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Abstract
Haptic interaction with virtual environments is currently a major and growing area of

research with a number of emerging applications, particularly in the field of robotics. Dig-
ital implementation of the virtual environments, however, introduces errors which may
result in instability of the haptic displays. This thesis deals with experimental investigation
of the Projection-Based Force Reflection Algorithms (PFRAs) for haptic interaction with
virtual environments, focusing on their performance in terms of stability and transparency.
Experiments were performed to compare the PFRA in terms of performance for both non-
delayed and delayed haptic interactions with more conventional haptic rendering methods,
such as the Virtual Coupling (VC) and Wave Variables (WV). The results demonstrated
that the PFRA is more stable, guarantees higher levels of transparency, and is less sensitive
to decrease in update rates.

Keywords: Haptic Systems, Projection based Force Reflection Algorithm
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Chapter 1

Introduction

1.1 Introduction

According to Robot Institute of America (RIA), the official definition of a robot is as fol-

lows [3]:

A robot is a reprogrammable manipulator designed to move materials, parts, tools, or spe-

cialized devices through variable programmed motion for the performance of a variety of

tasks.

However, in the current context of robotics, this definition, while representing several in-

herent qualities of a robot, has become severely restricted. A robot can now be remotely

controlled to perform exploration in undersea environments and in space, conveys infor-

mation about a remote location to a user and can be used as a tool to perform surgical

operations. Telerobotics has revolutionized the applicability of robots in a wide variety of

fields. One of the major requirements of a telerobot is to convey information about the

nature (texture, stiffness, color, temperature, etc.) of a remote environment to the user.

The human sense organs accept information about the surrounding environment for pro-

cessing by the brain. In a similar manner, visual, auditory, haptic, olfactory and gustatory

1



Chapter 1. Introduction 2

displays provide means of interaction between humans and virtual environments created by

a computer system. While focus has been primarily on developing visual and auditory dis-

plays, haptics has the potential to improve the human-computer interaction by introducing

the sense of touch. In the last decade, haptics has found application in molecular docking,

manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting,

among other areas. Haptics has enabled the active exploration of the virtual world [4].

1.2 Haptics

Haptics originates from the Greek word haptikos, which means ‘to grasp’or ‘perceive’,

and was coined by psychophysicists to label the subfield of their study in human touch

based perception and manipulation. Since the 1970s, in the field of robotics, it refers to

the modality of touch and may include sense of heat and surface texture of an object. Hap-

tic perception ranges from minor interactions in everyday life to social communications.

Researchers in the field of haptics are engaged in the development of devices and associ-

ated software that allow users to sense and interact with three dimensional objects rendered

in the virtual environment. Haptics can be used to improve the users’ experience during

interaction with the virtual environment in the following aspects [5]:

a) Improved usability;

b) Enhanced realism;

c) Restoration of mechanical feel.

The sense of touch can distinguish between surface structures. Although skin is the most

sensitive organ, additional receptors for haptic perception are located within muscles and

joints. These receptors provide kinaesthetic perception while those located on the skin

provide tactile perception. Tactile receptors can perceive forces with magnitudes in the

range from 5mN to 5N, detect surface textures with small variations from 1µm to 1mm,

and discriminate frequencies ranging from 10Hz to 1000Hz, while kinaesthetic receptors
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can detect much larger forces with frequencies usually not higher than 10Hz [6]. The

combination of the responses from these two types of receptors allows humans to perform

coordinated movements and interact with their surrounding environment.

A wide variety of haptic devices have been designed based on their area of application and

the principle of operation. Force feedback techniques have received particular attention

from researchers. An alternative approach to force feedback is vibrotactile display where

multiple small forces are applied to the fingertips. Another technique to create a haptic

perception is to use a temperature display where both environmental temperature and the

sensation of heat or cold generated when grasping or colliding with an object can be simu-

lated. One more type of device is the 2D haptic device where 2DOF force feedback planar

device can be moved by the user to interact with edges of shapes in images.

1.2.1 Architecture of Virtual Reality Simulation

In order to simulate real or imaginary scenes that users can interact with, virtual reality

(VR) applications allow humans to use their senses to discern and experience different

properties of the virtual environment. Usually a subset of these senses are used, typically

visual, auditory and touch are incorporated in such systems. A basic VR application has

the following elements [7]:

a) Simulation engine;

b) Visual, auditory and haptic rendering algorithms;

c) Transducers.

Haptic perception is achieved when the user holds or wears a haptic device, which

conveys information related to interaction with the virtual environment. While audio and

video feedback is unidirectional from the engine to the user, haptic communication is bidi-

rectional.
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Figure 1.1: A basic architecture for virtual reality application incorporating audio, visual

and haptic feedback [7]

1.2.2 Haptic Interface Devices

Haptic interface devices typically behave like small robots that directly interact with the

human operator. They can be classified based on various features [7]:

a) Grounding locations, e.g. force feedback gloves and ground based devices;

b) Intrinsic mechanical behaviour: impedance and admittance;

c) Number of degree-of-freedom (DOF): number of possible dimensions of move-

ment or force exchange.

In order to successfully represent touch and generate haptic perception, all haptic devices

are expected to have the following desirable characteristics [7]:

a) Low back drive inertia;

b) Minimal constraints;

c) Symmetric inertia, friction, stiffness and frequency response;

d) Proper ergonomics.
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Figure 1.2: Examples of haptic interface devices currently in use and research (clockwise

from top left): Human exoskeleton [8], Haptic glove [9], Haptic joystick [10], and Pen-

based master [11]

1.2.3 Haptic Rendering Algorithms

The haptic interface is represented by an avatar in the virtual environment, and all interac-

tions with the environment are carried out by it. Contact between the avatar and the virtual

environment create action and reaction forces. These forces are computed by the haptic

rendering algorithms. Such an algorithm has the following components [7]:

a) Collision detection algorithms which detect collisions between the objects and the

avatar, also generating information about the location, the time and the extent of

the collision

b) Force-response algorithms generate the interaction force using the information

from the collision detection algorithm

c) Control algorithms minimize the error between the ideal and the actual forces

The following sequence of events constitute a haptic loop [7]:
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Figure 1.3: The basic blocks of a haptic rendering algorithm [7]

a) The joint positions are obtained;

b) The avatar’s position is calculated by the forward kinematics algorithm;

c) The collision detection algorithm uses the position information to determine col-

lisions and the degree of penetration;

d) The forces between the avatar and virtual objects are calculated;

e) The calculated forces are then applied by the control algorithm though the haptic

device to the user while maintaining stability

While there is no fixed rule to determine the rate at which the force rendering algo-

rithms update the computation, a rate of 1kHz is common, as it allows the presentation of

reasonably complex objects with reasonably high stiffnesses. Two types of force rendering

algorithms can be used [7]:

a) Geometry dependant force rendering algorithms: The interaction forces consid-

ered here are dependant on the geometry of the object, its compliance and the
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geometry of the avatar. A simple version of this algorithm measures the position

of the operator and applies the forces to the operator along one spatial direction.

When rendering a virtual wall, due to the discrete nature of haptic interaction,

there will always be a penetration into the wall. This information can be used to

compute the interaction force. A simple algorithm to render the virtual wall using

this algorithm will be given by,

F =

0 x > xw

K(xw − x) x ≤ xw

(1.1)

where, x describes the position of the avatar of the haptic device and xw is the

Figure 1.4: Virtual wall concept depicting a 1DOF interaction [7]

position of the virtual wall, and K ≥ 0 represents the stiffness of the wall.

More complex versions of this algorithm include algorithms to calculate forces in

2DOF as in the case of a mouse interacting with a PC, 3DOF interaction using the

point interaction paradigm, or more complex interactions with higher number of

DOF.
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b) Surface property dependant force-rendering algorithms: The second type of algo-

rithms used to render forces in haptics utilizes information from tactile displays

and therefore are dependant on the nature of the surface of the object being in-

teracted with. Micro irregularities in the surface act as obstructions and cause

friction when two such surfaces come into contact. While the model of friction is

a complicated one, simpler, empirical models proposed by Leonardo da Vinci and

developed by Coulomb are used in 3DOF as a basis for simple frictional models

[7]. More accurate models exist, however, they typically require higher amount

of computations and may be unsuitable for real time implementation.

1.2.4 Application Areas of Haptics

a) Surgical Simulation and Medical Training: This is an important application

area for haptics. Haptic devices have found their use in training simulations for

palpation of subsurface liver tumours, echographic examination of human thigh,

for bone marrow harvest for transplant, for arthroscopic surgery, for simulation of

fluid filled objects to explain different surgical procedures, for simulation of organ

motion, devices for surgical teleoperation, and in medical training simulators used

to gain baseline information about trainees.

b) Museum Displays: Using digital media and in-house kiosks, museums are ex-

ploring the possibility of creating 3D digital representations of their collections

that visitors can not only see but also touch to appreciate. This can also allow cu-

ratorial staff to interact with people at a remote location in joint tactile exploration

of works of art.

c) Painting, Sculpting and CAD: Haptic Displays have been used as an alternative

input device for painting, sculpting, and CAD. Techniques have been developed

to study the texture of fabric, to aid visually impaired people in painting, to edit

animations, for 3D sculpting and geometric modelling.
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d) Visualization: Scientific visualization has also benefited from incorporating hap-

tic systems. Haptics and graphic displays have been combined in computation

software steering systems. Haptics have also been incorporated in software to

analyse chemical and biological molecular structures.

e) Military Applications: Aerospace and military training and simulation have also

taken advantage of developments in haptics. Force feedback gloves have been

used by workers at remote locations to simulate the reconfiguration of a vehicle

by handling different virtual components. NASA has been carrying out experi-

ments in the psychophysical field to study the effects of attaching a 3DOF manip-

ulandum to a visual display. Adding haptics to audio and visual display allows for

an increase in situation awareness, providing accurate orientation information in

land, sea and aerospace environments.

f) Interaction Techniques: Haptics has also been applied to user interface, where

force feedback can give the user a more realistic feeling of interacting with an

interface, such as pressing a button. Objects can be rendered with Javascript and

can be delivered for exploration using haptic mice via a standard webpage. Haptic

gloves have been used to provide users a more realistic feel of stacking or pushing

objects. Haptics have also been used by system designers to guide users along

a right path, by adding built-in force constraints along the wrong path or against

wrong choices.

g) Assistive Technology for Disabled Persons: Visually impaired people can ben-

efit from incorporating haptics in assistive technology. Computer user interfaces

have been haptically modified to identify edges of icons or windows. Software

have also been developed to aid people with such disabilities to identify objects

with simple shapes. Haptic displays have also been used to allow people to feel

the shape of mathematical curves or play simple games such as battleship. People

with disabilities related to stroke have also benefited from the use of haptics in
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rehabilitation program where movement exercises in virtual reality allow them to

move objects of defined size and weight from one place to the other.

1.3 Literature Survey

1.3.1 Virtual Coupling

When a unilateral constraint like a virtual wall is simulated, a demand is placed on the

requirements of the range of impedance that the haptic display can render, known as the z-

width, with the ideal dynamic range of it varying from near zero to near infinite. However,

such a wide range of impedances is not possible to simulate without the loss of stability.

Colgate, et. al., [12] proposed the concept of virtual coupling to overcome this problem. In

this work, the virtual tool and the environment are implemented in a way to guarantee that

they are discrete time passive. Specifically, the handle of the virtual tool is connected to

the handle of the haptic display via a multidimensional coupling consisting of stiffness and

damping. The virtual coupling effectively limits the maximum impedance exhibited by the

haptic display, even when the impedance of the virtual wall is infinite.

