constant in order to guarantee stability for a wide range of human operator responses. Small PBRF gains, however, may deteriorate the transparency of a teleoperator system. In this thesis, a new method for selecting the PBFR gain is introduced which depends on human postures. Using an online human posture estimation, the introduced posture-dependent PBFR algorithm has been applied to a teleoperation system with force feedback. It is experimentally demonstrated that the developed method for selection of the PBFR gain based on human postures improves the transparency of the teleoperator system while the stability is preserved. Finally, preliminary results that deal with an extension of the developed methods towards a more realistic model of the human arm with 4 degrees of freedom and three dimensional movements are presented

    Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment

    Get PDF
    Haptic interaction with virtual environments is currently a major and growing area of research with a number of emerging applications, particularly in the field of robotics. Digital implementation of the virtual environments, however, introduces errors which may result in instability of the haptic displays. This thesis deals with experimental investigation of the Projection-Based Force Reflection Algorithms (PFRAs) for haptic interaction with virtual environments, focusing on their performance in terms of stability and transparency. Experiments were performed to compare the PFRA in terms of performance for both non-delayed and delayed haptic interactions with more conventional haptic rendering methods, such as the Virtual Coupling (VC) and Wave Variables (WV). The results demonstrated that the PFRA is more stable, guarantees higher levels of transparency, and is less sensitive to decrease in update rates

    Robustness analysis and controller synthesis for bilateral teleoperation systems via IQCs

    Get PDF

    A Stable and Transparent Framework for Adaptive Shared Control of Robots

    Get PDF
    In mixed-initiative haptic shared control of robots, humans and automatic control system work in parallel. The commands to the robot are a weighted sum of forces from these two agents. This thesis develops control methods to improve the force feedback performance for mixed-initiative shared teleoperation and to adapt the control authority between human and automatic control system in a stable manner even in the presence of communication delays. All methods are validated on real robotic hardware

    Control of Networked Robotic Systems

    Get PDF
    With the infrastructure of ubiquitous networks around the world, the study of robotic systems over communication networks has attracted widespread attention. This area is denominated as networked robotic systems. By exploiting the fruitful technological developments in networking and computing, networked robotic systems are endowed with potential and capabilities for several applications. Robots within a network are capable of connecting with control stations, human operators, sensors, and other robots via digital communication over possibly noisy channels/media. The issues of time delays in communication and data losses have emerged as a pivotal issue that have stymied practical deployment. The aim of this dissertation is to develop control algorithms and architectures for networked robotic systems that guarantee stability with improved overall performance in the presence of time delays in communication. The first topic addressed in this dissertation is controlled synchronization that is utilized for networked robotic systems to achieve collective behaviors. Exploiting passivity property of individual robotic systems, the proposed control schemes and interconnections are shown to ensure stability and convergence of synchronizing errors. The robustness of the control algorithms to constant and time-varying communication delays is also studied. In addition to time delays, the number of communication links, which prevents scalability of networked robotic systems, is another challenging issue. Thus, a synchronizing control with practically feasible constraints of network topology is developed. The problem of networked robotic systems interacting with human operators is then studied subsequently. This research investigates a teleoperation system with heterogeneous robots under asymmetric and unknown communication delays. Sub-task controllers are proposed for redundant slave robot to autonomously achieve additional tasks, such as singularity avoidance, joint angle limits, and collision avoidance. The developed control algorithms can enhance the efficiency of teleoperation systems, thereby ameliorating the performance degradation due to cognitive limitations of human operator and incomplete information about the environment. Compared to traditional robotic systems, control of robotic manipulators over networks has significant advantages; for example, increased flexibility and ease of maintenance. With the utilization of scattering variables, this research demonstrates that transmitting scattering variables over delayed communications can stabilize an otherwise unstable system. An architecture utilizing delayed position feedback in conjunction with scattering variables is developed for the case of time-varying communication delays. The proposed control architecture improves tracking performance and stabilizes robotic manipulators with input-output communication delays. The aforementioned control algorithms and architectures for networked robotic systems are validated via numerical examples and experiments
    corecore