Adams and Hannaford [13, 14] extended the concept of virtual coupling from the impedance

model in [12] to the admittance model of haptic interaction. They represented the coupling

in the admittance display as a frequency dependent damper, which has a zero steady state

impedance, while an effective damping at high frequency created by the impedance of the

mass that becomes dominant at those frequencies. Their analysis showed that the virtual

coupling network design is independent of the impedance or admittance causality of the

virtual environment model, if the environment is passive. They also showed that the two

port networks arising from the admittance and impedance displays are dual.

In [15, 16], the authors used Excalibur, a three degree of freedom Cartesian manipulator

designed to act as a haptic interface, and Virtual Building Block system, which is a haptic
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simulation, to design stabilizing haptic interface control laws for a large z-width. They im-

plemented two variations of the virtual coupling: the impedance display and the admittance

display. Their experimental results showed that the impedance display is very simple but

not as adaptable as an admittance display.

Miller, et. al., [17] addressed the question of ensuring stability in nonpassive nonlinear

environments in both delayed and nondelayed form for haptic systems consisting of four

components: human, haptic device, virtual coupling and virtual environment. The authors

derived design conditions that guarantee the velocity signal from the device to the human

goes to zero in the steady state and all states are bounded. This would ensure that any un-

desirable velocity signal resulting from oscillatory motion can not be presented to the user.

They also considered a general device model that is exact.

Lertpolpairoj, et. al., [18] modified the concept of virtual coupling presented in [12]. The

authors adapted the values of stiffness and damping of the coupling depending on the pa-

rameter called Interacting Frequency. Their experiments showed that the adaptive virtual

coupling was identical to the static virtual coupling for virtual environments with low stiff-

ness values. But when the virtual environment has a high value of stiffness, the adaptive

virtual coupling system represented the impedances better.

In [19], Lee and Lee presented a new model for stability analysis of the haptic device.

They modelled the human arm as a linear time-invariant (LTI) 2nd order impedance and a

response model. A nonlinear virtual coupling is developed to maximize the impedance of

the virtual coupling and to derive the stability condition. The stability condition proposed

by the authors is less conservative than the passivity condition. Their results showed that

the new stability condition increased the upper bound of achievable stiffness and damping

compared to the passivity condition. When combined with a nonlinear version of virtual

coupling, the results proved even more satisfactory. In this case the authors designed the

virtual coupling as a piecemeal linear model, with each portion having a different stiffness.
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Bi, et.al. [20], used fuzzy logic to adapt the parameters of the virtual coupling in order

to improve its performance. Their results showed that the fuzzy logic based adaptive vir-

tual coupling produced very little overshoot in displacement when interacting with virtual

environments, as compared to traditional virtual coupling. Also, the speed of response is

improved while maintaining the primary objective of stabilizing the a haptic display.

In [21], Akahane, et. al., used virtual coupling to interface between a virtual environment

and a High Definition Haptic Controller. The controller achieves a 10kHz high definition

haptic rendering in a 3DOF haptic interface, which has a z-width almost ten times that of

a 1kHz rendering. An analytical method is used by the authors that allows for stable ren-

dering of a hard surface. For a Virtual Reality application to maintain a video rate control

frequency to provide visual sensation, the virtual environment is rendered at 60Hz. As the

haptic display is an impedance display rendered at 10kHz and the virtual environment is

an admittance display rendered at 60Hz, the authors used a virtual coupling process, for

up sampling and as an interface between the components. The system achieved stability of

the haptic system with a virtual coupling of low impedance while maintaining high fidelity

with the 10kHz high definition haptic rendering with a high interpolating impedance.

Questions on position coherency in network haptic virtual environment (NHVE) are ad-

dressed in [22]. The authors designed three virtual coupling schemes: two peer-to-peer and

one client-server model, to maintain position coherency. They did not use any time delay

compensation method. In the peer-to-peer schemes, a model of the mass is implemented at

each user, while the mass was modelled only at the server in the client-server model. When

there were only two users, the preliminary results presented by the authors showed that the

client-server model of the virtual coupling scheme had the lowest peak and RMS position

error. However, their analysis also showed that this model had the largest delay among the

three models. In [23], the authors carried out experiments using the three virtual coupling

schemes over the internet. Of the three experiments carried out, two used the same scheme

but the parameters of the virtual coupling were changed. The third experiment was car-
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ried out using all three schemes for different transmission rates. Their results showed that

peer-to-peer schemes were better at maintaining position coherency than the client server

model. An increase in delay time increased both the RMS position error and the peak po-

sition error for all schemes. The force values presented to the user also increased with a

decrease in the packet transmission rate. In [24], the authors compared the performance of

the virtual coupling schemes implemented on a NIST Net network emulator. This emula-

tion was carried out using delay times experienced in [23] between Seattle, Washington,

USA and Italy. The results showed that the performance of the emulator depends on the

transmission rate, where high values of transmission rates cause deviation from the results

obtained in [23].

In their paper, Bianchini, et. al.,[25] used Linear Matrix Inequality (LMI) to provide a

framework for stability analysis and virtual coupling design for multi-contact haptic sys-

tems. The LMI approach allowed for taking into account the structural constraints that arise

in a multi-contact scenario. As the system may be physically distributed, the virtual cou-

pling, which is often lumped together with the device, may share only limited information

with the device and the virtual environment due to decentralization and limited communi-

cation requirements. The authors proposed a design procedure for virtual coupling for such

a system which was two-fold: first, the levels of passivity to be displayed for guaranteed

stability by the virtual coupling and the device are computed, and then the structure of the

virtual coupling reflecting the constraints imposed on the system is implemented in a way

that allows the effects of the constraints on the realism of interaction can be qualitatively

evaluated and tuned. In [26], the authors carried out experiments considering two cases,

one where a single operator is using two haptic devices and another where two operators

are operating two devices. When a perturbation is present in the environment, the virtual

coupling failed to provide stability in the first case, but was successful in the second case. In

[27], they expanded their experiments to consider M 1-DOF users not only distributed but

also oriented differently. They proposed a class of virtual couplers to stabilize the system

which could be parametrized using a sequence of LMI problems and was flexible enough
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to take into account the decentralization of the users. Using parameters similar to [26], the

proposed controller was able to stabilize the system with a non-zero solution.

Šurdilović and Radojićić designed a robust control system to synthesize virtual coupling

for haptic interfaces interacting with a virtual environment in [28], which is an expansion

of the control theory developed for robot/environment interaction. The performance of the

controller was demonstrated on a SISO admittance display. Experiments showed that the

interaction of the haptic device with virtual environment was stable, reaching both contact

transition stability and coupled stability. The authors carried out experiments showing that

a single set parameters for the virtual coupling results in a controller that is robust enough

for a wide range of stiffness values for the environment.

In order to improve transparency while maintaining stability in a haptic system with virtual

coupling, Zhu, et.al., in [29] attempted to find an equilibrium point between stability and

transparency by using the speed gain, position gain and the damping and the mass of the vir-

tual coupling to optimize the loop gains and the virtual coupling impedance. This resulted

in a low-inertia high bandwidth haptic interface device which had guaranteed stability and

good transparency.

1.3.2 Design of Haptic Devices

A haptic interface is a device that uses mechanical actuators to reflect force back to the user

allowing him to touch, feel or manipulate a virtual environment. Adelstein and Rosen [30]

designed a two degree of freedom force reflecting manipulandum based on a 5R spherical

closed chain linkage joining the output of two DC motors to a handle operated by a user.

The motivation of their design was to study the effect of tremor on a human operator. In

order to do so, the designed manipulator had an effective operating bandwidth of 12Hz,

with various measures to minimize the manipulator’s phase lag, which included both me-

chanical techniques and measures to reduce computational complexities. Their system’s

potential use include study of psychophysical effects and kinaesthetic interfaces to virtual
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environment and teleoperation.

Akahane, et. al., [31] designed a high definition haptic controller that was able to render a

haptic interaction at 5kHz, using a SuperH4 processor designed by Hitachi Semiconductor.

Such a high rendering frequency allows for a higher stiffness of virtual wall to be rendered

stably.

An and Kwon [32] proposed a hybrid haptic interface comprising of an active motor and

a passive magnetorheological (MR) brake that is controllable. A theoretical study based

on passivity and Z-width was carried out to show that the hybrid system was superior

to an active interface. The authors also presented a set of experimental results that val-

idated their theoretical deductions. Kwon and Song [33] also designed a hybrid haptic

system comprised of both motors and brakes, as motors and brakes can act complimentary

to each other. The performance of the hybrid system was compared to an active system

composed of motors and a passive system composed of Passivity observers/Passivity con-

trollers (PO/PC). Their experiments showed that their hybrid device is capable of producing

a good contact with virtual environments, but suffered from large error in the steady state.

Bullion and Gurocak [34] developed a compact and lightweight haptic glove composed of

three MR brakes for actuating the index and middle fingers, as well as the thumb. The

authors carried out experiments to verify the force model of the glove. The simplicity of

their design was that it removed the need for an additional actuator box.

1.3.3 Virtual Environments and Haptic Systems

Colgate and Brown [35] analysed the effect of different factors on the Z-width of a haptic

display. They carried out experiments using a one degree-of-freedom haptic device un-

der sixteen different combinations of the following factors: presence of physical damper,

sampling rate, encoder resolution and use of velocity filter. Their results showed that the

presence of a physical damper increases both the maximum damping and maximum stiff-
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ness. Large values of update rate were shown to increase the achievable level of stiffness,

but lowering the damping coefficient. This negative effect can be offset simply by using a

digital filter to smooth out the velocity signal. The test subjects also reported that a higher

encoder resolution provided a better feel. From these results, the authors concluded that in

order to achieve high impedances to provide a more realistic feel of the interaction with a

virtual environment, the inherent damping, sensor resolution and sampling rate have to be

maximized, while a velocity signal filter should be used to improve the user impression of

the wall quality.

Hannford and Ryu [36] designed a passivity observer/passivity controller method for oper-

ation with an Excalibur haptic interface with both impedance and admittance causality. The

authors carried out a detailed mathematical analysis for the passivity observer and passivity

controller. Their design of the controller took into account both series and parallel config-

urations. They also carried out simulations based on different operating conditions. When

in contact with an environment with a high stiffness, the controller improved performance

of the haptic device by making the contact bounces passive. When a limit is imposed on

how much force could be dissipated by the controller, the performance remained almost the

same. Probably one of their most important result was obtained for delayed environments.

The passivity controller in this case was able to stabilize very quickly a system that was

totally unstable without it.

Abbott and Okamura [37] determined an explicit upper bound on stiffness of virtual walls

that is necessary and sufficient for passivity. Their work established the importance of the

relationship between the friction and sampling rate, and between the Coulomb friction and

the encoder resolution on the upper bound on stiffness while indicating a lack of coupling

between the two sets of parameters. The authors carried out a set of experiments under

different working conditions based on user force and velocity of the haptic display to verify

their findings.
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In [38], the authors designed a method of superimposing event-based high frequency tran-

sient forces over traditional position-based feedback in order to improve the realism of

interactions with virtual environments. When hand-tuned pulses and decaying sinusoids

are scaled by impact velocity, they can recreate a realistic interaction. The authors pro-

posed a new method of generating the appropriate transients by inverting the model of the

haptic device, which they then used to calculate the force required to create an acceleration

profile at the user’s end, which was pre-recorded. This approach showed promise as a bet-

ter way to render a real interaction with a virtual wall than position feedback.

In [39], the authors proposed adaptive nonlinear control schemes for haptic systems with

both impedance and admittance type virtual environments. The controllers proposed by

the authors does not require any knowledge about the models of the haptic interface, user

and the environment. The controllers could alter the dynamics of the haptic device using

measurements of user force and velocity, thereby making them suitable for use in high

force-large workspace interfaces. Discrete time low-pass filtering was used to substantially

decrease the lower bound of the perceived inertia that can be stably represented. Exper-

iments were carried out for both admittance type and impedance type environments. For

admittance type environments, the proposed controller had a better performance than a

conventional spring damper controller, being able to stably represent higher impedances.

On the downside, the adaptive controllers were expensive due to the use of force sensors

and the user had to hold the haptic device by the force sensor for proper operation of the

controller.

1.3.4 Haptic Systems with Time Delay

In their paper, Wang, et. al., [40] addressed the effect of time delay on haptic operations

over a network with time delays. They carried out two sets of experiments with two dif-

ferent haptic devices. One of the experiments was concerned with analysing the effects of

delay and noise on the performance of the haptic display. The results showed that the pres-
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ence of these two factors degraded the performance of the system. The second experiment

dealt with the interaction between two identical haptic displays over an Internet link with

variable delay. The results show that such a haptic display is unstable, but with application

of a compensation technique for the delay, the performance can be improved.

Kim, et. al., [41] in their paper carried out a simple experiment with two users separated

by a large physical distance to study the effect of haptic feedback on the performance of

the users. They used two Phantom Desktop devices, located on either side of the Atlantic

Ocean. Using the Internet2 network and a multi-threaded application where the haptic sub-

system ran concurrently with the graphical component, the users were asked to lift a cube

rendered in virtual environment with each user using a single probe and working in co-

operation with each other. The software component transmitted force rather than position

information. The workstation at each end generated an implementation of virtual environ-

ment and also showed the presence of the other user. A questionnaire was prepared by the

authors that asked how well any one of the users could sense the presence of the other.

The answers of this and other questions were quantified in order to get a better idea of the

success of a trans-Atlantic haptic cooperative task over the Internet. The approaches taken

by the authors in implementing the software environment and also the communication link

resulted in each user successfully sensing the presence of the other user and interacting

with him.

To improve the performance of a tele-mentoring system in the presence of time delay, Zhou,

et. al., [42] proposed a predictive system, where a combination of Kalman and adaptive fil-

ters predict the behaviour of the human arm trajectory. The predicted data was used for

further processing without buffering based on an estimation of the network delay. The au-

thors also suggested the use of Cartesian space in order to predict human movement.

In their paper, Hulin, et. al., [43] carried out a stability analysis of a haptic system, where

the haptic device was colliding against a virtual wall and interacted with a human arm. The
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authors modelled the wall as a time-delayed discrete-time spring-damper system, while the

human arm was modelled as a linear mass-spring-damper system. The linear stability con-

dition derived by them was shown to be unaffected by human arm stiffness, when compared

to the influence of the mass of the human arm.

Ferrari and Hu [44] carried out an experiment were they studied the effect of incongruent

delay in visual and haptic data in a networked haptic virtual environment. Results from

their experiments showed that the guided user in their setup experienced a mismatch in the

stiffness of the virtual as the delay between the haptic data and the visual stream reached a

value between 66.6 ms and 133.3 ms. Cooper, et. al., [45] designed a simple experiment in-

volving a bimanual pick and place task with incongruent haptic and visual feedback. Their

experiments showed that delay in completion of the specified task and mistakes in com-

pleting the task were significantly greater when delay was added to the haptic feedback.

1.3.5 Wave Variables and Haptics

Diolaiti and Niemeyer took advantage of the fact that motor inductance can provide a higher

stiffness than that achieved by a digital control loop in their paper [46]. This high value of

stiffness is evident at higher frequencies. The authors designed analog circuits to take ad-

vantage of this fact over a wide range of frequencies. This circuit was described in terms of

wave variables, making the external digital loop insensitive to servo delays. Application of

wave haptics in conjunction with a proportional controller reduced the high stiffness region

to frequencies lower than that for classical approach. Experiments showed higher values

of proportional gain improved both the compression and restitution values of the torque

and also the rendered stiffness. The approach of wave haptics also made better use of the

physical properties of a haptic device which did not require assumption on the mechanical

friction for stability and passivity. The use of wave variables also guaranteed robustness to

servo delay.

An extension of the wave variable method was performed by Alise, et. al. [47] to include
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multiple DOF systems. In order to achieve this, the authors designed a family of scaling

matrices and orthogonal matrices. By applying the combination of a fixed scaling matrix

and any orthogonal matrix, the authors were able to show that only the wave variables are

changed, but not the system output, regardless of the delay. Experiments carried out using

a PhantomTM Omni haptic device showed that when implemented in a teleoperation sys-

tem, the proposed multiple DOF wave variables allowed the slave to track the master in the

presence of delay.

When wave variables are employed for teleoperator robotic systems, a bias term deterio-

rates the haptic performance. Ye and Liu [48] used a augmenting path to add a correction

term on the returning wave path at the master side to reduce the effect of the bias term. A

low-pass filter on the path removes the extra energy inserted due to the added path in order

to maintain passivity. As the bias term is transient, manipulation of this part does not affect

the performance in the steady state case.

Alise et.al., [49] devised a method to make the wave variables technique applicable to mul-

tiple degrees of freedom, by using scaling matrices. The authors established the necessary

conditions to guarantee passivity. Results of experiments carried out by the authors showed

that certain classes of matrices improved the performance, while others did not, impacting

on how human users used a teleoperation system.

Yasrebi and Constantinescu [50] carried out an analysis using the Jury-Marden stability

criterion that showed the one step computational delay introduced when a haptic device

interacts with a virtual environment through a wave variable controller, injects energy in

the feedback loop, thereby shrinking the stability region of the haptic interaction. Using a

time domain passivity analysis, the amount of generated energy was determined. A simple

algorithm where the wave variable on the virtual environment side was adjusted based on

the value of generated energy, was proposed to compensate for this extra energy. The au-

thors were able to double the z-width of a Phantom Omni interface in experiments carried
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out using their proposed algorithm.

1.3.6 Projection Based Force Reflection Algorithm

While the force feedback allows human operators to feel interaction with the remote envi-

ronment, however, in the presence of communication delays the force feedback may desta-

bilize the system. Polushin, et. al., [51] presented a new force reflection algorithm where

the reflected force was altered based on the estimate of the human force. Such an alteration

is not felt by the human operator, however, it solves the instability issues; in particular,

this algorithm allows for the use of a lower damping and higher force reflection gain than

can be achieved using conventional methods. While it is assumed in [51] that the human

force is directly measured, in [52] the authors use a high gain force observer to estimate

the force. The authors have also shown that their proposed algorithm can remove the con-

straints imposed on the subsystems by the small gain theorem, thereby allowing the use

of such an approach in teleoperator systems [53]. A further improvement on the force re-

flection algorithm was presented in [54]. The authors imposed restrictions on the direction

and magnitude of the reflected force which, although is not felt by the user, cancels out the

unintentional motion of the master. Such restrictions do not result in stability and/or trans-

parency deterioration. Experimental results based on the projection based force reflection

algorithm were presented in [55]. The use of this algorithm significantly increased the ad-

missible force reflection gain without sacrificing stability; the improvement is particularly

significant in the presence of communication constraints.

Projection based force reflection algorithm was used to design a cooperative teleoperator

system in [56] where the authors defined explicit assumptions on the human dynamics

rather than assuming that the user to be an external source of uniformly bounded energy.

The authors chose this approach because it eliminates the reliance of stability on the user.

With the use of the projection based force reflection algorithm, the authors were also able

to eliminate the conservativeness of the small gain approach. Experiments were carried out
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to show that the projection based force reflection algorithm could provide stable telemanip-

ulation for lower values of interaction forces. This was shown to be true also for the case

when the user released the master. The authors were also able to show that in the steady

state, the transparency of the system was also very high.

1.4 Objectives of the Thesis

The main objectives of this work are as follows:

1) To implement a virtual environment (virtual wall), which will be used for exper-

imental comparison of different force reflection schemes for haptic interaction.

2) To compare the performance of the Projection-based Force Reflection Algorithm

(PFRA) with that of the Virtual Coupling (VC) and Direct Force Reflection

(DFR) for a non-delayed haptic system.

3) To compare the performance of the Projection based Force Reflection Algorithm

(PFRA) with the Direct Force Reflection (DFR) and Wave Variable (WV) tech-

niques for a haptic system in the presence of time delays.

1.5 Contributions of the Thesis

The major contributions of this work can be listed as follows:

1) The performance of PFRA has been experimentally compared with the perfor-

mance of VC, WV and DFR. It was shown that the PFRA performed better than

the DFR in all test situations, while it was comparable or better than the other

two techniques.

2) In terms of the time required to stabilize the end effector of the haptic device, the

PFRA was shown to perform the best among the algorithms compared in all test

situations.
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3) Under the test environment, the PFRA has been shown to be perfectly transparent,

allowing it to represent the properties of the virtual environment accurately.

1.6 Outline of the Thesis

The thesis is arranged in the following manner. Chapter 1 provides a basic overview of

haptic systems and brief overview of the work that has been done in the field of haptics and

its stability. In Chapter 2, issues related to the haptic system and its stability are presented,

with a description of the techniques used to maintain stability. The problem dealt with in

this work is described in Chapter 3, along with description of the equations used. The

results of the different experiments carried out are presented in Chapter 4 and Chapter 5,

while conclusions based on these results are presented in Chapter 6.



Chapter 2

Haptic Systems: Stability Issues

2.1 Introduction

Haptic devices and their stability issues are usually studied in relation to interactions with

a virtual environment. In this chapter, the virtual wall is discussed in brief, particularly

the concept of passivity of the virtual wall. The notion of Z-width, which is an important

performance characteristic of a haptic system, is also discussed. Techniques for improving

stability of both non-delayed and delayed haptic systems, including virtual coupling, wave

variables, and projection based reflection algorithms, are also elaborated here.

2.2 Virtual Walls

A virtual wall, whose implementations can vary according to hardware and software details,

is the standard haptic task. Since any virtual environment can ultimately be reduced to a

combination of virtual walls, all interactions with such environments can be reduced to

interactions with virtual walls of varying stiffness and damping. As a result, a virtual wall

is frequently used as a benchmark for haptic interfaces [4].

The most common approach to implement a virtual wall requires a back drivable ma-

nipulandum and a discrete time controller [57]. If x(t) is the position of the manipulandum

24
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end-effector, let xk and ẋk denote the sampled versions of the end-effector position and ve-

locity, respectively. If the position of the manipulandum xk is inside the wall, an interaction

force Fk is generated according to the formula

Fk =

K(xk − xwall) − Bẋk x ≥ xwall,

0 xk < xwall,

(2.1)

where xwall is the position of the wall, K ≥ 0 is a virtual stiffness and B ≥ 0 is a virtual

damping coefficients. The force Fk is transformed into the analog form F(t) and conse-

quently applied to the actuators of the haptic device. Note that the formula (2.1) is not the

Figure 2.1: Block Diagram of a common implementation of the Virtual Wall [57]

only possible way to realize a virtual wall; for instance, nonlinear characteristics of the vir-

tual wall’s impedance may be implemented in the software. Also, the sensor that measures

the end-effector velocity can be replaced with an estimator, which can be used to derive the

velocity information from the position measurements.

2.2.1 Passivity of Virtual Walls

When interacting with a virtual wall using a haptic device, the user should experience a

feeling of interaction similar to the one with a real wall. However, since a haptic device
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is a sampled data system combining a continuous time mechanical system with a discrete

time controller, the effect of sampling may cause the haptic display to lose passivity. As

a general rule, there is always some penetration into the virtual wall by the haptic device

[4]. When the controller detects the wall penetration, the environment will compute a large

output force normal to the surface of the wall at the next sampling interval. As a result,

the haptic display will be pushed outside of the wall rapidly. At a future sampling interval,

the environment will detect that the haptic display is no longer in contact with the virtual

wall and the force acting on the display will become zero. When this sequence of events

(haptic device in and out of contact with the wall) is repeated, it results in oscillations. This

destabilizing effect arises because of two factors:

a) The exact time when the haptic display contacts the virtual wall can not be de-

tected due to sampling.

b) The resolution of the position sensor has the effect of quantizing the penetration

distance into the wall.

Minsky et. al., [58] proposed a criterion relating different wall parameters to the sampling

period T of the digital system to implement a virtual wall that presented a more realistic

feel to the user. Their criterion was as follows,

B
KT

> c (2.2)

where c is a constant with a value approximately equal to 0.5. However, the authors ob-

tained this result on the basis of maintaining wall stability. Stability is a system property,

and is therefore dependant on operator dynamics as well as wall dynamics. Since the op-

erator dynamics are non-linear and can be changed radically, it is difficult to use stability

as a basis of a performance criterion without taking the full range of human dynamics into

consideration. In fact, authors in [57] reported that they were unable to reproduce the above

result.

The authors in [57] proposed that a better basis for a measure of performance is passivity



Chapter 2. Haptic Systems: Stability Issues 27

- the inability to act as an energy source. If the human-virtual wall interaction results in

oscillations, the wall is said to be ’active’, or that it acts as a source of energy. This is true

because the frequencies involved in the oscillation are often outside the range of voluntary

motion (up to 10Hz). Such oscillations are not present in the case of real walls. The fact

that virtual walls being active is apparent from the behaviour of a virtual spring. As this

spring is implemented in discrete time, the average force during squeezing will be less than

the average force during release. As a result, a discrete-time implementation of the spring

typically generates energy.

In such a case, the necessary and sufficient conditions for passivity will be given by [4],

b >
T
2

1
1 − cosωt

<
{

(1 − e− jωt)H(e jωt)
}
, for 0 ≤ ω ≤ ωN (2.3)

where, b is the physical damping present in the mechanism, T is the sampling period, H(z)

is a pulse transfer function representing the virtual environment [4] and ωN = π
T is the

Nyquist frequency. Colgate and Schenkel [59] assume that the transfer function of the wall

is

H(z) = K + B
z − 1
Tz

, (2.4)

which results in a simplified sufficient condition for passivity, as follows,

b >
KT
2

+ |B|. (2.5)

The physical damping, therefore, has to be sufficiently large to dissipate the excess of

energy generated in the wall in order to maintain passivity.

2.3 Z-width

A haptic interface can essentially be thought of as a device that generates mechanical

impedance, which represents a dynamic relationship between velocity and force. In the

real world, such impedances may have an extremely wide range. Movement in free space
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can be represented by zero impedance, while the contact with a rigid object should be rep-

resented by a very high (ideally, infinite) impedance. Ideally, a haptic device should be able

to generate impedances at both extremes. The focus in designing practical haptic devices

is to create a system that can exhibit a broad dynamic range of impedances. This dynamic

range of impedances is defined as the Z-width of the haptic device [4]. This is essentially

the difference between the maximum and minimum impedances that can be rendered [6],

Zwidth = Zmax − Zmin (2.6)

A haptic device with a large Z-width will be able to render a more realistic virtual environ-

ment. This term is a measure of the potential of the haptic device, and can be used as a

parameter of comparison of different device.

The lower bound of the Z-width is usually bound by the overall mechanical design. The

upper bound of this impedance is usually determined by the computational capabilities of

the system. Some approaches for increasing the maximum impedance that can be rendered

by a haptic device are as follows [35]:

a) Increasing physical damping;

b) Increasing sensor resolution;

c) Increasing sampling rate;

d) Filtering the velocity signal.

While maintaining passivity is an intuitive approach to increase the Z-width, it also imposes

restrictions on virtual environment stiffness and damping. As a result, the focus of research

has shifted to increasing the maximum impedance as a way to increase the Z-width.

A virtual wall can be used to characterize the Z-width of the haptic device. The conven-

tion of graphically representing Z-width is by using virtual stiffness-virtual damping plots.

Since this type of plots do not take into account the effect of frequency on Z-width, a better
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method of representation can be as a set of curves showing the upper and lower bounds of

impedance as a function of frequency, while maintaining passivity.

For practical applications, the maximum impedance, and so the Z-width, can be increased

using a variety of methods. For instance, controllers like virtual coupling and passivity ob-

servers/controllers, or mechanical or electrical methods can be used to dissipate the exces-

sive energy. In recent times, techniques successful in maintaining stability in teleoperator

systems, like wave variables and projection based force reflection algorithm, have received

attention.

2.4 Virtual Coupling

The technique of virtual coupling was proposed by Colgate and his colleagues [12] to im-

prove the stability of virtual environments rendered using haptic displays. It is a basic and

one of the most popular techniques used to improve the performance of a haptic system. It

consists of a virtual spring and virtual damper in mechanical parallel that connect the haptic

display to the virtual environment. Virtual coupling simplifies the problem of maintaining

stability by making it necessary only to satisfy the following two conditions [4]:

a) Proper selection of virtual coupling parameters;

b) Creation of a discrete time passive virtual environment.

Ensuring that the virtual environment is passive is easier than ensuring that the entire hap-

tic system is passive. Such a conceptual division of components of the haptic system al-

lows the user to consider passivity for each element separately. Proper selection of the

virtual coupling parameters allows the maximum environment impedance to be reduced

and matched to the passivity limits of the haptic device. While this makes the rendered

impedance to be within the Z-width of the haptic display, this range is usually lower than

the actual impedance of the virtual environment. This discrepancy in the rendered and
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Figure 2.2: Virtual coupling [4]

actual impedance of the virtual environment, or the lack of transparency is the major draw-

back of the virtual coupling system.

The primary concept of maintaining passivity is to dissipate the excess of energy generated

in the system, which may otherwise result in instability. The environment parameter αe,

measuring the lack of passivity, must satisfy the following relationship,

αe < δ (2.7)

where, δ is the physical dissipation in the system. The virtual coupling modifies this equa-

tion with its impedance γ, as follows [4]:

αe <
δγ

δ + γ
. (2.8)

This modification actually allows the virtual environment to generate certain amount of

power while be still maintaining passivity of the overall system.
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2.5 Wave Variables

Force feedback in teleoperator systems improves the ability of an operator to perform com-

plex tasks, especially when there is an interaction with a remote environment. However,

the remoteness of the environment introduces time delay in the system which, if left un-

treated, may result in instability due to unwanted power generation in the communication

link. In order to deal with this problem, damping can be introduced into the system. This

solution, however, also suffers from significant drawbacks. Adding extra damping does

not necessarily guarantee stability, but designs incorporating this feature limit system per-

formance. To overcome this shortcoming, Niemeyer and Slotine [60] presented a method

based on passivity analysis and the concept of wave variables. Wave variables encode the

complementary pair of power variables of velocity ˙̄x and force F̄, according to the following

formulas:

u =
bẋ + F
√

2b
, v =

bẋ − F
√

2b
(2.9)

The wave variable ū is the forward moving wave, from the master to the slave and v̄

Figure 2.3: Wave variable transformation at local and remote site [61]

is the backward moving wave, going from the slave to the master. A positive constant

b is called the characteristic wave impedance; it acts as a tuning parameter matching the

controller to a particular task. In the presence of communication delay, the transmission of

wave variables instead of the power variables allows to maintain passivity according to the
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following equation [62]:∫ t

0

1
2

us
T us +

1
2

vm
T vm dτ ≤

∫ t

0

1
2

um
T um +

1
2

vs
T vs dτ + Estore(0), ∀t ≥ 0. (2.10)

The wave transformation (2.3) is bijective; it therefore allows to recover the power variables

without loss of any information, according to the following equations

ẋ =
1
√

2b
(u + v), F =

√
b
2

(u − v) (2.11)

The algebraic loop allows the use of the information in the returning wave variable to

Figure 2.4: Interface between wave variables and power variables [61]

encode the forward going wave variable,

u = −v +
√

2bẋ (2.12)

The knowledge of the returning wave can also be used to generate a force feedback com-

mand for the master,

F = bẋ −
√

2bv (2.13)

In practice, wave transform provides an interface between the signals represented in terms

of power and wave variables [61] without loss of information, while maintaining passivity

in the presence of time delay.
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2.6 Projection Based Force Reflection Algorithms

In bilateral teleoperation, the flow of information is bidirectional: the position and/or the

velocity of the master are sent to a remote slave, while the force information is fed back

from the slave to the master. While the presence of such a feedback creates kinaesthetic

feeling of interaction with the remote environment, the presence of delay in the commu-

nication link can also introduce severe restrictions on overall stability and transparency of

the system. This problem is more significant when the system comes into contact with a

rigid environment. There is subsequently often a trade off between stability and high force

reflection gain. A high force reflection gain can provide the user with a stronger haptic

feeling of the remote environment, but at the same time increases instability by increasing

the closed loop gain [55]. The presence of time delay in the communication link further

aggravates this problem as it destroys the natural passivity of the system.

In order to provide a high level of transparency while maintaining overall system stability,

Polushin, et. al., [51] proposed a new method known as the Projection Based Force Reflec-

tion Algorithms (PFRAs). The idea behind these algorithms is to decompose the reflected

force into two components: one that is compensated by the human hand and the other that

is not. The human user immediately feels the first component, while the second component

is directly responsible for the creation of induced master motion. As this second component

is the reason behind instability, the PFRA attenuates it. The force reflected to the motors of

the master is defined by the equation [55],

fr = α fenv + (1 − α)φenv (2.14)

In Equation 2.14, fenv is the force signal that arrives from the slave device directly. φenv is

generated according to the Equation 2.15 as follows,

φenv = Sat
[0,1]

{
f T
env fh

max
{
| fh|

2, ε1
}} fh (2.15)
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α is a weighting coefficient and is defined as α ∈ [0, 1], ε1 is a small positive constant, fh is

an estimate of the human force obtained from a force observer, and,

Sat
[0,1]
{x} = max {a,min {x, b}} (2.16)

φenv obtained from Equation (2.15) is the component of the reflected force that is compen-

sated by the human hand and is felt by the user. From Equation (2.14), it is clear that φenv

is fed back to the user with a gain of 1, while ( fenv − φenv), which is the residual force that

is not felt by the user, is attenuated with a gain of α ∈ [0, 1].

Figure 2.5: Decomposition of reflected forces in the projection-based force reflection algo-

rithms [63]

2.7 Conclusion

This chapter has focused on different issues related to the stable interaction between a hap-

tic device and a virtual environment. Since the virtual wall is an important benchmark in

studying the performance of haptic systems, its implementation was described, with par-

ticular focus on the concept of passivity of the wall. Z-width, the range of impedances

that the haptic device can describe, was also discussed. Finally, different techniques cur-

rently in use to increased the z-width and improve the stability of haptic systems, such as
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virtual coupling, wave variables and projection based force reflection algorithm, have been

discussed, with particular attention to the equations required to implement the equations.



Chapter 3

Problem Formulation and Experimental

Setup

3.1 Introduction

As stated in Section 2.2.1, the digital nature of implementation of virtual environments,

namely the effects of sampling and quantization processes, doesn’t allow for easy render-

ing of a stiff virtual wall. Lack of passivity results in instability when a haptic display

comes into contact with a virtual wall. In order to improve stability of the system, var-

ious control schemes have been proposed in the literature. Virtual coupling, which is a

combination of a spring and a damper, is a popular method to improve stability of haptic

systems. This method has been applied to systems where it is assumed that there is no time

delay. However, this control method generally sacrifices transparency in order to achieve

stability. Niemeyer and Slotine [60] proposed an approach for systems with time delay

which is based on wave variables; however, they applied this method only to teleoperator

systems and not to haptic systems. An extension of wave variables to haptic systems was

presented by Yasrebi and Constantinescu in [50]. Like the virtual coupling method, though,

this technique only addressed the stability issue, without paying attention to transparency.

The projection-based force reflection algorithm (PFRA) has been applied by Polushin, et.

36
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al. [52] to teleoperator systems without loss of either transparency or stability. However,

this technique has not been applied yet to haptic systems for interaction with virtual envi-

ronments.

This thesis deals with experimental investigation of the projection-based force reflection

algorithms for haptic interaction with virtual environments. In particular, these algorithms

are experimentally compared to more conventional techniques known from the literature in

terms of their stability and transparency properties, for the case without communication de-

lays as well as in the presence of communication delays between the haptic device and the

virtual environment. The main question addressed in this thesis can be formulated as fol-

lows: do the projection-based force reflection algorithms provide improvement in stability

and transparency properties of the haptic displays for interaction with virtual environments,

in comparison with the existing methods? The thesis presents results of a detailed exper-

imental investigation that answer the above formulated question. Below, the experimental

setup and the methodology of the experiments are described in some detail.

3.2 Experimental Setup

In order to carry out the experiments necessary to find out the applicability of PFRA in

haptic systems, a suitable virtual environment was needed. The virtual wall was chosen

for this purpose because of its use as a benchmark in analyzing haptic displays. It was

implemented following the technique presented in [57] and described in Equation (2.1).

The interaction was modelled as a 1-DOF interaction, with movement of the end-effector

in only the x-direction. This model allowed a simple implementation of a haptic system,

while at the same time reducing the effect of unwanted movement along the other two axes.

The setup used for the experiments is shown in Figure 3.1. A PHANToM Omni from

SensAble Technologies Inc. was the device of choice in the experiments. It is a 6-DOF

pen-based master, which was interfaced with an IBM-PC through a Firewire port. The PC
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Figure 3.1: Experimental Setup
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used a Intel R© Pentium R©4 processor operating at 2.60 GHz, and 1GB of RAM. With the aid

of OpenHaptics Toolkit, based on Microsoft Visual C++, all programs for the virtual wall,

virtual coupling, wave variables and PFRA were implemented.

At the beginning of each set of experiments, the different variables describing the tech-

niques and the virtual wall was chosen, the operator was asked to grasp the end-effector of

the haptic device and push against the virtual wall, taking care to move the device along

the x-axis only. The operator attempted to move the end-effector in the same way during

each iteration of the experiment. Each set of variables was repeated several times to ensure

reproducibility and eliminate accidental mistakes. Also the operator took a break every 3

or 4 iterations to prevent fatigue and prevent the device motors from overheating. At the

same time, the device was recalibrated to eliminate the chance of mechanical errors. Upon

obtaining data for each iteration, they were saved for future analysis. The human hand

can generate commands with frequencies ranging from 0 Hz to 10 Hz, typically biased

towards the lower end of the spectrum, but is able to distinguish forces and vibrations up

to 1 khz [62]. In our experiments, a high gain observer is used in order to estimate the

human force; the observer is described in Appendix B. As the human force estimate may

have high frequency components which cannot be generated by the human hand, a low pass

filter with a cut-off frequency of 31.4 rad/s (or 10 Hz) is used on the human force estimate

to eliminate the presence of undesired vibrations.

3.3 Virtual Coupling

Both the virtual wall and the virtual coupling are defined by spring-damper systems. Under

the combined effect of these two spring-damper system, the proxy position (or the avatar)

of the end-effector of the device will be given by,

pnew =pold + T × (
1

(Bc + Bw)
× (Kc × pdev) + (Kw × pwall)

+ (Bc × vdev) − pold × (Kc + Kw)) (3.1)
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and the velocity of the wall will be calculated using a dirty derivative filter. Finally, the

force is calculated as,

f = −Kw × (pold − pwall) − Bw × vwall (3.2)

In the above equations, the following notations have been used,

pnew=new position of the wall

pold=old position of the wall

T=sampling interval

Bc = damping of the virtual coupling

Bw = damping of the virtual wall

Kc = stiffness of the virtual coupling

Kw = stiffness of the virtual wall

pdev = position of the end effector

pwall = initial position of the wall

vdev = velocity of the end effector

vwall = velocity of the virtual wall

f = reflected force

A flowchart of the operation of the virtual coupling technique is shown in Figure 3.2.

3.4 Wave Variables

The wave variable technique attempts to overcome the instability issues in teleoperator sys-

tems with time delay. This technique has been implemented by Yasrebi and Constantinescu

[50] for haptic systems. The technique has shown promise in overcoming the effects of de-

lay, but is also susceptible to proper selection of the parameter b.

On the master side, the wave variable um is calculated from the wave variable vm and the

velocity of the device as follows,

um = −vm +
√

2bẋ (3.3)
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Figure 3.2: Flowchart of Virtual Coupling Technique



Chapter 3. Problem Formulation and Experimental Setup 42

The velocity of the slave device is obtained from the following equation, where us is the

version of um on the slave side.

ẋ =

√
2
b

us −
Fs

b
(3.4)

The position information obtained from this velocity information, is used to calculate the

contact force Fs according to the eq.-2.1. This contact force is then used to determine the

value of the wave variable vs as follows,

vs = us −

√
2
b

Fs (3.5)

After appropriate delay, the value of vm, which is the delayed version of vs on the master

side, is used to calculate the value of the reflected force,

Fm = bẋ −
√

2bvm (3.6)

This force is then applied to the haptic device. The flowchart of operations for the wave

variables technique is shown in Figure 3.3.

3.5 Impedance Matching

The haptic device is operating under force control where the returning wave variable vm is

used to generate a force command Fm and applied to the device. Such a force controller

can not be perfectly impedance matched. Adding a damping element, D helps reduce the

reflections. The combined in that case will be,

Fm(s)
sXm(s)

= mms + D (3.7)

Although no value of D can eliminate the reflection term, choosing D = b [1] allows the

two frequency component to be minimized. One drawback to this system is that the high

frequency component will remain.
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Figure 3.3: Flowchart of Wave Variables Technique
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Figure 3.4: Impedance Matching Technique [1]

3.6 Projection based Force Reflection Algorithm

The projection based force reflection algorithm has been shown to be successful in im-

proving the stability of teleoperator systems [52, 53, 55], without sacrificing transparency.

This technique allows the component of the contact force that is compensated by the human

force to greatly influence the force reflected to the haptic device as described in Section 2.6.

The advantage of this is that the uncompensated portion of the contact force, the source of

unwanted oscillations would be suppressed and hence have only minor influence on the

final reflected force.

Upon obtaining information from the haptic device regarding position and angle, the con-

tact force is calculated according to equations described in Section 2.6. Using a model of

the haptic device and the high gain observer, which is described in the Appendix B, an

estimate of the human force is obtained. This force is used to determine the component

of the contact force that is compensated by the human force according to equation-2.15,

which is reproduced here,

φenv = Sat
[0,1]

{
f T
env fh

max
{
| fh|

2, ε1
}} fh (3.8)
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This force is then used to calculate the reflected force as,

fr = α fenv + (1 − α)φenv (3.9)

Proper selection of the parameter α ∈ [0, 1] is important as it determines the amount of

influence the component φenv will have on the final reflected force, which is fed back to

the haptic device. The flowchart for the operation of the projection-based force reflection

algorithm is shown in Figure 3.5.

3.7 Apparent Stiffness

Whenever there is interaction between a haptic device and a virtual environment, a force is

generated according to equation-2.1 and applied back to the haptic device. This force, as

seen from the equation dependent on the stiffness Kw and damping Bw of the wall. However,

when a stable condition of the system is reached, represented by the stationary position

of the device, the velocity of the device is zero, nullifying the effect of damping on the

reflected force, leaving only the force determined by the stiffness. As a result, a measure of

the stiffness of the wall may be obtained from the ratio of the reflected force and penetration

into the wall by the haptic device.

Kwapp =
Fr

xdev
(3.10)

This measure of stiffness is used as a yardstick to compare the transparency of the different

techniques. As this apparent stiffness is measured at the stable state for all the techniques,

this gives a good indication of the stiffness of the virtual wall that the user feels.

3.8 Conclusion

In this chapter, the problem addressed in this thesis has been formulated. The experimental

setup has been described together with the methodology of the experiments. The three

techniques: virtual coupling, wave variables and projection based force reflection algorithm
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Figure 3.5: Flowchart of Force Reflection Technique
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were discussed; in particular, the exact equations used to calculate the forces generated

during the interaction were presented. Additionally, flowcharts for the three techniques

used were shown. Finally, apparent stiffness is defined as the measure used for comparing

the transparency of the three techniques.



Chapter 4

Haptic Interaction without

Communication Delays

4.1 Introduction

The first set of experiments were conducted with the purpose of comparing the performance

of virtual coupling (VC), direct force reflection (DFR) and projection-based force reflection

algorithm (PFRA), in the case where there is no communication delay between the haptic

device and the virtual environment. The parameters used as a basis for comparison of

stability were different wall stiffness and update rates. In order to find out the transparency

of the system, apparent stiffness is used as a measure. Finally the performance of the PFRA

was studied based on the value of the weighting coefficient α.

4.2 Experiment 1: Virtual Wall Stiffness

The first experiment was carried out with the purpose of evaluating the stability properties

of the three techniques under study when the haptic device is interacting with a virtual

wall of varying stiffness. The stiffness of the VC was set at 1.0 N/mm and damping at

0.5 Ns/mm. The damping of the virtual wall was set at 0.005 Ns/mm. The update rate

48
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of the reflected force is set at a fixed value of 50 Hz and the response of the techniques

were observed for moderate and high levels of stiffness. In the case of PFRA the value

of α was fixed at 0.2, while for DFR it is 1.0. For PFRA observations of their behaviour

for a moderate value of stiffness, 3 N/mm, are presented in Figure 4.1 in terms of reflected

force. From the results presented in the figure, it is apparent that both the VC and PFRA are

faster in reaching a stable value of the reflected force than DFR. The amount of oscillation

present in the reflected force is comparatively greater for the DFR than both PFRA and

VC. PFRA and VC have a similar level of oscillations in this case. However, when the

stiffness of the virtual wall is increased to a high value of 10 N/mm, the situation changes,

as depicted in Figure 4.2. In this figure, the results show that the PFRA outperforms the

other two techniques by a large margin. The performance of the PFRA does not degrade

with increased stiffness. However, both the DFR and VC suffer from a severe degradation

in performance. This is more significant in the case for VC, which demonstrated a very

good response for low values of virtual wall stiffness.

The position information for the three techniques are presented in Figures 4.3 and 4.4.

From these figures, PFRA is shown to be better than DFR and VC in terms of reaching a

stable position for the end effector of the haptic device. For the lower value of the wall

stiffness, it is clear that the PFRA helps the device achieve a stable position the fastest. The

VC suffers from initial contact oscillation similar to the PFRA, but requires a far greater

amount of time to reach the stable position. While the position of the end effector reaches

the final position relatively quickly for the DFR, the initial contact oscillation is greater

than the other two cases. For the higher value of stiffness, for which results are presented

in Figure 4.4, it is clear that for the case of VC, the end effector penetrates the farthest,

presenting a softer than natural feel of wall to user. The oscillations present in the device

are also high before it reaches a stable position. For DFR, while it does not penetrate as

much as in the case of VC, the end effector suffers from a high level of oscillations. The

PFRA provides the best result in this case, where the end effector becomes stable fastest

and with the least oscillations.
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Figure 4.1: Reflected force for Kw = 3N/mm

4.3 Experiment 2: Update Rates

As has been stated earlier, it has been shown in [58] that high update rate is desirable for

stable operation of the haptic device in contact with a virtual environment. The objective

of the second set of experiments was to find out the effect of changing update rate has on

the stability performance of a haptic device. The stiffness of the VC was set at 1.0 N/mm

and damping at 0.5 Ns/mm. The damping of the virtual wall was set at 0.005 Ns/mm and

the stiffness was set at 5.0 N/mm. Two different update rates were used for this experiment:

500 Hz and 50 Hz. The results for PFRA is presented in Figure 4.5 for reflected forces and

in Figure 4.6 for the level of penetration by the end effector into the virtual wall. In this

case the the value of α was set at 0.2. From Figure 4.5 it can be seen that the initial contact

oscillation increases slightly for the PFRA. However, it does not last long. This is further
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Figure 4.2: Reflected force for Kw = 10N/mm

supported by the information presented in Figure 4.6, where the position information of the

end effector of the device is presented and shows that the end effector comes to rest at a

stable position in a short amount of time.

In Figure 4.7, the results for the reflected force for DFR is presented, where α is set

to 1.0. The DFR suffers from severe deterioration in performance as the update rate is

lowered. The amount of force oscillations suffered by the DFR increases significantly as the

update rate is lowered. This is also apparent from the results presented in Figure 4.8. From

the position information presented in this figure, it is clear that the end effector suffers from

significantly larger amount of oscillations as the update rate is lowered, which is readily

experienced by the user.

The results for VC are presented in Figures 4.9 and 4.10. From Figure 4.9, it can be

seen that the reflected force for higher values of the update rate reaches a stable value very
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Figure 4.3: Position Information for Kw = 3N/mm

quickly, with very little initial contact oscillation. However, VC does not perform as well

for lower update rates. Not only does it take longer to come to a stable value, the reflected

force also has a higher contact value than for higher update rates. A similar picture is

presented in Figure 4.10, where it can be seen from the position information of the end

effector of the haptic device that suffers from a larger amount of oscillations due to reduced

value of the update rate. Such a change in the level of oscillations is felt by the user and is

detrimental to ease of operation of the device.

4.4 Experiment 3: PFRA Parameter α

The performance of the PFRA is dependent on the parameter α. α can have a value between

0 and 1. The value of this parameter determines the relative weight of the components of the
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Figure 4.4: Position Information for Kw = 10N/mm

contact force: the direct force reflection and the projection-based component. According

to Equation 2.14, higher the value of α, the greater the effect of direct force reflection

component on the final force reflected to the haptic device, with the extreme case of α

= 1, which reduces the PFRA to DFR. Experiments were carried out for Kw = 5 N/mm

for an update rate of 50 Hz, with values of α chosen as 0.2, 0.5, 0.7 and 1.0. From the

results presented in Figure 4.11, it is clearly apparent that the reflected force suffers from

a decrease in stability as the value of α is increased. The reflected force is most stable for

α = 0.2, while its stability is poorest for α = 1.0. Similarly, Figure 4.12 shows that the end

effector of the haptic device suffers from the least oscillations for the smallest value of α

chosen. This effect was evident to the user from the increased vibrations of the end effector

as it was held.



Chapter 4. Haptic Interaction without Communication Delays 54

Figure 4.5: Reflected Force for PFRA for different update rates

4.5 Experiment 4: Transparency

For a haptic device to successfully represent a contact with virtual environments, trans-

parency along with stability, is important. Transparency is the ability of a haptic system to

accurately represent the properties of the virtual environment, thereby creating a realistic

image to the user. The popular technique of Virtual Coupling ensures stability in haptic

systems by adding an additional spring and damper, but at the same time sacrificing trans-

parency. The DFR, as it does not use any form of modification of the reflected force, is

expected to have a high level of transparency. The transparency levels of the PFRA for

teleoperation systems is high, but for haptic systems it was an unknown quantity. Trans-

parency is compared based on the apparent stiffness (Equation 3.10) of the techniques. The

closer the value of apparent stiffness to the actual stiffness, the more transparent the tech-
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Figure 4.6: Position Information for PFRA for different update rates

nique is. The data for these apparent stiffness are presented in Table 4.1. As their apparent

stiffness are equal to the actual stiffness, the transparency levels of the DFR and PFRA are

said to be perfect. However, for the VC, the apparent stiffness is low compared to the actual

stiffness, resulting in a low value of transparency. Not only that, the transparency levels for

VC actually decreases as the stiffness of the virtual wall is increased.

4.6 Conclusion

Experiments were carried out addressing the performance of three different techniques: the

virtual coupling, the projection based force reflection algorithm, and the direct force re-

flection, in the case where there is no time delay between the haptic device and the virtual
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Figure 4.7: Reflected Force for DFR for different update rates

environment. Results of the experiments showed that the PFRA performs better for both

low and high values of wall stiffness and update rates than the DFR and VC. It is also sig-

nificantly more transparent than the VC for all values of wall stiffness under consideration

during the experiments. The performance of the PFRA was shown to be dependant on the

value of the weighting parameter α.
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Figure 4.8: Position Information for DFR for different update rates

Table 4.1: Actual and Apparent Stiffness for Non-delayed Case

Actual stiffness

(N/mm)

Apparent stiff-

ness - PFRA

(N/mm)

Apparent stiff-

ness - DFR

(N/mm)

Apparent stiff-

ness - VC

(N/mm)

3.0 3.0 3.0 0.7461

4.0 4.0 4.0 0.7993

5.0 5.0 5.0 0.833

6.0 6.0 6.0 0.8571

8.0 8.0 8.0 0.8889

10.0 10.0 10.0 0.9091
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Figure 4.9: Reflected Force for VC for different update rates
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Figure 4.10: Position Information for VC for different update rates
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Figure 4.11: Reflected force for different values of α
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Figure 4.12: Position for different values of α



Chapter 5

Haptic Interaction with Communication

Delays

5.1 Introduction

The second section of the results presents a comparative experimental study of three tech-

niques: the Wave Variable (WV) presented in [64], the Projection based Force Reflection

Algorithm (PFRA) presented in [65] and the Direct Force Reflection (DFR) technique, in

improving stability and maintaining transparency in haptic interactions in the presence of

significant irregular communication delay. A variety of parameters were chosen to obtain a

detailed view of the performances of the techniques, including virtual wall stiffness, update

rates and delay times. The performance of the PFRA was studied further under varying

values of the parameter α. A comparison of the transparency was carried out based on

different wall stiffness and delay variation.

5.2 Delay Pattern

Like all applications operating over the Internet, haptic interactions taking advantage of an

Internet link suffers from stability and performance deterioration because of random com-

62
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munication delay. In particular, time varying communication delay can introduce energy

into the system [66]. The purpose of the following experiments is to find the effect of

different techniques to overcome the instability caused by the introduction of this extra en-

ergy. To simulate the random delay typical for communication over the Internet, a random

number generator was used. The output of the random number generator varied within a

predetermined range. These random numbers were then added to an integer number which

represented the minimum delay. The randomness of the delay was ensured by using the

current time as the seed of the generator. The generated delay is considered as the round

trip delay. An example of a typical delay used in the experiments are given below. Min-

imum round trip delays were chosen at values of 100 ms, 200 ms and 500 ms, while the

variation in delay were set at 10 ms, 50 ms and 100 ms.

Figure 5.1: A Typical Pattern of the Delay used in the Experiments
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5.3 Experiment 1: Virtual Wall Stiffness

The first set of experiments carried out was focussed on analysing the effect of a change

in stiffness of the virtual wall on the performance of the different techniques. For all the

experimental results presented in this section, the delay was set to a minimum of 200 ms

with a variation of 50 ms. The update rate of the reflected force was chosen as 500 Hz.

The experiment was carried out for two different stiffness of the virtual wall: 1 N/mm and

2 N/mm. The damping of the virtual wall was set at 0.005 Ns/mm.

Figure 5.2 presents the change in performance of the wave variable technique when the

stiffness of the virtual wall is changed . The value of the wave impedance in this case

was chosen as 0.01, as it was observed that higher values of the wave impedance caused

oscillations during contact, while lower values of this parameter caused oscillations during

free space movement. The stability of the wave variable technique decreases as the stiffness

is increased, which is apparent from the increased oscillations in the curve for reflected

force.

The figure for the position information of the end effector of the haptic device is pre-

sented in Figure 5.3. The position information is the amount of penetration by the end

effector into the virtual wall. The loss of stability with increasing stiffness can be better

visualized from this figure where the increased stiffness causes the end effector to suffer

from more vibrations, which can also be felt by the user during the experiment.

In Figure 5.4, the performance of the PFRA, where the value of the parameter α was

chosen as 0.2, is shown as a function of changing wall stiffness. The reflected force under-

goes an increase in oscillation as the stiffness is increased, but it becomes stable faster than

the WV technique, for higher values of stiffness.

The position information for the end effector for the PFRA is shown in Figure 5.5,

where the decrease in stability is more clearly depicted. However, as can be seen from the

figure and comparing the result with the results presented in Figure 5.3, it is clearly evident

that the PFRA enables the end effector of the device to become stable faster and also has a
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Figure 5.2: Performance of the Wave Variable technique as the stiffness of the virtual wall

is increased.
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Figure 5.3: Position of the End Effector of the Haptic Device for the Wave Variable tech-

nique as the stiffness of the virtual wall is increased.
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Figure 5.4: Performance of the Projection based Force Reflection technique as the stiffness

of the virtual wall is increased.
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smaller peak value of oscillation.

Figure 5.5: Position of the End Effector of the Haptic Device for the Projection based Force

Reflection technique as the stiffness of the virtual wall is increased.

Figure 5.6 presents the results for the DFR technique when the stiffness of the virtual

wall is increased. For this case, the value of α is 1.0, as this is the boundary case of

PFRA. From the figure it is apparent that the haptic system suffers significant deterioration

in performance in terms of stability for reflected force as the virtual wall becomes stiffer.

The position information presented in the Figure 5.7 further corroborates this observation,

showing that the end effector suffers from oscillations for a longer amount of time as the

wall stiffness is increased. This effect was clearly experienced by the user as he held on to

the device. Such oscillations resulted also in increased fatigue for the user.
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Figure 5.6: Performance of the Direct Force Reflection technique as the stiffness of the

virtual wall is increased.
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Figure 5.7: Position of the End Effector of the Haptic Device for the Direct Force Reflection

technique as the stiffness of the virtual wall is increased.
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5.4 Experiment 2: Update Rates

The performance of the three techniques were also analysed for different update rates.

Two update rates of the reflected force were chosen for consideration: 500 Hz and 50 Hz.

The performance of the techniques were compared in terms of both reflected force and

penetration of the end effector into the virtual wall, which was described as the position

information of the end effector. The delay in these experiments were set to a minimum of

100 ms with a variation of 50 ms. The virtual wall stiffness was set at 1 N/mm, and the

damping at 0.005 Ns/mm.

The performance of the wave variable technique in terms of the reflected force is shown in

Figure 5.8. For this experiment, the wave impedance was set at a value of 0.005. From the

figure it is apparent the wave variable technique suffers minimal effects due to the change

in update rates. This is in direct contradiction to the conclusions reached in [58], where it

is stated that lower update rates are one of the reasons for the loss of stability.

The information regarding the position of the end effector of the haptic device when the

update rate of the reflected force is changed is presented in Figure 5.9. These figures further

support the results presented in Figure 5.8, that the change in update rates has minimal

effect on the performance of a haptic device when wave variables are used to stabilize the

system.

The results of the effect on the reflected force for a change in update rates for PFRA

with α = 0.2, are presented in Figure 5.10. The results of the experiment show that the

reflected force suffers from decrease in stability due to the change in update rates for the

reflected force. However, when the results in this figure are compared to those presented in

Figure 5.8,it is clearly evident that reflected force becomes stable faster for the PFRA than

the WV technique, even for lower update rates.

From the results presented in Figure 5.11, which shows the position information related

to the PFRA when the update rate of the reflected force is changed, it can be seen that

the end effector suffers from greater oscillations for lower update rates. However, both the
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Figure 5.8: Performance of the Wave Variable technique as the Update Rate of the Reflected

Force is changed.
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Figure 5.9: Position of the End Effector of the Haptic Device for the Wave Variable tech-

nique as the Update Rate of the Reflected Force is changed.
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Figure 5.10: Performance of the Projection based Force Reflection technique as the Update

Rate of the Reflected Force is changed.
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duration of the oscillations and the amount of penetration by the end effector into the virtual

wall is much less compared to the corresponding values for the WV technique.

Figure 5.11: Position of the End Effector of the Haptic Device for the Projection based

Force Reflection technique as the Update Rate of the Reflected Force is changed.

Finally, the results for DFR, with α = 1.0, for different update rates are presented.

Figure 5.12 presents the results for the reflected force. The results in this figure depicts

clearly the significant dependence of the reflected force for DFR on the update rate of the

force. A decrease of the order of 10 for the update rate causes the performance of the

reflected force in terms of stability to deteriorate greatly. The position information for the

DFR presented in Figure 5.13 also supports the results of Figure 5.12. From this figure it is

clear that the end effector of the haptic device suffers from a greater degree of oscillations

for lower update rates of the reflected force. This was also very readily experienced during

the performance of the experiment.
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Figure 5.12: Performance of the Direct Force Reflection technique as the Update Rate of

the Reflected Force is changed.
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Figure 5.13: Position of the End Effector of the Haptic Device for the Direct Force Reflec-

tion technique as the Update Rate of the Reflected Force is changed.
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5.5 Experiment 3: Delay

In the third set of experiments, the performance of the three techniques are compared for

different delay times. The objective was to observe what the effect of different delay times

will have on the reflected force and the amount of penetration by the end effector of the

haptic device into the virtual wall. The minimum values of delay chosen were 100 ms and

500 ms with a variation of 500 ms for both cases. The stiffness of the wall is set at 1 N/mm

and the damping is 0.005 Ns/mm. The update rate of the reflected force is set at 500 Hz.

For experiments related to WV, the wave impedance was set at 0.005 and 0.0175 for mini-

mum delays of 100 ms and 500 ms respectively.

The first figure in this set of experiments, Figure 5.14 shows the performance of the three

techniques in terms of the reflected force for a minimum delay of 100 ms. This result

shows that the PFRA, where α has a value of 0.2, is the fastest to reach a stable value for

the reflected force. The peak value of the oscillation in the reflected force for DFR, with α

= 1.0, is the greatest among the three techniques. For the WV technique, however, the peak

value is the lowest. When the minimum delay is increased to 500 ms, the results show a

marked change in behaviour of the techniques. These results are presented in Figure 5.15.

While the performance of all three techniques suffer some degree of deterioration, it is evi-

dent from the figure that the performance of the WV techniques in terms of reflected force

suffers the greatest, becoming very unstable during the period of observation. The DFR

technique also suffers significantly, which is clearly visible from the fact that it requires

a long time to become stable. The PFRA technique suffers the least degradation in per-

formance, the time required for the reflected force to reach a stable value not increasing

greatly.

The position information for the three techniques for the two delay times under consid-

eration are presented in Figures 5.16 and 5.17. In Figure 5.16, from the position informa-

tion for a minimum delay time of 100 ms, it can be seen that the end effector suffers from

minimum instability among the three techniques. The WV and the DFR techniques both
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Figure 5.14: Performance of the three technique for a minimum delay of 100 ms.
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Figure 5.15: Performance of the three technique for a minimum delay of 500 ms.
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suffer from greater instability than the PFRA, with the penetration of the end effector into

the virtual wall is far greater than the other two techniques. When the minimum delay time

is increased to 500 ms, the advantage of the PFRA is clearly evident. It is clearly visible

from the figure that the PFRA enables the end effector to become stable faster. Compared

to the performance of the PFRA, the DFR performs poorly, which is clear from the figure

where the end effector is shown to take longer in becoming stable. At this larger minimum

delay, the WV technique performs the poorest. This is clearly evident from the fact that

not only does the end effector penetrates the farthest into the virtual wall, it also becomes

significantly more unstable.

Figure 5.16: Position Information for the three technique for a minimum delay of 100 ms.
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Figure 5.17: Position Information for the three technique for a minimum delay of 500 ms.
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5.6 Experiment 4: PFRA Parameter α

The weighting coefficient α has a significant effect on the performance of the PFRA. This

set of experiments were carried out in order to find out the extent of this effect in the

presence of delay. A minimum delay of 200 ms with a variation of 50 ms is used. The

virtual wall had a stiffness of 1 N/mm. The update rate of the reflected force was chosen

as 500 Hz. The values of the parameter α that were chosen are 0.2, 0.5, 0.7 and 1.0. Both

the reflected force and penetration into the virtual wall by the end effector were studied in

order to get an informed view of the effect of change in the parameter.

Figure 5.18 presents the results for reflected force when the value of the parameter α is

changed gradually. As can be seen from the sequence of plots, the performance of PFRA

decreases as the α increases from a small value of 0.2 to 1.0, which corresponds to the

DFR. For the smallest value under consideration, the reflected force experiences the least

oscillations and becoming stable fastest.

The position information presented in Figure 5.19 depicts the same pattern of behaviour

for the PFRA. For a small value of α, for instance 0.2, the PFRA is relatively stable, with

the end effector coming to stable position quickly. However, as α assumes a larger value,

the oscillations become larger, with the end effector requiring a longer time to settle to a

stable position.

5.7 Experiment 5: Delay Variation

In order to study the performance of the different techniques used for haptic systems with

time delay, different delay times with different delay variations were used. It was seen

from the results that these variations had an effect on the transparency of the system. As

the delay variation increases from 10 ms to 100 ms, the apparent stiffness for the WV tends

to decrease. However, for PFRA and DFR, the change in delay variation has no effect. The
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Figure 5.18: Reflected Force for the different values of α
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Figure 5.19: Position Information for the different values of α
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Table 5.1: Apparent Stiffness for Delay Variations

Actual Stiffness 1.0

Delay Variation WV PFRA DFR

200+10 0.089 1.000 1.000

200+50 0.075 1.000 1.000

200+100 0.0643 1.000 1.000

500+10 0.0675 1.000 1.000

500+50 0.0620 1.000 1.000

500+100 0.0580 1.000 1.000

results are placed in Table 5.1.

The variation and the difference in apparent stiffness are shown in Figures 5.20 and

5.21.

5.8 Experiment 6: Apparent Stiffness

The apparent stiffness was calculated for the different actual stiffness for the the three tech-

niques. The results presented in Table 5.2 clearly show that the WV technique suffers from

severe lack of transparency. This results in a softer than realistic feeling of the haptic inter-

action with the virtual wall. It can be seen also from the table that the lack of transparency

becomes more severe for higher values of stiffness for WV. Both the DFR and the PFRA,

on the other hand, are shown to be perfectly transparent in the sense that the apparent stiff-

ness in the steady state is equal to the actual stiffness of the virtual wall, which results in

more realistic feeling of the haptic interaction.
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Figure 5.20: Apparent Stiffness for Delay Variations for Minimum Delay of 200 ms

Table 5.2: Actual and Apparent Stiffness

Actual Stiffness Apparent Stiffness

WV PFRA DFR

1.0 0.0075 1.000 1.000

2.0 0.081 2.000 2.000
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Figure 5.21: Apparent Stiffness for Delay Variations for Minimum Delay of 500 ms
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5.9 Conclusion

The results presented in this section depict the performance of a haptic system under the

effect of random communication delay when three different techniques: wave variables

(WV), projection based force reflection algorithm (PFRA) and direct force reflection (DFR)

are used to improve the stability and transparency of the system. The PFRA is able to

provide a better response for different virtual wall stiffness. For lower update rates, the

PFRA is not as much affected in terms of performance as the DFR. Longer delay times

cause the least deterioration for the PFRA, much less compared to the DFR and WV. The

transparency offered by the PFRA is perfect, and is independent of the variation in the delay,

unlike the WV technique, which has a very poor level of transparency that is dependent on

the variation present in the delay.
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Discussion

6.1 Introduction

Performance of haptic systems suffers from the effects of sampling and quantization, which

may result in the loss of stability. Conventional methods that are used to overcome this

problem typically maintain stability of the haptic system by adding some form of energy

dissipation. However, the improvement of stability is usually achieved at the expense of

decreasing transparency. If time delays are present in the communication channels, the

stability and performance of haptic systems typically deteriorate further. This thesis deals

with experimental investigation of a haptic system with projection based force reflection al-

gorithm (PFRA), which is implemented with the purpose of improving the stability without

sacrificing the transparency. The proposed method is experimentally compared with some

existing more conventional methods, for haptic systems with and without communication

delays.

90
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6.2 Conclusions Drawn from the Work

6.2.1 Non-Delayed Haptic Interaction

The first set of experiments carried out in this thesis deals with the case of a haptic system

that interacts with a virtual wall without communication delay. Three different techniques

were addressed in these experiments, specifically, the virtual coupling (VC), the projection

based force reflection algorithm (PFRA), and the direct force reflection (DFR). The purpose

of this set of experiments was to compare relative performances of the above mentioned al-

gorithms in terms of stability and transparency. Specifically, the stability and performance

of these algorithms were compared for different update rates, as well different stiffnesses

of the virtual wall. An additional experiment has been carried out in order to find how does

the change of the weighting parameter α affect the performance of the PFRA.

Experimental results for different wall stiffnesses are presented in Figures 4.1, 4.2, 4.3 and

4.4. In these experiments, the performance of the algorithms was compared for two differ-

ent values of virtual wall stiffness: K = 3 N/mm and K = 10 N/mm. For the lower value

of the wall stiffness K = 3 N/mm, the performance of the force response of VC and PFRA

is comparable, while the performance of DRF is the worst. However, the situation is quite

different for K = 10 N/mm. In this case, the performance of both DFR and VC was very

poor, with only PFRA providing a good response. In terms of the position response, the

PFRA performs better than the other two techniques for both levels of wall stiffness. It is

specially notable that the end effector takes a longer time to reach a stable position for VC.

In order to study the effect of low update rate on the performance of haptic system, ex-

periments were performed with two different update rates: 500 Hz and 50 Hz. The DFR

behaves as expected, with its performance degrading substantially for lower update rates,

as shown in Figures 4.7 and 4.8. For the VC, the performance also suffers if the update rate

decreases, which can be seen in Figures 4.9 and 4.10. However, the performance deterio-

ration for VC is less significant in comparison with the DFR. The lower update rate has the
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least effect on the performance of PFRA, which suffers minimal deterioration. The results

for this case are shown in Figures 4.5 and 4.6. Even though the VC and PFRA performs

similarly for higher update rates, the end effector takes a longer time to reach its final posi-

tion for VC, as shown in Figure 4.10.

The purpose of the next experiments was to compare the transparency of the DFR, VC, and

PFRA, in the steady state. The apparent stiffness, which was the ratio of the reflected force

to the penetration of the device into the virtual wall, was used as a measure of transparency

in these experiments. The results of this comparison is presented in Table 4.1. From these

results, it is evident that the VC has very poor transparency, as the apparent stiffness is

typically significantly lower than the actual one. In fact, the transparency of VC becomes

poorer as the stiffness of the wall increases. Both the PFRA and the DFR, however, demon-

strate perfect transparency in the sense that the apparent stiffness for these two algorithms

is always equal to the actual stiffness of the virtual wall.

The last experiment in this set has been performed in order to determine the effect of the

weighting parameter α ∈ [0, 1] on the performance of the PFRA. The results of this exper-

iment are presented in Figures 4.11 and 4.12. These results show that the performance of

the PFRA clearly deteriorates as α ∈ [0, 1] grows; in particular, algorithm with α = 1.0 has

clearly the worst performance.

Results from the above described experiments carried out for a haptic system with no com-

munication delay allows the following conclusions to be drawn,

a) The PFRA is able to provide a stable response for different values of wall stiffness,

suffering little loss of performance for high stiffness values. On the contrary,

performance of the DFR and the VC decreases substantially as the stiffness of the

virtual wall increases.

b) Decreasing the update rate has little effect on PFRA, while the performance of the

VC deteriorates more significantly as the update rate decreases. The DFR suffers
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major performance deterioration as the update rate decreases.

c) Both the PFRA and the DFR are perfectly transparent in the steady state, while

the transparency of the VC is typically very poor.

d) Proper choice of the weighting coefficient α ∈ [0, 1] is important for PFRA, as it

has significant effect on its performance.

Overall, our experiments demonstrate that the PFRA is able to maintain both stability

and transparency for a haptic system without communication delay for a wide range of

the stiffnesses of the virtual wall, and is relatively insensitive to changes in update rate.

Also, the above described experiments demonstrate that, in most cases, the PFRA clearly

outperforms both the VC and the DFR in terms of stability and transparency.

6.2.2 Delayed Haptic Interaction

The presence of irregular delays in the communication channel may result in instability of

a haptic system, as the delays may generate energy thus making the overall system non-

passive. The second set of experiments addressed the problem of stability and transparency

of a haptic system in the presence of irregular communication delays. The following three

techniques were chosen for study: the wave variable scheme (WV), the projection based

force reflection algorithm (PFRA), and the direct force reflection (DFR). These techniques

were experimentally compared for different wall stiffness, update rates, and characteristics

of communication delay. The performance of the PFRA was also evaluated for different

values of the weighting parameter α ∈ [0, 1].

The performance of the three techniques were studied for two different wall stiffness of

K = 1 N/mm and K = 2 N/mm, respectively. The results of these experiments are pre-

sented in Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. From these results, it is evident that the

response of WV suffers from deterioration of performance, especially for higher stiffness.

The DFR also demonstrates similar decrease in the performance for higher values of stiff-
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ness. However, PFRA does not suffer as much as the other two, and it stabilizes fastest in

terms of both force and position responses.

The effect of update rates are presented in Figures 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 for

two different update rates: 500 Hz and 50 Hz. These figures show that the performance

degradation is smallest for WV, followed by the PFRA. The performance of DFR suffers

the most. However, in comparison with the other two techniques, the response of PFRA

stabilizes faster for both the update rates.

The effect of communication delay on the performance of different techniques was also

studied, with the results being presented in Figures 5.14, 5.15, 5.16 and 5.17. These fig-

ures show that the PFRA performs the best among the three techniques for both small and

large values of communication delay. It stabilizes faster than WV and DFR, and with less

oscillations. In fact, the performance of WV suffers significantly for large values of com-

munication delay.

The effect of the weighting parameter α has a significant effect on the performance of the

PFRA, as shown in Figures 5.18 and 5.19. The results presented in these figures show that

low values of α is a necessary condition for proper operation of PFRA.

Transparency has been studied for different amounts of delay variations. From the results in

Table 5.1, it can be seen that the WV suffers significantly for more irregular communication

delays. This variation or randomness in delay does not have any effect on the transparency

of the system when PFRA and DFR are used. This is also the case when the transparency

is studied for different levels of wall stiffness, as presented in Table 5.2. From this Table, it

can be seen that the performance of the system in terms of transparency does not suffer for

PFRA and DFR as stiffness is increased, unlike the WV.



Chapter 6. Discussion 95

Results of the experiments carried out for a haptic system with irregular communication

delays allow the following conclusions to be drawn:

a) The PFRA demonstrates stable response for different values of wall stiffness,

without suffering from significant deterioration in performance, compared to the

DFR and WV.

b) Lower update rates do not affect the performance of the PFRA and WV as much

as they do for the DFR. However, the PFRA is the fastest to stabilize.

c) Large communication delays do not affect the performance of PFRA as much as

they affect the performance of DFR and WV.

d) Both the PFRA and DFR are perfectly transparent regardless of the variation

of communication delays. The WV algorithm demonstrates poor transparency,

which further deteriorates for large variations of the communication delays.

e) Proper choice of the weighting coefficient is important for PFRA, as it has a sig-

nificant effect on its performance.

These conclusions lead to the belief that the PFRA is able to better maintain both stability

and transparency for a haptic system with irregular communication delays, when compared

to the other two techniques under study.

6.3 Future Work

While the current thesis has focused on examining the performance of the PFRA in terms

of stability and transparency of the haptic systems, it may be expanded along the following

lines in future:

a) A simple virtual wall was used for experiments as it is treated as a benchmark for

such studies. More complex virtual environments may be substituted for the wall

in future experiments.
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b) In this research, the interaction between the haptic device and the virtual wall is

1-DOF, where the contact force is generated in x-direction only. More complex

interaction algorithms would be of interest to further study the performance of

PFRA.

c) Instead of the pen-based master that has been used in these experiments, a differ-

ent haptic display, such as the haptic glove may also be used in future studies.
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Appendix A

Dirty Derivative Filter

A dirty derivative filter [65] has been used to obtain the estimate of velocity from position

information. The filter design consists of the following equations:

ξ̇1 = ξ2 + gα1(q̂m − ξ1) (A.1)

ξ̇2 = g2α0(q̂m − ξ1) (A.2)

α0 and α1 are positive constants such that the roots of p(s) = s2 + α1s + α0 have negative

real parts and g is a positive constant and is the gain of the filter. The cut-off frequency of

this filter can be found as follows,

fcdd =
√
αg (A.3)

and will have an unit of rad/s. q̂m in the above equations is the reference signal and is an

estimate of the position. The introduction of the dirty derivative filter serves two purposes:

1. If q̂m is sufficiently smooth, the filter serves as a reduced order observer and provides

the first and second order time derivatives of q̂m (velocity ξ2 and ξ̇2).

2. If q̂m is not sufficiently smooth (discontinuous), the filter acts as a governor to provide

a smooth approximation.
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High Gain Observer

Considering a first-order dynamic system

ż = y + x (B.1)

where, the signals z and y are measured. The time varying input x is unknown and needs to

be estimated online. In order to make a measurement of x, a controller can be designed for

the system such that,

˙̂z = u (B.2)

using the virtual control variable u to estimate x since,

y + x = u (B.3)

This class of controllers are referred to as observers. One of the popular types of observers

is high gain observer [67]. It is defined in terms of the auxiliary variables v and ε, where,

v = γz − ε − x (B.4)

and ε satisfies,

ε̇ = −γε + γy + γ2z (B.5)

where γ > 0 is the observer gain. By increasing the value of gain γ, the value of the error

v can be made arbitrarily small [67], thereby making the estimate x̂ more accurate. This
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estimate can be found from,

x̂ = γz − ε (B.6)

Another way to find the same solution is to filter both sides of the system equation using a

low-pass filter. The filtered equation will be,

1
τs + 1

x =
1

τs + 1
(sz − y) (B.7)

where, τ is the filter time constant and s = jω is the Laplace variable. Now, from the above

equation,

1
τs + 1

x =
z
τ
−

1
τs + 1

(
z
τ

+ y)

=
z
τ
− ε

(B.8)

where, ε is denoted as,

ε =
1

τs + 1
(
z
τ

+ y) (B.9)

So, the estimate of x can be found as

x̂ =
1
τ

z − ε (B.10)

With γ = 1
τ
, it is reduced to the earlier equation for the estimate of x.



Appendix C

Model of the Phantom OmniTM Haptic

Device

Figure C.1: Phantom Omni from SensAble Inc. [2]

The Phantom OmniTM haptic device can be represented by a dynamic equation of the

following form:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + KF(θ̇) = JT (θ) fh − JT (θ) fr (C.1)

In the dynamic equation,
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M(θ) = 3×3 matrix of inertia,

C(θ, θ̇) = 3×3 matrix of Coriolis and centrifugal forces

G(θ) = 3×1 gravity vector

KF(θ̇) = dissipative torques

fh = force applied by the human operator

fr = reflected force

J(θ) = Jacobian of the device

The elements of the matrices and vectors are defined as follows:

M11 = π1 + π2 cos2(θ2) + (π3 + π5) sin2(θ3) + 2π6 cos(θ2) sin(θ3)

M22 = π4 + π5 − 2π6 sin(θ2 − θ3)

M23 = M32 = π5 − π6 sin(θ2 − θ3)

M33 = π5 C11 = −(π2 sin(θ2) cos(θ2) + π6 sin(θ2) sin(θ3))θ̇2 + ((π3 + π5) sin(θ3) cos(θ3) +

π6 cos(θ2) cos(θ3))θ̇3

C12 = −(π2 sin(θ2) cos(θ2) + π6 sin(θ2) sin(θ3))θ̇3

C13 = ((π3 + π5) sin(θ3) cos(θ3) + π6 cos(θ2) cos(θ3)θ̇1

C21 = (π2 sin(θ2) cos(θ2) + π6 sin(θ2) sin(θ3))(̇θ1)

C22 = π6 cos(θ2 − θ3)((̇θ3) − (̇θ2))

C23 = π6 cos(θ2 − θ3)(θ̇2 − θ̇3)

C31 = (−(π3 + π5) sin(θ3) cos(θ3) − π6 cos(θ2) cos(θ3))θ̇1

C32 = −2π6 cos(θ2 − θ3)θ̇2

C33 = 0

G1 = 0

G2 = π7 cos(θ2)

G3 = π8 sin(θ3)

KF1 = π9θ̇1 + π12 tanh(θ̇1)

KF2 = π10θ̇2 + π13 tanh θ̇2

KF3 = π11θ̇3 + π14 tanh θ̇3

The least-squares parameter identification algorithm was used to determine the parameters
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π1 . . . π14, which are the parameters of the device. The values of these parameters are given

below.

π =



π1

π2

π3

π4

π5

π6

π7

π8

π9

π10

π11

π12

π13

π14



=



0.00001

0.0028

0.0005

0.0009

0.0002

0.0010

0.0805

0.1184

0.0048

0.0099

−0.0017

0.0203

0.0305

0.0313



(C.2)



Curriculum Vitae

Name: Mir Zayed Hasan

Post-Secondary University of Dhaka, Dhaka, Bangladesh

Education and 1996 - 2000 B.Sc.

Degrees: University of Dhaka, Dhaka, Bangladesh

2000 - 2001 M.S.

Related Work Teaching Assistant

Experience: The University of Western Ontario

2011 - 2012

Publications:

1. Ilia Polushin, Mir Zayed Hasan, Amir Takhmar, Experimental Evaluation of a Projection-

based Force Reflection Algorithm for Haptic Interfaces, 2012 Haptics Symposium,

pp. 503-507, 4-7 March 2012, Vancouver, British Columbia, Canada.

2. Mir Zayed Hasan, Projection based Force Reflection Algorithm for Rendering Stiff

Virtual Environments, Tenth International Conference for Upcoming Engineers (ICUE

2011), pp 43-46, May, 2011, Toronto, Ontario, Canada.


	Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment
	Recommended Citation

	Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment

