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Abstract

It was previously established that the projection-based force reflection (PBFR) algo-

rithms improve the overall stability of a force reflecting teleoperation system. The idea

behind the PBFR algorithms is to identify the component of the reflected force which

is compensated by interaction with the operator’s hand, and subsequently attenuate

the residual component of the reflected force. If there is no a priori information re-

garding the behaviour of the human operator, the PBFR gain is selected equal to a

sufficiently small constant in order to guarantee stability for a wide range of human

operator responses. Small PBRF gains, however, may deteriorate the transparency

of a teleoperator system. In this thesis, a new method for selecting the PBFR gain

is introduced which depends on the human operator posture. Using an online human

posture estimation, the introduced posture-dependent PBFR algorithm has been ap-

plied to a teleoperation system with force feedback. It is experimentally demonstrated

that the developed method for selection of the PBFR gain based on human postures

improves the transparency of the teleoperator system while the stability is preserved.

Finally, preliminary results that deal with an extension of the developed methods

towards a more realistic model of the human arm with 4 degrees of freedom and three

dimensional movements are presented.

Keywords: Teleoperation system, stability, transparency, passivity, small gain the-

orem, projection-based force algorithm, velocity and force transmission rates.
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Chapter 1

Introduction

Telerobotics is a part of robotics which deals with remote control of robots. An

important part of telerobotics is teleoperation, which means operating at a distance. A

teleoperator system consists of two separate manipulators, called a local manipulator

and a remote manipulator which communicate information, usually position, velocity

and/or force, through a communication channel. The remote manipulator follows

the local manipulator to execute a task on a remote environment. When the remote

manipulator is in contact with its environment, it may be desirable to send the contact

force information to the local manipulator, since this provides the human operator

with better understanding of the contacted environment and hence can improve the

performance of the system during task execution.

Although force feedback provides the human operator with a better under-

standing of contact tasks, at the same time it may create problems such as instability

of the system due to unwanted motion caused by the reflected force from the con-

tacted environment. In certain tasks where a high level of precision is needed, such

as telesurgery, handling hazardous materials, etc., this instability may result in dan-

gerous situation or even cause irreversible damage. Projection-Based Force Reflection

(PBFR) algorithms were introduced to address this issue [58, 59, 60]. The idea be-

hind PBFR algorithms is to decompose the force reflection signal into interaction and

motion-generating components, and subsequently attenuate the latter while applying

the former in full. The interaction component of the reflected force is defined as

ϕenv := Sat[0,1]

{
f̄Th fenv

|f̄h|2 + ε

}
f̄h,

1



2

where fenv is the force feedback from the remote side, f̄h is the estimate of the human

force applied to the haptic device, and ε > 0 is a small number introduced to avoid

the ambiguity arising when f̄h = 0. The algorithm finds the interaction component as

the projection of force feedback on the direction of the human force with magnitude

bounded by the magnitude human force. The PBFR algorithm suggests to generate

the force reflection signal as a convex combination of the direct force feedback and

the projection-based component:

fr = αfenv + (1− α)ϕenv,

where α ∈ [0, 1]. It is shown [61] that the PBFR algorithm improves the stability

of the force reflecting teleoperator system with haptic interface without considerable

transparency deterioration. In addition, it has been shown [61] that the algorithm

guarantees the convergence of the reflected force to the contact force in teleoperator

systems when in contact with the environment. Because of the fact that there is no

a priori information of the human operator forces, the PBFR gain α is chosen small

enough to cope with a wide range of human operator responses. Although a small

PBFR gain α > 0 implies stability of the system, it increases the transient time and

hence decreases the performance of the system. Therefore, selecting the gain so that

it keeps a reasonable level of stability and transparency at the same time will be a

question of interest and is the core of this thesis. To be more precise, we look at an

issue that has not been discussed in earlier research works on PBFR algorithm which

is the effect of the human posturing on the stability of a teleoperator system when

the PBFR algorithm is applied. The main idea is to adjust the PBFR gain α based

on the human postures (or, more precisely, based on the force transmission ratio of

the human hand in the direction of the reflected force, which is roughly speaking a

measure of the human capability for compensating an external force). Our method

suggests that there is no need to select a very small constant as the PBFR gain during
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a task; instead, one can select the gain according to human postures, with small

values only selected for the cases where the human hand cannot compensate for the

reflected force. The method is applied to a single-local single-remote force feedback

teleoperator system using a webcam to detect the human posture online and update

the gain at each instant in time during execution of a task. Our suggested method is

supported by simulations and experimental results which show how the performance

of the system is improved in comparison with the usual PBFR algorithm.

1.1 Contributions

The main objectives/contributions of this thesis can be summarized as follows:

• Survey of the research studies on a teleoperator system from a control theoretic

point of view which covers the stability and transparency issues associated with

a teleoperator system with force feedback. Two approaches, i.e., passivity-

based and small gain methods are discussed and the (selected) related issues

are addressed as well as suggested solutions.

• Development of a new method for on-line selection of PBFR gain based on the

human operator postures (instead of the non-posture dependent gain applied in

the earlier related works).

• Improvement of the transparency of a force reflecting teleoperator system, using

the new posture dependent projection-based gain and online posture estimation,

while the stability of the system is preserved, compared to the projection-based

force reflection algorithm with a non-posture dependent gain.

1.2 Thesis outline

Here is the outline of this thesis. Chapter 2 is a literature review of the stability and

transparency of a teleoperator system with force feedback and also of the two main
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approaches to study stability of the system, i.e., passivity based and small gain meth-

ods. In Chapter 3, we review elements of task manipulability and also investigate the

effect of human posturing on the performance of a haptic interface. In Chapter 4,

a new posture-dependent projection-based force reflection gain dependent on human

postures is introduced and experimental results are provided to demonstrate the per-

formance of the system with the new posture-dependent PBFR gain versus constant

PBFR gain. Chapter 5 is devoted to applying the mentioned posture-dependent gain

to teleoperation systems, using an online human posture estimation. Chapter 6 dis-

cusses a generalization of our method to a more realistic model of the human arm

with 4 degrees of freedom and 3-dimensional movement, unlike the 2-DOF planar

model of the arm adopted in the earlier chapters. Finally, in Chapter 7, the thesis

contribution as well as possible future work are briefly summarized.



Chapter 2

A Survey of Teleoperation

Over the past few decades the progress in telerobotics has changed our vision as well

as our expectation of robots. The idea that a robot can be controlled in a remote

environment brings a number of capabilities with extensive amount of applications,

from undersea to space exploration, and from robotic telesurgery and high precision

assembly to handling heavy loads and hazardous materials.

An important part of telerobotics is teleoperation, that is operating at a dis-

tance. A teleoperator system usually consists of two separate manipulators, called

local manipulator and remote manipulator which are connected through a communi-

cation channel. The local and remote manipulators exchange information (usually,

force, position and/or velocity) through this communication channel. The remote

manipulator, which might have some degrees of autonomy, will follow the local ma-

nipulator to execute a task on a remote environment (Figure 2.1). A teleoperation

system with one local and one remote manipulator is called single-local single-remote

teleoperation system and a teleoperation system with more than one local and more

than one remote manipulators is called multi-local multi-remote teleoperation system.

When the remote manipulator is in contact with an environment, in order to provide

a better understanding of the contact environment for the human operator at the

local side and hence achieve a higher level of performance, it is frequently desirable

to send the interaction force information to the local manipulator. Such a force feed-

back, however, may cause a number of difficulties such as instability which will be

explained later in this chapter. For example, the current commercial telesurgical min-

imally invasive surgery (MIS) systems do not provide force feedback due to the above

5
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mentioned issues. However, there are experimental results demonstrating that the

haptic feedback improves the task performance. Two main requirements associated

with the force reflecting teleoperation systems are stability and transparency of the

system. There are several definitions of stability such as Lyapunov stability, input-

output stability, input-to-state (input-to-output) stability, etc.; some of them will be

explained later in this chapter. A rigorous definition of transparency will be pre-

sented later in this chapter; informally, a system is called transparent if the received

signals at local (respectively, remote) side are the same as sent signals from remote

(respectively, local) side. Transparency also can be defined in terms of impedance

matching, in the sense that the transmitted to human impedance is equal to the envi-

ronmental impedance [42]. In this case, the difference between these two impedances

can be considered as a measure of transparency. Cooperation between local and/or

remote manipulators during a task execution is advantageous in many applications

such as robotic telesurgery, high precision assembly, heavy loadings and handling

hazardous materials. In these tasks, lack of stability and/or transparency may result

in unsuccessful task execution and even irreversible damage. It is known that [72],

in the presence of the delay in the communication channel, the teleoperation system

may become unstable. In some cases, communication delay is a known constant but

this does not hold in the case of teleoperation over the Internet which has recently

been widely accepted as a communication medium. The time delay function in the

case of communication over the Internet is typically time-varying and unknown. The

stabilization techniques used in the case of constant communication delays will not

guarantee stability of the system in the presence of time-varying delays. On the

other hand, the transparency of the system, which is usually a conflicting goal with

the stability, can be achieved by a different approach. In addition to the stability

and transparency issues of the teleoperator systems, the possibility of data dropouts

in the communication channel is another problem that might occur because of the

Internet-based teleoperation. In the case where some packets are lost, it may be
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Figure 2.1: Teleoperator system; vh, vl, vrd, vr represent human velocity, local veloc-
ity, delayed velocity received at remote manipulator, and remote velocity. fe, fr, fld, fl
are environment force, remote force, delayed force received at the local manipulator
(master), and the local force.

useful to forget the old packet and send new packets which contain the recent in-

formation [75], but significant amount of data dropouts will cause discontinuity of

the reference trajectories and forces transmitted between the local and the remote

manipulators.

In the next section, we discuss some recent results that address the issues of

the teleoperation systems in the presence of the communication delay, as well as

two main approaches to the design of teleoperator systems, i.e., passivity-based and

small-gain-based approaches, to tackle problems arising in this area.

2.1 Passivity based approach

A challenging problem in teleoperation systems design is to achieve stability and

transparency of the system at the same time which are frequently conflicting goals;

therefore, usually some trade-off between stability and transparency is required. To

find an accurate relationship between these two determining factors of performance

is a challenging problem.

An important step in the design of control algorithms in robotics is determina-

tion of the dynamics of the system. Dynamics (or equations of motion) of a robotic
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system in our context is given by

∑
i

mkj(q)q̈j +
∑
i,j

Γijk q̇iq̇j + gk(q) = τk, k = 1, 2, · · · , n, (2.1)

where q = (q1, q2, · · · , qn)T describes trajectory of the motion on a n−dimensional

smooth manifold. Velocity and acceleration of the motion are given by the time

derivatives q̇, q̈. We recall that an n−dimensional manifold is a (topological) space

that locally looks like the Euclidean space Rn. In the cases that are of interest for

our work, the manifold is usually a compact smooth sub-manifold of a N -dimensional

Euclidean space, for some positive integer N . For example, in the case of a two

degrees-of-freedom manipulator shown in Figure 2.2, the configuration space is the

compact 2-dimensional manifold S1 × S1 (Figure 2.3), where S1 is the unit circle

defined as S1 = {z ∈ C| |z| = 1}.

Figure 2.2: A 2-DOF manipulator.

The elements mij are the components of the metric/inertia matrix (more pre-

cisely, the type 2-covariant metric tensor). The Christoffel symbols Γ’s are given by

the partial derivatives of the metric tensor, mij , as

Γijk :=
1

2
(mkj,i +mki,j −mij,k). (2.2)
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Here, as it is conventional in differential geometry and physics, subscripts will be used

for the covariant components of a tensor, and fi = ∂f
∂qi

. The gravity term is given by

gk and τk is the external force.

Figure 2.3: Two dimensional torus S1 × S1

In control literature, the dynamics are typically described by the Euler-Lagrange

equations of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (2.3)

where τ = (τ1, τ2, · · · , τn)T ∈ Rn is the external force, M(q) = (mij(q)) is the inertia

matrix, C(q, q̇) = (cij(q, q̇)) is called the Coriolis and centrifugal matrix given by

cij =
∑
l

Γlij q̇l,

and G(q) = (g1(q), · · · , gn(q))T is the gravity vector field. These equations of mo-

tion can be obtained for example by applying the Euler-Lagrange equations to the

Lagrangian L = K − P of the system, where K and P are the kinetic and potential

energy of the system, respectively. We assume that the kinetic energy is given by a

quadratic form defined by a symmetric positive definite matrix M = (mij(q)) as

K =
1

2

∑
ij

mij(q)q̇iq̇j ,

and the potential energy depends only on the coordinate, i.e. P = P (q). The Euler-
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Lagrange equations are given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi, i = 1, 2, · · · , n.

The terms ∂L
∂q̇i

and ∂L
∂qi

are called generalized momentum and generalized force, respec-

tively. In telerobotics, the dynamics of the system is given by a pair of equations of

motion, one for the local manipulator and one for the remote manipulator as follows,


Mlq̈l + Clq̇l +Gl = τl

Mrq̈r + Crq̇r +Gr = τr.

(2.4)

In this chapter, we use subscripts l, r for local and remote manipulators and drop

the argument of the matrices, whenever there is no place for confusion. For example,

we use M(ql) for the local inertia matrix instead of Ml(ql) and also we use the brief

notation of Ml := M(ql).

2.1.1 General properties of the robot dynamics

The matrices in the above equations of motion enjoy a few important properties that

we mention here.

Property 1. The matrix Ṁ − 2C is skew symmetric, that is, for any vector

v, one has (v, (Ṁ − 2C)v) = 0. Here, (u, v) =
∑
i uivi is the usual inner product for

vectors u, v ∈ Rn. In fact the skew-symmetric property of Ṁ − 2C follows from the

equation

ṁij − 2cij =
∑
k

(
∂mjk

∂qi
− ∂mik

∂qj

)
q̇k.

We note that, for any size n matrix A and vector v ∈ Rn, by expanding with respect

to an orthonormal basis, one has (v,Av) =
∑
i,j aijvivj , where vi’s and aij are

components of the vector v and the matrix A. This sum simply vanishes if A is
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skew symmetric. The skew symmetric property of Ṁ − 2C is also equivalent to

Ṁ = C + CT .

An immediate consequence of this property is the passivity of the system. Con-

sider a nonlinear system given by


ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

(2.5)

where x(t) = (x1(t), · · · , xn(t)) is the state of the system which belongs to Euclidean

space Rn at each instant time t, u(·) : [0,∞) → Rp is the input, control or distur-

bances depending on the context, and y(t) = (y1(t), · · · , yp(t)) is the output of the

system for some positive integers n, p. The function f : Rn+p → Rn is locally Lips-

chitz and h : Rn → Rm is continuous. We omit the argument t usually. The solution

x(t, x0, u) is considered on a maximal interval [0, tmax(x0, u)) for the initial state x0

and the input u. For a system with no input,

ẋ(t) = f(x(t)), (2.6)

the solution is denoted by x(t, x0). The zero input system associated with ẋ = f(x, u)

is the system ẋ = f(x, 0).

Definition 2.1.1. The system given by (2.5), is called passive if

〈y, u〉 ≥ −β for some β ≥ 0. (2.7)

Here, the inner product of the two signals v(t) = (v1(t), · · · , vp(t)) and w(t) =

(w1(t), · · · , wp(t)) is given by

〈v, w〉 =

∞∫
0

vTw dt.
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This integral shows the energy absorbed by the system, and β at the right side of

the definition can be thought as the initial energy stored at the system. To avoid

the complexity arising from the Lebesgue integral, one can consider just piecewise

continuous signals. As it can be seen, passivity is an input-output property of the

system. In fact, it measures the exchanged power/energy between the interconnected

subsystems. The passivity of a dynamical system can also be defined equivalently as

follows [62]:

Definition 2.1.2. The dynamical system (2.5) is called passive if there exists a pos-

itive semidefinite C1-function V : Rn → R, such that

V̇ ≤ uT y.

The function V is called a storage function of the system. Establishing the

passivity of a system allows one to consider sum of storage functions of the subsystems

as a Lyapunov function candidate for the system to prove the stability, assuming the

environment and the human operator are passive. We recall that the system (2.5) is

Lyapunov stable at x = 0 if for any ε > 0, there exists a δ > 0 such that |x(0)| < δ

yields that x(t) < ε for all t > 0. It is well known that the existence of a so called

Lyapunov function, which is a positive definite function on a region containing origin

with a negative definite time derivative, implies the Lyapunov stability. We will refer

to [62] for more details on generalizations of this definition.

Note that here and in the following, we use the notation | · | for the standard

Euclidean norm, i.e., |v| =
√
v21 + · · ·+ v2n for a vector v ∈ Rn.

We will use the notation 〈v, w〉t for the integration on the finite time interval

[0, t], that is,

〈v, w〉t =

t∫
0

vTw dt.
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The norm induced by 〈, 〉 is called the L2-norm and is denoted by ||v||2 = 〈v, v〉1/2.

The Lp− norm is defined by

||v||p =
( ∞∫
0

|v|p
)1
p
.

A bounded signal is a signal whose norm, which is appropriately chosen de-

pending on the context, is finite. When the Lebesgue integral is applied, the space of

signals with bounded Lp−norm is called the Lp space, which is a Banach (and hence

a normed) space. In the special case that p = 2, this will also be a Hilbert space with

a complete set of orthonormal basis. This is a crucial fact in proving Parsvall’s iden-

tity, which gives us the ability to find the norm of a signal in the frequency domain

instead of time domain.

As it is already mentioned, passivity of a system is equivalent to the existence of

a storage function [36], which is closely related to the Lyapunov function. An impor-

tant feature of passive systems is the fact that the negative feedback interconnection

of passive systems is also passive and stable [36].

Now, let us go back to the dynamic equations of a teleoperation system.

Property 2. The system (2.5) is passive, i.e., the following holds for some

β ≥ 0 and for all t1 > 0,
t1∫
0

q̇(t)T τ(t) dt ≥ −β.

The quantity q̇T τ is the power flow of the system. To see the passivity of the system,

one can consider the total energy of the system E = K+P . Then the time derivative

of the total energy is given by

Ė = q̇TMq̈ +
1

2
q̇T Ṁ q̇ + q̇T ∂qP = q̇T τ,



14

where ∂qP is the gradient of the potential energy. Therefore, one has

t1∫
0

q̇(t)T τ(t) dt = E(t1)− E(0) ≥ −E(0),

which yields the passivity of the system for β = E(0). Note that, the passivity holds

for both local and remote manipulators.

Property 3. Another important fact about the symmetric positive definite

matrix M is the following inequality which holds at each point q

λmin(M(q))|v|2 ≤ vTM(q)v ≤ λmax(M(q))|v|2.

Here λmin(M(q)), λmax(M(q)) > 0 are minimum and maximum eigenvalues of the

positive definite matrix M(q). This is a point-wise property, but if the configuration

space is a compact space, which is the case when joints are revolute and/or prismatic

with finite range of motion, we have

λ1|v|2 ≤ vTM(q)v ≤ λ2|v|2, for some λ1, λ2 > 0.

Property 4. The next important property is about the matrix C and its bounded-

ness. In fact,

|C(q, q̇)q̇| < K|q̇|2, for some K > 0.

Property 5. The last property that we mention here is, the equations of motion can

be linearly parameterized as Mq̈ + Cq̇ +G = Y (q, q̇, q̈)Θ. For details on proof of the

mentioned properties, reader is referred to [41, 62].

It was around 1980s that it was realized that a local-remote teleoperator system

can be modeled as a two port network (Figure 2.4), which was already introduced

and studied in literatures [8, 26, 27, 28]. The two-port network properties can be

analyzed using different models, such as impedance, hybrid and admittance matrices.



15

Figure 2.4: Two-port network

The impedance matrix for the 2-port network is relating velocities to forces as

f1
f2

 = Z(s)

v1
v2

 ,

Each component of Zij(s) has an expression in terms of local, remote impedance and

controllers. Here, fi, vi are the force and velocity signals in frequency domain.

The hybrid matrix of the two-port network system, H, is defined as

 f1

−v2

 =

h11 h12

h21 h22

v1
f2

 , (2.8)

where hij are the components of the matrix H; the above equation is written in the

frequency domain. Each entry hij(s) of the hybrid matrix has a natural meaning

related to the system [32]. In fact, diagonal entries are input and inverse output

impedance and off-diagonal entries are force and velocity scaling.

2.1.2 Stability vs. Transparency

The relation between stability (passivity) and transparency has been studied for

several configurations of teleoperator systems [42], including position-position and

position-force schemes. It was found that passivity and transparency are conflicting

goals. This means that, selecting design parameters appropriately, a system might

become more passive but at the cost of transparency deterioration, or one might
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achieve a more transparent system at the expense of lower stability margin. The

following is a well known example that demonstrates this trade-off. Considering the

usual two-port network given by the system equations (2.8), the ideal hybrid matrix

which is related to the perfect transparency is given as follows:

Hideal =

 0 1

−1 0

 .

On the other hand, it can be shown that the system given by this matrix is marginally

stable, and even a small disturbance (such as small communication delays) might

make it unstable. This can be seen by analyzing the system given by

H =

 0 e−sT

−e−sT 0

 . (2.9)

In the next section, while discussing scattering transformation, we will show, using

the relation between the scattering matrix and the hybrid matrix, that the above

system is not passive. We refer the reader to [26] for methods of how to obtain the

ideal transparency matrix that is mentioned above. The hybrid method has also been

used to address several issues of 2-port networks, such as four-channel setup [42].

2.1.3 The effect of time delay on stability and transparency

The communication delay for teleoperator systems over a long distance is almost

unavoidable despite today’s technological development. The existence of time delay

affects performance of a teleoperator system, including its stability and transparency

characteristics. The effect of delay on transparency can be explained as follows:

while the human operator performs a task and is in contact with an environment,

he/she cannot feel the feedback until after a round trip time delay, which excludes

the possibility for the system to be ideally transparent (for example, in the sense of
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impedance matching [42]).

On the other hand, the effect of communication delay on stability has been

shown first in [25], where it was demonstrated that the system in the presence of time

delay as small as 0.1 sec may become unstable.

2.1.4 Scattering transformation

A breakthrough step in investigating the stability of a teleoperator system in presence

of time delay was the work [3], where the authors considered transmitting the so-

called incident and reflected scattered information instead of the original velocity and

force signals in the presence of a constant time delay (see also [4]). The scattering

transformation S is given by the formula

f − v = S(f + v),

where the force and the velocity f, v are considered to be L2 bounded signals. A

relation between the scattering matrix and the hybrid matrix in the 2-port channel

case is given by the formula

S =

1 0

0 −1

 (H − I)(H + I)−1.

Here, I is the identity matrix. It is not hard to see that the passivity of the sys-

tem which is given by 〈v, f〉 ≥ 0 is equivalent to ||S||∞ ≤ 1. Note that ||A||∞ =√
λmax(AA∗). With this in mind, we can see that the system given by (2.9) is not

passive (and hence stability is not guaranteed), since its scattering transformation is

given by

S =

1 0

0 −1

 −1 e−sT

−e−sT −1

 1 e−sT

−e−sT 1

−1 =

− tanh(sT ) cosh−1 sT

cosh−1 sT tanh(sT )





18

and its norm is

||S||∞ = supω(| tan(ωT )|+ | sec(ωT )|) =∞.

In [3], the teleoperation system is described by equations

Mlv̇l +Blvl = Fh − Fref

Mrv̇r +Brvr = Fr − Fe

where Fr = Kr
∫

(vrd − vr) dt + Dr(vrd − vr) and Fref = Fr, vrd = vl. Note that

here Ml,Mr, Bl, Br are constant matrices with appropriate size. It is shown that the

natural control law Fref (t) = Fr(t−T ) and vrd(t) = vl(t−T ) results in an unbounded

scattering matrix. Here, T is a constant time delay. However, the following control

law

Fref (t) = Fr(t− T )− vrd(t− T ) + vl(t)

vrd(t) = vl(t− T )− Fr(t) + Fref (t− T )

yields the scattering matrix

S =

 0 e−sT

e−sT 0

 ,

which has norm equal to 1 and hence, the communication channel is passive. Indeed,

one can see that

SS∗ =

1 0

0 1


and λmax(SS∗) = 1.
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2.1.5 Wave variables method

There is a similar concept to scattering which is called wave variables and was in-

troduced in [46, 47]. It addresses the passivity issue of the communication channel

with the time delay. In this method, one transfers the signals U and V instead of the

original signals f and v, Figure 2.5, which are given by

Figure 2.5: Wave variable method

U1 =
bvl + fl√

2b
, V2 =

bvr − fr√
2b

,

where b > 0 is called the characteristic wave impedance. A simple computation shows

that

2〈vl, fl〉 = 〈U1, U1〉 − 〈V1, V1〉, 2〈vr, fr〉 = 〈U2, U2〉 − 〈V2, V2〉.
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Note that U2(t) = U1(t− T ) and V2(t) = V1(t+ T ). Therefore, the absorbed energy

over a finite time interval [0, t1] can be computed as (when T1 = T2 = T )

2E(t1) = 2〈v1, f1〉t1 − 2〈v2, f2〉t1

=

t1∫
0

(
|U1(t)|2 − |U2(t)|2 − |V1(t)|2 + |V2(t)|2

)
dt

=

t1∫
0

(
|U1(t)|2 − |U1(t− T )|2 − |V2(t− T )|2 + |V2(t)|2

)
dt

=

t1∫
t1−T

(
|U1(t)|2 + |V2(t)|2

)
dt ≥ 0,

hence the communication channel is passive.

2.1.6 Geometry behind the scattering method

A geometrical approach to the passivity concept has been introduced in [33], which

clarifies the geometry behind the notion. The main idea is as follows: let D = V ×V ∗,

where V is a vector space with a dual V ∗. For (fi, e
i) ∈ D, one can define a non-

degenerate 2 form, 〈, 〉+ as

〈(f1, e1), (f2, e
2)〉+ = e1(f2) + e2(f1).

Here, ei(fj) is the dual pairing. Fixing a basis B = (v1, · · · , vn) for the space V , one

can define a basis for D as B = diag(B,B∗), where B∗ is the associated dual basis.

Then the + paring has the following form in components

Tij = B∗

0 I

I 0

B
T
∗ .
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Using a metric on V , associated to the characteristic impedance B∗ZBT∗ , one can

define a two-contravariant tensor on D as

Y li = B

Z−1 0

0 Z

B
T
.

Now, considering the (1,1)-tensor

Llj := Y liTij ,

one can see that eigenvalues of L are ±1, so one has the following decomposition of

D = D+ ⊕D−, where D+, D− are associated eigenspaces. This implies that there is

a unique way to express (f, e) ∈ D as sum of two elements s± ∈ D±.

Theorem 2.1.1. [33] Given any (f, e) ∈ D and any positive definite, symmetric

2-covariant tensor Z, the following holds

e(f) = 1/2||s+||2 − 1/2||s−||2,

where s± ∈ D±, (f, e) = s+ + s− and ||.||± are the induced norms on D±.

As explained in [33], this orthogonal decomposition is fundamental since it

shows that we can write the power flow algebraically as the sum of positive and

negative power (power going in the opposite directions) only on the two scattering

variables.

Although the scattering transformation and wave variables methods make the

communication channel passive, at the same time there are some inefficiencies, such

as asymptotically divergent behaviour of velocity, wave reflection, tracking and trans-

parency issues. Here, we mention briefly a few results that address these issues. In

[4], a control scheme was introduced that implies the ultimate zero convergence of

the velocity. Another issue is the wave reflection phenomenon which appears when
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the impedance of the terminal load differs from the characteristic impedance. This

causes a wave reflection which decreases the performance of the bilateral teleopera-

tion system. The idea of impedance matching as explained in [49] is introduced to

address this issue. As it is discussed in [9], impedance matching at both sides of the

communication channel impacts on position tracking, while considering the matching

only at the remote side will cause a smaller position drift.

The problem of mismatch between the transmitted power from one side of the

teleoperator to the other side, such that the human can handle the environment power

is addressed in [11, 39] using a scaling scheme.

In general, in the scattering method and wave variables, no position information

is transmitted (just velocity and force signals are communicated), that might result

in a position mismatch between the remote and the local systems. This is mostly

because of initial transient response or numerical roundoff errors and the situation

might become worse in the presence of a time varying delay. We refer the reader to

[48, 50], for suggested solutions of the position drift problem in the presence of the

constant/time varying delay. In [48], a method is suggested for the constant time

delay case which consists of transmitting a combination of the wave signal and its

integral and separating them at the receiver side. In [50], an attempt has been made

to address the time varying case which proposes to transmit the integral of u and

u2, where the former contains the position information and the latter contains the

energy information. Sending the position information in addition to the scattered

signals, Chopra et al. [22, 23], introduced a control scheme that guarantees position

tracking. On the other hand, in [23] a new control scheme is proposed that sends the

position information explicitly, both from local side to remote side and vice versa,

together with velocity and force, which results in boundedness of the position error

under appropriate assumptions, as well as velocity convergence to zero. It is also

proved that, in free motion, the tracking error converges to zero.
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2.1.7 Time varying delay

In all of the above mentioned results, the communication delay is considered to be a

known constant delay, but in the presence of time varying delays which occur when

the Internet is used as a communication medium, these methods are not applicable.

In [44], using a time dependent gain of interconnection and imposing appropriate

conditions on that, it is proved that the energy will not be generated through the

information exchange in the channel and hence the communication channel will be

passive (Figure 2.6).

Figure 2.6: Time dependent gain for interconnection medium with time varying delay

In fact, considering the time varying delays Ti(t) for i = 1, 2, corresponding

to the forward and the backward delays, and gi(t) for the communication gains, the

absorbed energy can be computed as

E(t) =

t1∫
t1−T1(t)

|U1(t)|2 dt+

t1∫
t1−T2(t)

|V2(t)|2 dt+ γ1

t1−T1(t)∫
0

|U1(t)|2 dt

+ γ2

t1−T2(t)∫
0

|V2(t)|2 dt,

where

γi(t) =
1− Ṫi(t)− gi(t)2

1− Ṫi(t)
.
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It is clear that 1 − Ṫi ≥ g2i , implies passivity and therefore stability. This requires

information about the rate of change of the time delay. Along the same line of

research, the boundedness of the position error and position tracking for the time

dependent gain are also proved in [19, 51].

In the next section, we discuss another method for investigating performance

of a teleoperation system, i.e., the small gain approach.

2.2 Small gain approach

As pointed out in the previous section, the presence of even small time delay in

the communication channel of the force feedback teleoperation system will cause

performance deterioration [72]. It is also known that the stability of a system with

a constant time delay cannot guarantee the stability of the teleoperator system with

time varying delay. Even if the stability is achieved, performance deterioration will

occur [42]. It is known that to achieve stability, when force is reflected, a high

level of damping is needed at the local side, but this decreases the transparency

of the system, because human does not feel the actual contact force and feels the

stabilizing force instead. The idea of time varying damping is suggested in [43, 30, 13],

to address this issue. As another approach to the problem, we discuss the small

gain approach as introduced in [54]. In this method, one adopts other definitions of

stability called input-to-state stability (ISS) and input-to-output stability (IOS) which

have been shown to be more flexible and more appropriate for this setup.

First we need to define a couple of concepts. A function γ : R≥0 → R≥0

is called a class K∞ function if it is continuous, strictly increasing and unbounded

with γ(0) = 0. The set of all such functions is also denoted by K∞. A function

β(·, ·) : R≥0 × R≥0 → R≥0 is called a class KL function if β(·, t) ∈ K∞ for each t,

and β(s, t)↘ 0, that is, β(s, t) decreasingly converges to zero, as t→∞.
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Definition 2.2.1. The system (2.5) is called ISS if

|x(t)| ≤ β(|x(0)|, t) + γ(||u||∞),

holds for all the solutions, i.e., all admissible inputs, all initial conditions and all

t ≥ 0.

Here, ||u||∞ = sup0≤t′≤t|u(t′)| is the norm supremum of (or maybe depending

on the context, essential sup norm of) the input signal. The ISS condition, simply

says that the system is Lyapunov stable in zero input case and is state bounded by

the input magnitude, such that small inputs result in small states. IOS will be defined

accordingly, i.e., the system (2.5) is called IOS if

|y(t)| ≤ β(|x(0)|, t) + γ(||u||∞),

holds for all admissible inputs, all initial conditions and all t ≥ 0. For details about

this definition as well as generalization, the reader is referred to [65, 66]. Another

important property of ISS/IOS is its independence of coordinates, see [65], unlike the

exponential stability case.

A sufficient condition for ISS is the existence of a so called ISS-Lyapunov func-

tion. Suppose that D is a (simply connected) domain in Rn containing 0, the C1

function E : D → R is said to be an ISS-Lyapunov function if for class K functions

α1, α2, α3 and χ, one has

α1(|x(t)|) ≤ E(x(t)) ≤ α2(|x(t)|) x ∈ D, t > 0,

∇xE · f(x, u) ≤ −α3|x(t)| x ∈ D, u ∈ Du : |x| ≥ χ(|u|).

Here, ∇xE = ∂E
∂x . The existence of the ISS-Lyapunov function guarantees the ISS of

the system. In fact, one can prove the necessity as well, [65]. An important fact that

makes the input-to-state stability a useful technique for the teleoperation systems is
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the small-gain theorem, which says that interconnection of two ISS systems is ISS

in an appropriate sense. For details as well as generalization, we refer the reader to

[54], where it is shown that in the presence of the time delay, the small gain theorem

holds but under mild conditions on the time delay function. First, the forward and

backward time delays T1(t), T2(t) have an upper bound τ(t) such that

τ(t2)− τ(t1) ≤ t2 − t1, for t1, t2 ≥ 0. (2.10)

Secondly,

t−max{T1(t), T2(t)} → ∞ as t→∞. (2.11)

The small-gain approach has the advantages that stability even in the presence of

a time varying delay is guaranteed and also position tracking can be achieved for

sufficiently smooth delay.

2.3 Projection-based force reflection algorithms

Although the force feedback information, especially when the remote robot is in

contact with an environment will improve that task performance when the reflected

force cannot be compensated by the human operator completely, an unwanted motion

will be caused which makes the system unstable. The effect of this motion, which is

called the induced motion, can be lowered by down-scaling the reflected force, but this

is at the cost of transparency deterioration of the system [40]. The projection-based

force reflection (PBFR) algorithm, is introduced to address this issue [58, 59, 60].

Here, we briefly discuss the idea of the PBFR algorithm and we will get back to this

concept in the next chapter with more details. The idea of the PBFR algorithm is to

project the reflected force on the human force direction which can be compensated

by human and attenuate the remaining part which causes the unwanted motion. In
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fact, one can decompose the environment force as fenv = ϕenv+(fenv−ϕenv), where

ϕenv = Sat[0,1]

(fTenvfh
|fh|2

)
fh, if fh 6= 0, (2.12)

and ϕenv = 0 if fh = 0. Here, fenv and fh are environment and human forces. The

saturation function is defined as

Sat[a,b](x) =


a x < a

x x ∈ [a, b]

b x > b

(2.13)

The algorithm can be written as

ϕenv = Sat[0,1]

( fTenvfh
max{ε, |fh|2}

)
fh, (2.14)

where the sufficiently small ε > 0 is to remove the singularity caused by fh = 0. The

above algorithm is a rule to identify the interaction component of the external force

as will be explained here. When |fh|2 ≥ ε and 0 ≤ fTenvfh
|fh|2

≤ 1, one can see that ϕenv

is the projection of fe on fh. The lower saturation at 0 guarantees that −ϕenv and fh

are directed opposite to each other and the upper saturation limit at 1 ensures that

|ϕenv| does not exceed |fh|. So it is clear that the algorithm computes the interaction

component of fenv which is directed against the human force fh and its magnitude

is bounded by the magnitude of human force.

The PBFR algorithm suggests to generate the force reflection signal as a convex

combination of the direct force feedback and the projection based component, as

follows

fr = αfenv + (1− α)ϕenv,
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for α ∈ [0, 1]. This relation also can be written as

fr = ϕenv + α(fenv − ϕenv),

which states that PBFR algorithm reflects the projection-based component ϕenv and

attenuates the residual momentum generating component fenv − ϕenv. The compo-

nent ϕenv which can be compensated by the human hand is transmitted in full, but

the remaining part fenv − ϕenv which produces the induced motion is attenuated by

the gain factor α. An appropriate α ∈ [0, 1] will guarantee the overall stability in a

suitable sense. For example, in [60], a general stability result for bilateral teleoperator

systems with PBFR algorithm has been proved. In fact, it has been shown that the

overall stability of the teleoperator system can be obtained under some assumptions

on subsystems, communication channel and dynamics of the human operator. More

results related to the PBFR algorithm will be provided in the next section.

In applying the PBFR algorithm, one needs to estimate the human force to know

whether the operator is capable of compensating the reflected force. This implies a

selection of a small gain α which is suitable for the worst case scenario. The small

(and constant) value of the PBFR gain α guarantees stability; however it increases the

transient time of the convergence of the reflected force to the actual contact force, and

hence transparency deteriorates. An objective of this thesis, that will be discussed

through subsequent chapters, is to introduce a new method of selecting the PBFR

algorithm gain α depending on human postures.

2.4 ISS & IOS for functional differential equation

The ISS definition has been developed for more general dynamical systems, such as

systems described with functional differential equations, especially, delayed differen-

tial equations [67]. This idea also is developed for cooperative teleoperator systems

with time varying delays and interaction between local manipulators. For the math-
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ematical background, the reader is referred to [24]. A delay differential equation with

bounded delay is described by

ẋ = f(t, x(δ1(t)), x(δ2(t)), · · · , x(δn(t))),

where

t− r ≤ δi(t) ≤ t for some r ≥ 0, t ≥ t0, i = 1, 2, · · · , n.

The initial condition is of the form of

x(t) = θ(t), for t0 − r ≤ t ≤ t0.

It is assumed that f is defined on [t0, β) × D for some β > t0 and D ⊂ Rn. The

conditions on f such that the system has a (unique) solution will be discussed. First,

let us mention that, for brevity, we will use a simpler notation ẋ = F (t, xt). One

needs to give meaning to F and xt. First, for the trajectory x and a given t, define

xt : [−r, 0)→ Rn by

xt(σ) = x(σ + t) for − r ≤ σ ≤ 0.

Obviously, continuity of x(·) on [t− r, t) implies continuity of xt. Now, let CA to be

the set of all continuous functions from [−r, 0) to A. Hence, if x(·) is continuous on

[t − r, t) → A, then xt ∈ CA. We consider F as a function F : I × CA → Rn. For

ψ ∈ CA, define ||ψ||r = sup−r≤t≤0||ψ(t)|| . Note that, not all CA are linear spaces,

but C is and ||.||r is a norm on C. Then, F is called Lipschitz on E ⊂ I × C with

constant K > 0 if

|F (t, ψ)− F (t, ψ′)| ≤ K||ψ − ψ′||r,

for (t, ψ), (t, ψ′) ∈ E . The continuity of F on t, Lipschitzness on ψ and boundedness on

delay imply the existence and uniqueness of the corresponding functional solution of a
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differential equation. Taking this to account, Teel proved a Razumikhin-type theorem

using a nonlinear small gain theorem for the system described by the functional

differential equation [67]

ẋ = f(t, xd(t), wd(t)), xd(t0) = ξ,

where for a given function x : [−td,∞) → Rm, one defines xd(t)(·) as xd(t)(τ) =

x(t − τ) on the interval [0, td] for some td ≥ 0. This is generalized in [55] for multi-

input multi-output systems coupled with disturbances and a small gain condition has

been obtained using minimal cycles of the gain matrix. A system described by the

functional differential equation

ẋ = f(xt, ut),

is said to be input-to-state stable at t = 0 with td ≥ 0 and gain γ ∈ K, if there exist

positive constants ∆x,∆u such that supt∈[−td,0]|x(t)| < ∆x and supt≥−td |u(t)| < ∆u

imply that solutions of the system are well defined for all t ≥ 0, and for some β ∈ K∞

one has

supt≥0|x(t)| ≤ max
(
β(sups∈[−td,0]|x(s)|), γ(sups≥−td |u(t)|)

)
,

and

lim supt→∞|x(t)| ≤ γ(lim supt→∞|u(t)|).

This definition can be extended to multi-input systems and also to multi-input multi-

output systems and also to input to output stability. Using the small-gain theorem

for the interconnection of two IOS systems (described by functional differential equa-

tions) [59], and also projection-based the force reflection algorithm, Polushin and

co-authors showed that the overall stability of the system can be achieved without

increasing the damping at the local side, and in addition, ”almost perfect” tracking

can be achieved. In [58], the problem of significant data dropouts which may result
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in discontinuity of the reference trajectory transmitted through the communication

channel is discussed, In fact, the author proposed a control scheme including a filter

that provides smooth approximation of a possibly discontinuous reference trajectory

and the overall stability is also guaranteed by IOS small gain theorem. Along this line

of research, in [68] Takhmar, et al., suggested to separate the high and low frequency

signals that play different roles in stability and attenuate high frequencies which cause

instability. In [55], using a new WIOPS (weakly input-to-output practical stability)

small gain theorem, the authors designed a (multi-master multi-slave) force-reflecting

teleoperator system which is demonstrated to be stable in the presence of multiple

network-induced communication constraints. In fact, the stability analysis of a tele-

operator system is analyzed in the presence of irregular communication delays and

communication errors.

2.5 Conclusions

In this chapter, we reviewed teleoperator systems from a control theoretic point of

view, which means that we mostly focus on stability and transparency issues aris-

ing in the study of teleoperator systems. The mathematical theory for teleoperator

systems and related definitions, such as stability, passivity and transparency are ex-

plained in details as needed to follow the survey. It is known that force feedback in a

teleoperator system provides a better understanding of contact for human operators

and therefore, it can improve the performance of the task, but at the same time it

causes several issues such as instability of the teleoperator system which might lead to

irreversible damage in cases like telesurgery, handling hazardous materials, etc. The

problems might become even worse when there exist communication channel delays.

We addressed the two main approaches in the study of the performance of a teleop-

erator system in the presence of the time delays in the communications. These two

are passivity-based and small-gain-based methods. These methods and their short-
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comings and suggested solutions are addressed. It should be mentioned that there

are well known surveys such as [72, 32, 52] which cover the passivity-based approach

in control of teleoperator systems.



Chapter 3

The Effect of Human Postures on the

Stability of Teleoperator Systems

As mentioned in the previous chapter, force feedback in a teleoperation system (par-

ticularly when the remote manipulator is in contact with an environment) may be

very useful, since it enables the operator to have a better control of the interaction

with the environment, but at the same time it might cause harm because of the mo-

mentum generated by the reflected force. The component of the reflected force that is

compensated by the human hand creates the contact feeling, while the residual part

of the reflected force generates the momentum and, potentially, instability. The pro-

jection based force reflection (PBFR ) algorithm [59, 61], as will be explained below,

suggests to identify these two components of the reflected force, apply the component

that can be compensated by the human completely and attenuate the residual part to

improve the stability. It is shown that this improves drastically the overall stability

of the system [61]. The interaction component of the force is defined as

ϕenv := Sat[0,1]

{
f̄Th fenv

|f̄h|2 + ε

}
f̄h,

where, fenv is the force feedback from the remote side, f̄h is the estimate of the

human force applied to the haptic device and ε > 0 is a small number to avoid the

ambiguity arising when f̄h = 0. The algorithm finds the interaction component as

the projection of force feedback on human force with magnitude bounded by human

force. The PBFR algorithm suggests that it should be possible to generate the force

33
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reflection signal as a convex combination of direct force feedback and the projection

based component:

fr = αfenv + (1− α)ϕenv, (3.1)

for α ∈ [0, 1]. This relation can also be written as

fr = ϕenv + α(fenv − ϕenv),

which states that the PBFR algorithm reflects the projection-based component ϕenv

and attenuates the residual momentum generating component fenv − ϕenv.

It is shown that [61] the PBFR algorithm improves the stability of the force

reflecting teleoperator system with haptic interface for interaction with environment.

It also has been shown that [61] the algorithm guarantees the force convergence to

the contact force in the teleoperator systems when in contact with the environment.

In this method, since there is no prior information of the reflected force, the PBFR

gain will usually be selected as a small constant to cope with a wide range of human

behaviors. Although a small PBFR gain α implies the stability of the system, but

on the other hand the performance of the system deteriorates, since it increases the

transient time.

An issue that has not been discussed in earlier research work on the PBFR

algorithm and is the main idea of this chapter, is to discuss the effect of the human

postures on the PBFR algorithm. In fact, there are positions at which human hand

is more capable of compensation the reflected force. For instance, consider when the

human hand is in a horizontal position (perpendicular to the body), it can handle

a horizontal force easier comparing to a vertical force. Our main objective in this

chapter is first of all, to quantify the human capability of a task manipulation and,

second to demonstrate simulations and experimental results that show that the in-

duced motion by the reflected force can be decreased by the projection-based force

reflection algorithm introduced for all human postures.



35

The structure of this chapter is as follows. First, we review the theoretical

background related to task manipulability. Through this part, we define the velocity

and force transmission rates as well as velocity and force ellipsoids related to the

human hand. In the second part, we present the simulation and experimental results.

We consider a 2-DOF manipulator model representing (a simple model of ) the human

arm when an external disturbance force is applied. The objective is to show the

dependence of the human postures to the unwanted induced motion in response to an

external disturbance force. All our simulation has been done in MATLAB. It is worth

mentioning that, this is a first step in introducing a new PBFR gain as a function of

human posture which will be done in the upcoming chapter.

3.1 Theoretical background on task

manipulability

In this section, we will investigate the effects of human postures in the stability of

the teleoperation system. First we need to quantify the human capability for a task

execution. This will be done by using previously introduced concepts of force and

velocity transmission rates corresponding to the force and velocity ellipsoids related

to the end-effectors. In the following, we recall the definition of different ellipsoids

related to the end-effector of the manipulator, such as velocity, force ellipsoid and

effective mass ellipsoid as in [10, 73, 74, 37].

3.1.1 Velocity and force ellipsoids

We recall the definition of the velocity ellipsoid and force ellipsoid related to the

end-effector of an arm/manipulator as discussed in [10].

Velocity ellipsoid: Given a smooth coordinate transformation as

xi = xi(θ1, · · · , θn), i = 1, 2, · · · ,m,
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with the Jacobian J =
∂(x1,··· ,xm)
∂(θ1,··· ,θn)

, the n-sphere

|θ̇|2 ≤ 1,

will be mapped to the m-ellipsoid given by

ẋT (JJT )−1ẋ ≤ 1. (3.2)

In fact, in the case m = n and J is invertible, one concludes that this is an easy result

of ẋ = Jθ̇. Since θ̇ = J−1ẋ,

|θ̇|2 = θ̇T θ̇ = (J−1ẋ)TJ−1ẋ = ẋT (J−1)TJ−1ẋ = ẋT (JJT )−1ẋ.

However, in the case m < n, and J is not invertible, this mapping of |θ̇|2 ≤ 1 to

Figure 3.1: Principle axes of a ellipsoid are given by the eigenvectors of the symmetric
matrix associated with the quadratic form of the ellipsoid. The ellipsoid diameters
are given by the 1/

√
λi’s, where λi’s are eigenvalue of the ellipsoid defining symmetric

quadratic form.

ẋT (JJT )−1ẋ ≤ 1 is still true, but one needs to use the generalized (pseudo-) inverse

matrix. In the example that we investigate in this chapter there is no need to consider
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redundancy, since the J would be invertible. However, in Chapter 6, where we outline

a more general case of a 4-DOF human arm model, the role of redundancy is crucial.

The ellipsoid given by (3.2) is called the velocity ellipsoid.

Force ellipsoid: It is known that the ẋ = Jθ̇ implies the following relation

between the joint torques and the force at end-effector:

τ = JT f,

Analogous to the velocity ellipsoid, one can define the force ellipsoid. First, note that

the sphere

|τ |2 ≤ 1,

using τ = JT f will be mapped to

fTJJT f ≤ 1. (3.3)

This equation will define the force ellipsoid, similarly to the velocity ellipsoid, it can

be utilized for force transmission characteristics of the manipulator at a given posture.

This is the same ellipsoid that have been employed by Asada and Youcef-Toumi[6, 7]

in analysis of the power to force conversion. As it will be explained in the following,

the principal axes of these two ellipsoids, velocity and force ellipsoids, are identical,

but in a reciprocal fashion.

3.1.1.1 Duality between velocity and force ellipsoid

A square matrix A and its inverse A−1 share the same eigenvectors with inverse

eigenvalues, since, if Av = λv for some v 6= 0, then A−1v = λ−1v. This implies

that JJT and (JJT )−1 will share the same eigenvectors with reciprocal eigenvalues,

i.e., the velocity and force ellipsoids share the principle axes but with the reciprocal

magnitudes. This means that the velocity can be controlled more accurately in the
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direction that the manipulator can resist larger disturbance forces, and force can be

more accurately controlled in the direction that the manipulator can adopt its motion

as quick as possible.

3.1.1.2 Transmission velocity and force rates

As it is discussed in [10], although effective capability of the manipulator can be

increased by adopting the postures that align the optimal directions with task direc-

tions, but this is not sufficient for the overall optimality of the posture. For instance,

in a situation such as writing, we would like to control the force vertically and veloc-

ity horizontally. Although, a standard form of the ellipsoid (horizontal ellipsoid) is

aligned with task directions, but this is not the optimal direction. This shows that

a measure of task compatibility is not only the alignment of the optimal directions

with human/manipulator’s posture, but is a combination of transmission velocity ra-

tio and/or force ratio along the task directions. Given a unit vector u, the constant

γ which makes the vector γu lie on the force ellipsoid is called the force transmission

rate (see Figure 3.2.) This implies that

Figure 3.2: The transmission force rate in direction of the unit vector u is the length
of the segment line from the centre of ellipse (ellipsoid) to the boundary of the ellipse
(ellipsoid) in the direction u.
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(γu)T (JJT )(γu) = 1,

which means

γ = (uT (JJT )u)−
1
2 . (3.4)

The transmission velocity rate will be defined in the same manner by

β = (uT (JJT )−1u)−
1
2 . (3.5)

To achieve the optimal manipulator performance during a task, one should op-

timize the transmission rate in the task directions [10]. More precisely, suppose

that we would like to control the force in l different directions given by unit vec-

tors u1, u2, · · · , ul and control the velocity in n − l directions given by unit vectors

ul+1, · · · , un. Also assume that the force and velocity transmission ratio in direction

ui are denoted by γi and βi, respectively. Then, the index of task compatibility is

defined as

c =
l∑

i=1

wiγ
±2
i +

n∑
i=l+1

wiβ
±2
i .

The + sign will be used when the magnitude is of interest and the − sign when

accuracy. The weighting factors wi’s indicate the relative magnitude and accuracy

requirements in the respective task directions. An important problem is searching a

posture that maximize this index which is a weighted sum of squares of transmission

ratios and squares of reciprocals of transmission ratios.

3.1.2 Remarks

1. Redundant case: A real model of a human arm comes with redundancies. We

refer the reader to [70, 71, 69, 72] for the extensive amount of research that has been

done on the redundant single- and dual-arm manipulators. Note that in the case

of redundancy, the higher dimensional joint velocity sphere will be mapped to lower
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dimensional task velocity ellipsoid. As it is known, the inverse problem has infinitely

many solutions. The general solution can be given by

θ̇ = J+ẋ+ (I − J+J)κ,

where J+ is the pseudo inverse of J given by J+ = JT (JJT )−1 and κ is an arbitrary

vector in Rn. Note that (I−J+J)κ ∈ null(J), that is, J(I−J+J)κ = 0. This means

that (I − JJ+)κ does not produce a motion of the end-effector. The fact that κ can

be selected arbitrarily, suggests that there might be a solution for κ that maximize

the performance. For more details on such a solution of κ, the reader is referred to

[73].

2. Velocity ellipsoid, optimal directions and task compatibility directions:

The velocity ellipsoid given by (3.2) is what Yoshikawa [73] called the ”manipula-

bility ellipsoid” ; it was proposed that the kinematic redundancy should be used to

maximize the volume of this ellipsoid. For avoiding singularity this is of absolute

importance, since the volume of this ellipsoid will be zero at singularities. For the

non-redundant case, which is our main interest in this chapter, the volume of this

ellipsoid can also be used [74]. It is not hard to see that the eigenvectors of (JJT )−1

determine the diameters of the ellipsoid and the square root of the inverse of as-

sociated positive eigenvalues determine the magnitude of diameters. The velocity

transmission characteristics of a manipulator at a certain posture can be understood

by this velocity ellipsoid. Note that the optimal direction of control velocity is along

with the diameter associated to the minimum eigenvalue (longer diameter) and on the

other hand the optimal direction for effecting velocity is in the direction associated

to the maximum eigenvalue. It is worth mentioning, that as explained in [10], the

optimal force control is not always aligned with the task direction, but it is posture

dependent. For examples of this phenomena and more details, we refer the reader to

[10].
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3. Effective mass: Here, we introduce another type of ellipsoid associated with the

end-effector as discussed in [37]. We recall that the quantifying approach to the task

manipulability that we adapted in this chapter (and which will be used in upcoming

chapters) is based on the velocity and force transmission rates associated with velocity

and force ellipsoids of the end effector. However, this can also be done using through

the effective mass and the belted ellipsoid introduced by Khatib [37] and explained

below.

As mentioned already, a critical part of control of robots is considering the

dynamics of the system. Recall that the dynamics of a n-DOF manipulator are given

by the equation (2.3). Because of the fact that the impact force at some point at the

end-effector is of interest, it is useful to have a formulation of dynamics of the system

with respect to the operational point [37]. In fact, it is convenient to take position

and orientation of the end effector with respect to the base as new coordinate, x, with

dimension m. When the dimension of the configuration space described in joint space

and task space are the same, i.e., m = n, the Jacobian of the change of coordinates

is a square matrix. The kinetic energy in the operational space can be described as a

new quadratic form 1
2 ẋ
TΛ(x)ẋ. Hence, the relation between the two matrices Λ and

M is given by

Λ = J−TMJ−1,

where J is the Jacobian of x = x(q), i.e., J = ∂x
∂q . The dynamics with respect to the

operational point will be given by the following equation of motion

Λ(x)ẍ+ µ(x, ẋ)ẋ+ p(x) = f.

A manipulator is said to be redundant if n > m, that is the number of degrees of

freedom of the joint configuration space is more than that of task space. Obviously,

the coordinate of the end effector in the redundant case does not uniquely determine

the configuration. Hence, the dynamic of the entire system cannot be explained just
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with the dynamics of the end-effector. In this case, the pseudo kinetic energy matrix

Λ is given by

Λ−1 = JM−1JT .

In the non-redundant case, this equation describes the dynamics of the whole system,

but in the redundant case, it only describes the dynamics of the end-effector, that

is dynamics projected to the lower dimensional task space. In fact, the remainder

dynamics will affect the n − m dimensional null space caused by redundancy. The

relation between the joint torques and the force applied to the end effector is given

by

τ = JT f + (I − JTJT
#

)τ0,

where τ0 is an arbitrary joint torques which will be projected in the null space of the

pseudo inverse JT
#

. It is known that the pseudo inverse is not unique, but there is

only one that is consistent with the dynamics [37], and is given by

J = M−1JTΛ.

Here to be consistent with the dynamics means

JM−1(I − JTJT
#

)τ0 = 0.

In fact, J is the generalized inverse of the Jacobian corresponding to the ẋ = Jq̇,

which minimizes the manipulator kinetic energy [37]. Finally, the equation of motion

in the end-effector set of coordinates will be obtained by pre-multiplying the joint

space equation of motion by J .

To analyze the inertial properties of the manipulator, usually one can consider

the end effector translational and rotational tasks. For positioning at the end-effector,

one defines

Λ−1v = JvM
−1JTv ,
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where Jv is the linear velocity associated Jacobian. The matrix Λ−1, encodes the end

effectors translational response to the force.

3.1.2.1 Mass ellipsoid and effective mass

It is possible to analyze inertial properties of the end-effector in an arbitrary direction.

If u is a unit vector in the required direction, then the effective mass, mu at the

operational point in the direction of u is given by [37]

m−1u = uTΛ−1v u.

The effective inertia will be defined accordingly.

A possible representation of the mass properties of the end effector is the mass

ellipsoid given by

vTΛ−1v v = 1.

The inertial ellipsoid is defined in the same manner. In [37], Khatib defines another

ellipsoid-like illustration of the mass properties, which is called belted ellipsoid and

given by

vTΛ−1v v

|v|
= 1.

This is obtained, in fact, by re-scaling vectors v on the mass ellipsoid by the v|v|.

3.1.2.2 Effective mass from mathematical point of view

In this part, we give a more detailed mathematical explanation of the notion of effec-

tive mass. Given a symmetric transformation T on R2, what does mu = (Tu, u)/|u|2

represent?

In fact, when T is symmetric, we can write T = UTDU for some orthogonal

matrix U and a diagonal matrix D. Then

(Tu, u) = (UTDUu, u) = (DUu,Uu) = (Du1, u1) =
∑

λix
2
i ,
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where u1 = (x1, · · · , xn). One knows that |Uu| = |u|, so maximum of mu will be

λmax.

3.2 Simulation results of the human arm response

to a disturbance force for different postures

As discussed earlier in this chapter, our goal is to investigate the effect of human arm

postures on the performance of a teleoperator system. In order to do so, we first

investigate the capability of human hand to compensate a reflected force from the

remote environment. We consider a simple model of human arm as a two degrees of

freedom (2-DOF) model shown in Figure 2.2. We explain the dynamics of the system

and the associated velocity ellipsoids of the end-effector for different postures. Then,

using the simulation that has been performed in MATLAB, we present evaluation

results of the effect of the human postures on the stability of a teleoperator system

under a disturbance force.

It is known that for the 2-DOF manipulator modelled as Figure 2.2, the change

of coordinate from joint space to task space is given by:


x = l1 cos θ1 + l2 cos θ12

y = l1 sin θ1 + l2 sin θ12.

This yields the following Jacobian (of the change of coordinate)

J =
∂(x, y)

∂(θ1, θ2)
=

−l1 sin θ1 − l2 sin θ12 −l2 sin θ12

l1 cos θ1 + l2 cos θ12 l2 cos θ12

 ,

where θ12 = θ1 + θ2. The dynamics of the above 2-DOF system is given by

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ,
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with the inertia matrix M(θ) described as

m11 = m1l
2
1c +m2(l21 + l22c + 2l1l2c cos θ2) + I1 + I2,

m12 = m21 = m2(l22c + l1l2 cos θ2) + I2,

m22 = m2l
2
2c + I2,

the Coriolis/centrifugal matrix C(θ, θ̇) as

c11 = hθ̇2,

c12 = h(θ̇2 + θ̇1),

c21 = −hθ̇1,

c22 = 0,

and the gravity vector field G(θ):

g1 = (m1l1c +m2l1)g cos θ1 +m2gl2c cos θ12,

g2 = gm2l2c cos θ12.

Here h = −m2l1l2c sin θ2, g = 9.81m/s2 and lic = li/2, i = 1, 2. In the following, the

arm masses are considered m1 = m2 = 0.5Kg, and arm lengths are l1 = l2 = 0.5m.

As we discuss in details in the following, for different human postures, a dis-

turbance force in two different directions x and y is applied to the human arm; the

human reaction, displacement, as well as velocity ellipsoid at each case are shown.

Here, for the stability of the system, we consider a PD-controller as

τ = Kp(θ − θd) +Kd(θ̇ − θ̇d),

where θd and θ̇d are desired position and velocity, Kp and Kd are positive definite

matrices which in our experiments are given by Kp = 50I,Kd = 25I, where I is the
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identity matrix of rank 2. The equation of an ellipse is given as follows

A(x− x0)2 +B(y − y0)2 + C(x− x0)(y − y0) = 1,

where A,B,C are parameters of the ellipse. When the ellipse is given by a quadratic

form, as in our case which is given by the symmetric matrix (JJT )−1, parameters

A,B,C can be obtained from the eigenvalues and eigenvectors of the quadratic form as

following. Suppose v1, v2 are eigenvectors of the matrix (JJT )−1 with corresponding

eigenvalues λ1, λ2, then parameters of the ellipse with the centre (x0, y0) is given by

A = λ1 cos2 φ+ λ2 sin2 φ

B = λ2 cos2 φ+ λ1 sin2 φ

C = (λ1 − λ2) sin 2φ.

Here

tanφ =
v1 · e1
v1 · e2

,

where, e1 = (1, 0) and e2 = (0, 1) are the standard basis in R2.

Below, we demonstrate the simulation results. Our simulations include three

sets of experiments which will be explained in detail below. For each case, we move

the human arm along a trajectory over a period of 10 seconds and a disturbance

force will be applied between t = 5 s and t = 7 s. The associated ellipsoids as well as

transmission rates will be investigated. It should be mentioned that we perform three

sets of experiments to cover different directions of motions and postures of human

arm during a task execution when a disturbance force is applied.

Simulation results: experiment one. We consider a 2-DOF model shown

in 2.2 as a simple model of the human arm. As shown in Figure 3.3, we will consider

eleven different arm positions in a horizontal line. The disturbance force, fx, as shown

in Figure 3.4, is applied to the end effector at each of the given positions. The force



47

is a rectangular pulse with the magnitude 10N and the duration 2 s, and is applied

starting from t = 5 s. The transmission rates βx for the given positions are shown

in Figure 3.5, it can be seen that βx has its highest value in the second position and

gradually decreases to its lowest value, which happens at position number 11. This

can be understood in the way that in position 1 the human hand is less capable of

resisting a horizontal force in comparison with the final position, where the hand is

more capable of resisting an external force. The end-effector displacements in the

x-direction, which is shown in Figure 3.5, agrees with the velocity ellipsoids and

transmission rates, in the sense that, a smaller transmission rate βx corresponds to a

smaller displacement for the same applied force. Under the vertical disturbance force,

fy, which is shown in Figure 3.6, the transmission rates βy and the corresponding

y displacement are shown in Figure 3.7. The corresponding velocity ellipsoids and

transmission rates βx, βy, are also shown in Figure 3.8.

Figure 3.3: Experiment 1: The manipulator movement in a horizontal line; eleven

positions of the end effector on the horizontal line y = −0.5 for x = −0.4 + 0.1i, i =

0, · · · 10.
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Figure 3.4: Experiment 1: The disturbance force in x-direction

Figure 3.5: Experiment 1: Transmission rate βx (left) and displacement in x-direction

in the horizontal movement (right)
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Figure 3.7: Experiment 1: The transmission rate βy (left) and displacement in y-
direction in the horizontal movement (right)

Figure 3.6: Experiment 1: The disturbance force in y-direction

Experiment two. In the second part of our simulation, as shown in Figure 3.9,

we will consider eleven different arm positions along a vertical line. The transmission

rates βx for the positions are shown in Figure 3.10. We apply the same disturbance

rectangular force pulse as in the experiment one to the end effector at each of the given

positions. It can be seen that at the position that βx has its lowest value (Position 3),

the minimum displacement will occur, and at the position number 10, where βx is the

highest rate among these postures, the maximum displacement happens. The end-

effector displacements in the x-direction which are shown in Figure 3.10 show that

where the transmission rate βx is higher, the displacement also has a greater value
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Figure 3.8: Experiment 1: Velocity ellipsoids during horizontal movement along the
line y = −0.5 for x = −0.4 + 0.1i, i = 0, · · · 10, the red dashed lines show the
horizontal and vertical transmission rates βx, βy



51

during the time period that force fx is applied. Under the vertical disturbance force

fy which is shown in Figure 3.6, the transmission rates βy and the corresponding y

displacement is shown in Figure 3.11. The corresponding velocity ellipsoids are shown

in Figure 3.12.

Experiment three. In this part of our simulation, we will consider eleven

different arm positions along a slant line given by y = −0.5 + x, as shown in Figure

3.13. The corresponding velocity ellipsoids and transmission rates βx, βy, are illus-

trated in Figure 3.16. The transmission rate βx for the positions is shown in Figure

3.14. As in the previous two experiments, the rectangular force fx, is applied at each

of the given positions. In position that βx has its lowest value (Position 3), the min-

imum displacement will occur, while in position number 10, where βx is the highest

rate among these postures, the maximum displacement happens. The end-effector

displacement in the x-direction which is shown in Figure 3.14 shows that where the

transmission rate βx is higher, the displacement also has a greater value during the

time period that force fx is applied. Under the vertical disturbance force fy which is

shown in Figure 3.6, the transmission rates βy and the corresponding y displacement

is shown in Figure 3.15.

Figure 3.9: Experiment 2: The manipulator movement in a vertical line; eleven

positions of the end effector on the vertical line x = 0.5 for y = −0.4 + 0.1i, i =

0, · · · 10.
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Figure 3.11: Experiment 2: The transmission rate βy (left) and displacement in y
direction in the vertical movement (right)

Figure 3.10: Experiment 2: The transmission rate βx (left) and displacement in x

direction in the vertical movement (right)
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Figure 3.12: Experiment 2: Velocity ellipsoids during the vertical movement along
the line x = 0.5 for y = −0.4 + 0.1i, i = 0, · · · 10, the red marble lines show the
horizontal and vertical transmission rates βx, βy.
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Figure 3.13: Experiment 3: The manipulator positions along a slanted line

Figure 3.14: Experiment 3: The transmission rate βx (left) and displacement in x

direction in the slanted movement (right).
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Figure 3.15: Experiment 3: The transmission rate βy (left) and displacement in y

direction in the slanted movement (right).
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Figure 3.16: Experiment 3: Velocity ellipsoid during slant movement along the line

y = −0.5+x for x = −0.4+0.1i, i = 0, · · · 10, the red dashed lines show the horizontal

and vertical transmission rates βx, βy.
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3.3 Experimental results: human postures and

stability

In this section, we present some results of our experimental evaluation of the effect

of human posturing on the stability of the teleoperation system with force reflection.

The experiment, which is explained below in detail, is to consider the human arm

in different postures. The human holds the manipulator device in each of the three

positions, and an external force is applied to the human hand. The motions induced

by the reflected force are illustrated. The objective of this set of experiments is to

show that the human behavior in response to an external force depends on the human

postures. During the experiment, a simple 2-DOF model shown in Figure 2.2 has been

used as the human arm model. We should also mention that the human hand holds

the device in each case with the same amount of effort.

Experimental setup: The setup, which is illustrated in Figure 3.17, consists

of a haptic device, where the Phantom OmniTM haptic device manufactured by

SensAble Technologies Inc. is used, see Figure 3.18.

Figure 3.17: Exprimental setup

The device has 6-DOF position sensing and 3-DOF force feedback, and is pro-

grammed using the OpenHaptics toolkit. The device is controlled from a PC, which
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is connected over a local area network. All the experiments were run at a sampling

frequency of 1000 Hz.

Figure 3.18: PhantomOmniTM haptic device

Experiment one: In this experiment, we consider three human postures as

shown in Figures 3.19, 3.20 and 3.21. The human holds the manipulator device and

the vertical force fy is applied to the human hand as shown in Figure 3.22. The

induced motion is shown in Figure 3.23-right, and the human force in Figure 3.23-

left. It can be seen that, for the vertical force, the induced motion for Posture 1 has

the highest value and for Posture 3 has the smallest value among the three. On the

other hand, the human force for Posture 3, at the time t = 2s, is the highest, and

for Posture 1 is the lowest. Comparing this with the velocity ellipsoid as shown on

Figure 3.19, it can be seen that for the Posture 1, the minimal principal diagonal

of the ellipse is in the horizontal direction and for Posture 3 is in vertical direction.

This is in agreement with the observed induced motion, i.e., for Posture 3, where the

human is capable of compensating the force we have less induced motion and more

stability, but for Posture 1, where human is not capable of handling the force, the

induced motion has the highest value. Note that, to avoid the ambiguity coming from

infinity in computation of transmission ratios, we consider Postures 1 and 3 almost

horizontal and vertical, instead of exact horizontal and vertical. In fact, Posture 1 is

given by (θ1, θ2) = (−5o, 10o) and Posture 3 is given by (θ1, θ2) = (−95o, 10o). In

fact, we make this estimation because since the velocity ellipsoid is obtained from

the equation (3.2) and J−1 does not exist for extreme positions (θ1, θ2) = (0o, 0o)
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(Posture 1) and (θ1, θ2) = (−90o, 0o) (for Posture 3). In these extreme cases, velocity

ellipsoid turns to a straight line.

Experiment two: In this experiment, we consider the same three human

postures as shown in Figures 3.19, 3.20 and 3.21 under the the horizontal force fx

applied to the human hand, see Figure 3.24. The induced motion on the remote

side is shown in Figure 3.25-right and the human force in Figure 3.25-left. It can be

seen that for the horizontal force, the induced motion for Posture 1 has the lowest

value and for Posture 3 has the highest among the three. For the human force, on

the other hand, it can be seen that for Posture 1, at the time t = 2s, is the highest

and for Posture 3 is the lowest amount, although soon after that they all will be the

same value. This is in agreement with the velocity ellipse shown in Figure 3.19, as

explained above.

Figure 3.19: The velocity ellipse and the human posture 1
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Figure 3.20: The velocity ellipse and the human posture 2

Figure 3.21: The velocity ellipse and the human posture 3

Figure 3.22: The disturbance force in the vertical direction
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Figure 3.23: The human force and induced motion according to the vertical distur-

bance force for postures 1, 2 and 3

Figure 3.24: The disturbance force in the horizontal direction
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Figure 3.25: The human force and induced motion according to the horizontal dis-

turbance force for postures 1, 2 and 3

3.4 Conclusions

In this section, we first reviewed the theoretical background on task manipulability

and introduced the concepts of velocity and force transmission rates associated with

the velocity and force ellipsoids of the end-effector. We also investigated the effect

of human postures when the human arm is under an external force. We showed that

the induced motion caused by the same disturbance force depends on the human

posture. In fact, for those postures for which the human hand can compensate the

force, the unwanted induced motion will be lower in comparison with the cases where

the human hand is not capable of compensating the force completely. In the next

section, we will show how applying the PBFR algorithm will decrease the unwanted

induced motion for different human postures, and will introduce a new method for

selecting the PBFR gain depending on human postures.



Chapter 4

A Posture-Dependent Algorithm for

Selecting the PBFR Gain

As mentioned in the previous chapters, the PBFR algorithm will improve stability

of the teleoperator system; however, in the original PBFR algorithm, the gain α is

considered to be a constant small value. The reason is when there is no a priori

information of the response of the human operator, the PBFR gain is considered as a

small value to work for a wide range of human responses. The small value of PBFR

gain α guarantees stability but, at the same time increases the transient time and

hence decreases transparency. In this chapter, we first perform several experiments

to show that how applying the PBFR algorithm decreases the unwanted induced

motion caused by the reflected force for different human arm postures; subsequently,

we present a new method of selecting the PBFR algorithm gain α which is, unlike

the original PBFR gain, a posture dependent gain. We also show how this method

improves the performance of the teleoperation system with force feedback. In fact, the

new gain α depends on the human operator postures or, more precisely, is a function

of the force transmission rate. Our method suggests that there is no need to select

a very small constant α as the PBFR gain during task performance, but instead one

can chose α according to the human postures, selecting small values just for the cases

where the human hand cannot compensate for the reflected force. We also perform

a set of experiments for different human postures and present the induced motion

for the three cases of the direct force reflection, PBFR algorithm with constant gain,

63
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and PBFR algorithm with new adaptive gain to show the overall improvement of the

performance of the system.

4.1 Human posture and the stability of the

teleoperator system: experimental results

In the previous chapter, we observed how the human hand reacts to a disturbance

force in different postures, and also, we have seen the associated induced motion due

to the force applied. In this section, we will show the the projection-based force

reflection algorithm for different human postures will decrease the induced motion

caused by the reflected force and, hence, improve stability. In the next section, we

will discuss how to select the PBFR gain appropriately (as a function of transmission

rates) to improve also the transparency while preserving stability.

4.1.1 Experimental results

In this section, we present some experimental results to show how the PBFR algo-

rithm decreases the unwanted induced motion for different human postures and hence

improves the performance of the system. The experimental setup (which is similar

to the one used in the previous chapter) is illustrated in Figure 3.17, and consists of

a haptic device (the Phantom OmniTM device manufactured by SensAble Technolo-

gies Inc., see Figure 3.18). The device has 6-DOF position sensing and 3-DOF force

feedback, and they were programmed using the OpenHaptics toolkit. The device is

controlled from a PC. All the experiments were run at the sampling frequency of

1000 Hz. The estimates of the human force which are used in the PBFR algorithms

are obtained using the high-gain force observer designed in [57]. We recall that in

the last chapter, we studied the posture dependent behavior of a human arm while

holding a haptic device, and when an external disturbance force is applied. In fact,
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we presented the induced motion associated to the three human hands postures as

in Figures 3.19, 3.20 and 3.21 and showed that for the postures where the human

hand can compensate for the force, the induced motion caused by the reflected force

has lower values comparing to the postures in which human hand cannot compensate

for the force. In this chapter, we first perform an experiment similar to the one de-

scribed in the previous chapter, but this time with PBFR algorithm. We show that

the performance of the system for each posture with PBFR algorithm applied will be

improved in the sense that the induced motion will be smaller comparing to the case

where the contact force is directly reflected. The experiment will be as follows: the

human hand holds the haptic device in each of the three different postures 1, 2 and 3

shown in 3.19, 3.20 and 3.21, where a horizontal force fx = 3N is applied to the device

from t = 2 s to t = 4 s and the PBFR gain is considered as α = 0.3. Figure 4.1-right

shows the induced motion of the end-effector when human is positioned at those three

postures. As can be seen in Figure 4.1-right, in all postures the induced motion with

PBFR algorithm applied is less than the induced motion when the force is directly

reflected [61]. However, it is clear that the induced motion is substantially dependent

on the human postures, even if PBFR algorithm is applied. When PBFR algorithm is

applied, the reflected force is computed based on human force measurement, i.e. ac-

cording to the formula (3.1). It is known that the human capability in compensating

for the reflected force is an important fact in PBFR algorithms, and it can be shown

that the human postures is one of the factors in this capability. In Posture 1, where

the human is strongly capable of compensating the force, the induced motion even

without the PBFR algorithm is less than that for the other two postures; on the other

hand, in Posture 3, where the human has the minimum capability in compensating

for the force, even with PBFR algorithm applied, still the induced motion is larger

than for the other two postures.

In Figure 4.1 (left), the human force and the reflected force for all three postures

are shown with and without PBFR algorithm applied. It can be seen that in Posture
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3, even with small reflected force and hence small human force, human is not able

to compensate the force completely while in Posture 1 is. On the other hand, in

Posture 3 where human hand is less capable of handling the force, there exists a

longer transient time.

4.2 A posture dependent selection of the PBFR

gain

In this section, we introduce a new method for on-line selection of the PBFR gain

depending on the human hand posture. Specifically, given a unit vector u ∈ R2, we

introduce the PBFR gain α as a function of the configuration of human arm quantified

with the force transmission rate γu given by

γu = (uT (JJT )u)−
1
2 . (4.1)

We select α as a linear function of the force transmission rate in the direction of the

reflected force as,

α(γu) = Sat
[αmin,αmax]

{
αmax +

(αmax − αmin)

(γmax − γmin)
(γu − γmax)

}
. (4.2)

Here, the unit vector u = ûfe is the unit vector in the direction of the reflected force

and αmin = α(γmin), αmax = α(γmax).

To select appropriate values for our linear function, we have a look at Figures

3.19, 3.20 and 3.21, where corresponding velocity ellipsoids and also maximum and

minimum of velocity transmission rate for each posture are shown. As can be seen

in Figure 3.19, the minimum and maximum force transmission rate are γmin = 1.12,

and γmax = 30 respectively. Here, we consider the α(γmin) = 0.1 and α(γmax) = 1.

Using the equation (4.2), we suggest a new PBFR gain α as a function of the force
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Figure 4.1: The human force and reflected force for postures 1-3(top to bottom) with
constant PBFR gain in response to a horizontal disturbance force
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transmission rate γ given by

α(γ) = Sat
[0.1,1]

{
1 +

.9

28.88
(γ − 30)

}
. (4.3)

The α(γ) is taken to be a simple transformation relating α(1.12) = .1 to α(30) =

1. The saturation function at 0.1 and 1 makes sure that, for the cases where the force

transmission rate is high (more precisely higher than or equal 30) and human hand

is capable of compensating for the force, the PBFR gain α = 1 is applied. On the

other hand, for the cases where force transmission rate is low (here lower than 1.12)

and the human hand is not capable of compensating for the force completely, a rather

small value of α = 0.1 is applied. These values, i.e., 1.12 and 30, correspond to the

force transmission rate when the human arm is in the position (θ − 5o, 10o), where

θ = u2/u1. For the cases u = (1, 0) and u = (0, 1), these values are illustrated

in Figure 3.19. In addition, the β−1u is ’almost’ the force transmission rate in the

direction u ∈ R2 which here is the direction of the force applied; for this reason,

we also use the notation αu = α(βu). One should note that in general, the velocity

transmission rate and force transmission rate are not inverse of each other. In fact,

if the vector u is a unit eigenvector of JJT , then

β2γ2 = uT (JJT )−1uuTJJTu = λ−1|u|2λ|u2| = 1,

and hence one can use γ = 1/β when it is known that the unit reflected force is

(almost) in direction of principle axes.
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4.3 The posture dependent PBFR gain and

stability: experimental results

In this section, we present some experimental results to show the effect of applying

the new posture dependent PBFR gain introduced in the last section and given by

(4.3), on the stability and transparency of the haptic system. The experimental setup

is similar to the previous section, see Figure 3.17. As the previous section, we apply a

horizontal force while human hand holds the haptic device in three different Postures

1, 2 and 3 shown in Figures 3.19- 3.21. We perform the experiment for three different

cases; direct force reflection, PBFR with constant gain α = 0.3, and the variable

PBFR gain introduced by formula (4.3). In our experiment, the horizontal force

applied to the human hand is fx = 3N .

As can be seen in Figure 4.1-right, in Postures 2 and 3, the induced motion

with varying PBFR gain applied is smaller than the induced motion when the force

is directly reflected (in Posture 2, between t = 2 to t = 3.5 seconds). The induced

motion is dependent on the human postures, even if the PBFR algorithm is applied.

Recall that in the PBFR case, the reflected force is computed based on human force

measurement, i.e., fr = αfenv + (1− α)ϕenv.

As can be seen in the Figure 4.2, in Posture 3 where the human hand has lower

capability to compensate for the force compared to Postures 2 and 1, a smaller PBFR

gain α = 0.1 is implemented which causes a lower induced motion and hence higher

level of stability. Moreover, it can be seen that, the transient time decreases slightly,

which corresponds to a higher level of transparency and also in a position like Posture

1, where the human hand is capable of handling the force, a high PBFR gain (such

as α = 1) provides the same level of transparency and stability (Figure 4.2-top).

Therefore, there is no need to decrease the PBFR gain for all postures, but for each

posture, the gain can be assigned proportional to its capability of force compensation.
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Figure 4.2: The human force vs. the reflected force in postures 1-3 with direct force
reflection, constant PBFR gain and variable PBFR gain (left), the induced motion
for direct force reflection, constant PBFR gain and variable PBFR gain in postures
1-3 (right)



71

4.4 Conclusion

It is known that the PBFR algorithm improves stability of force reflecting teleoperator

systems and haptic interfaces; however, it is also known that choosing small PBFR

algorithm gain will cause slower convergence of the reflected force to the actual contact

force which causes deterioration of transparency. In this chapter, we suggested a

method that improves the transparency pf PBFR algorithms. In fact, by applying

a varying PBFR gain depending on the human posture, we showed that there is no

need to select a small PBFR gain for those cases where human hand can handle the

reflected force. This improves the transparency of the system while the same level of

stability is preserved.

In the next chapter, by means of online estimation of the human postures,

we compute the velocity transmission rates at each instant of time. The obtained

estimate of the velocity transmission rates will be used to update the PBFR gain in

real time.



Chapter 5

A Posture Dependent PBFR Gain for

Teleoperation System with Online Posture

Estimation

In the previous chapter, we developed a method to select the PBFR gain as a posture

dependent function. Applying our method in the haptic interface case, we provided

the experimental results that show how the transparency of the system will be im-

proved. In this chapter, our goal is to generalize the method of the last chapter to

a teleoperation system with force feedback. Our teleoperation system consists of a

local and a single remote manipulator which communicate through a communication

channel with time varying delay. In order to update our posture dependent PBFR

gain, we use a webcam which detects transmission rate of human postures during

the task execution. In the following, we first describe our teleoperation system in

details and then explain the experimental results that compare the performance of

the teleoperator system for the cases of direct force reflection, constant PBFR gain

and posture dependent PBFR gain.

5.1 Online posture estimation

In this section, we explain how by using the library OpenCV and a web-cam we

estimate the human posture online to find the transmission rates of the arm at each

instant. The OpenCV (Open Source Computer Vision) is a library of programming

functions under the open source BSD license. Its main focus is on real-time image
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processing. Having transmission rates βx, βy at each time instant, we can apply the

posture dependent PBFR gain by the formula 4.3. To have the model of the human

arm at each instant of time, we consider three green markers on human arm as shown

in Figure 5.1, one on the shoulder, one on the elbow and one on the wrist. Based on

the size and the color, markers will be detected during the task execution. Connecting

the centres of the areas of these markers, we will be able to detect configuration of

the human arm. With this information, we will find the corresponding angles and

hence, establish the velocity ellipsoids and find the associated transmission rates.

Figure 5.1: The process of online posture estimations by detecting the wrist, elbow
and shoulder positions using a camera. The center of the area of the green markers
will be detected and connected to make a 2-DOF model of human arm.

In the next section, we describe the experimental setup, and present some results

of our experimental evaluation of the effect of human posturing on the stability and

transparency of the teleoperation system with force reflection.

5.2 Experimental setup

The structure of the teleoperator system with PBFRalgorithm and online posture

estimation is shown in Figure 5.2. The experimental setup, which is illustrated in

Figure 5.3, consists of a single-local single-remote force reflecting telerobotic system.
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Figure 5.2: Structure of teleoperator system with projection-based force reflection
and on-line posture estimation.

During this experiment, the Phantom OmniTM haptic devices manufactured by Sens-

Able Technologies Inc., were used as the local and remote devices. The devices have

6-DOF position sensing and 3-DOF force feedback, and they were programmed using

the OpenHaptics toolkit. The devices are controlled from two different PC’s, which

are connected over a local area network. There is an artificially created time vary-

ing delay between local and remote devices using internal buffers, and an algorithm

is implemented that generates random delay and packet dropouts with prescribed

characteristics. All the experiments were run at the sampling frequency of 1000 Hz.

Figure 5.3: Experimental setup

The estimates of the human force which are used in the PBFR algorithm are ob-

tained using the high-gain force observer designed in [57]. There were two virtual

walls located at (−5mm, 75mm), one orthogonal to x-axis and one to y-axis. The
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remote manipulator interacts with these virtual walls. To display a hard contact

with the environment, a method developed in [53] has been used. The contact force

fe = (fex, fey) is generated by the formula

fex = −K1(x− x0)

fey = −K2(y − y0),

where x and y are the depth of penetration of the end-effector proxy into the x and

y wall’s surfaces, respectively and x0 = −5mm, y0 = 75mm are the location of the

virtual wall. The constants Ki ≥ 0, i = 1, 2 are the walls stiffness and are chosen as

K1 = K2 = 0.5N/m for our experiment. The time-varying communication delay has

the minimum round-trip time (RTT) equal to 0.4 seconds. The controller used for

Figure 5.4: Experimental setup for on line estimation of the human postures to adjust
the variable PBFR gain

the remote device is a PID plus gravity compensation controller given by

u = −Kpq̃ − kd ˙̃q −KI
∫
q̃ dt+G(q),

where q̃ = q̂l − qr is the difference between the delayed remote and local position in

joint space, G(q) is the gravity vector, and Kp, Kd, KI are gains selected as Kp =

2, Kd = 0.005, KI = 5.
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Figure 5.5: On line estimation of the human postures to adjust the variable PBFR
gain; in the web-cam picture in the monitor, the online attachment velocity based
ellipsoid based on the human posture is shown.

In the experimental results presented below, the human operator performs a

simple task using the local manipulator, and the remote manipulator will follow the

local device to execute the task. The human operator moves the manipulator to the

virtual wall for each of the three postures shown in Figures 5.6, 5.7, and the stability

and transparency of the teleoperator system will be compared between the three cases:

direct force reflection, PBFR algorithm with small PBFR gain, and PBFR algorithm

with a posture dependent PBFR gain. It will be shown that, in all three cases the

teleoperator system is stable, however, in the case that an adaptive PBFR gain is

applied, the transparency of the system is improved while the same level of stability

is preserved. In the following, βu, γu denote the velocity and force transmission rates

in direction of u and αu := α(γu).

Figure 5.8 shows the contact force versus reflected force and the local device

trajectory for the direct force reflection case, for the three Postures illustrated in

Figures 5.6- 5.7. The reflected force is caused by the contact with the virtual wall in

x-direction. This experiment shows the effect of human postures on the stability of

the teleoperator system in the case of direct force reflection. The associated velocity

transmission rate has been shown in Figure 5.9. As it can be seen in Figure 5.8-

right, that in Posture 1, in which the human hand is capable of compensating for

the reflected force, is more stable comparing to Posture 2 and 3 (Figure 5.8-right-
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middle/bottom), where the human hand cannot compensate for the external force

completely.

Figure 5.6: Posture 1

Figure 5.7: Posture 2 (left) and Posture 3 (right)

Figure 5.10 shows the contact force versus reflected force and the local device

trajectory in the direct force reflection case, for the same three postures as above.

The reflected force this time is caused by being in contact with the virtual wall in y-

direction. The associated velocity transmission rate has been shown in Figure 5.9. As

it can be seen in Figure 5.10-right, the system at Posture 3, in which human the hand

is capable of compensating the reflected force, is more stable comparing to Posture

1 and 3, Figure 5.10-right-top/middle, where the human hand cannot compensate

the force completely. Accordingly, the local device trajectory for the Posture 3 is
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Figure 5.8: Contact versus reflected force (left), local manipulator trajectory (right)
for direct force reflection case for Postures 1-3 (top-bottom). The virtual wall per-
pendicular to x-direction.
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Figure 5.9: Velocity transmission rate in postures 1, 2 and 3 (top to bottom) for
direct force reflection case. The virtual wall orthogonal to x-direction.
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a smooth trajectory and the system is stable, unlike the Posture 1 where it has a

oscillatory graph due to instability.

In Figure 5.12, the contact force vs reflected force and the haptic device trajec-

tory are shown when PBFR algorithm is applied. The human arm is in Posture 1,

and the force is caused by the contact with the virtual wall in x−direction. In fact,

we consider three different situations regarding the PBFR gain as it is shown that in

Figure 5.13-left, i.e., constant high gain αx = 1, constant small gain αx = 0.1 and

variable gain α(γx). In Figure 5.13-right, the associated velocity transmission rates

are shown. As it can be seen in Figure 5.12-left-top corresponding to the contact vs

reflected force for the αx = 1, the situation is exactly as the direct force reflection,

where there is no transient time and that is because for this selection of gain the

whole force is reflected back. In Figure 5.12-left-middle, which corresponds to the

case αx = 0.1, because of the fact that a small value of α has been selected, the tran-

sient time (i.e., the time that the reflected force converges the actual force), increases

which deteriorates the transparency. However, as it can be seen in Figure 5.12-left-

bottom, applying a variable PBFR gain depending on the velocity transmission rate

(or human posture), will improve the transparency, in the sense that it considerably

reduces the transient time. In fact, in this case, since the human hand is capable of

handling the contact force, there is no need to select a very small value of αx. There-

fore, α(γx) varies around 0.4 versus 0.1 in the previous case where αx was constant,

while the stability of the teleoperator system is preserved. In fact, since the human

arm is in Posture 1, it is fully capable of compensating for the force and, hence, the

local device follows a smooth trajectory.

The above experiment is repeated for Posture 3, where the human/local device

is in contact with the virtual wall in the x−direction. This is the case where the

human hand is not capable of compensating for the force and, hence, the overall

stability would need a small PBFR gain. The contact force vs. reflected force and

the local device trajectory are shown in Figure 5.14, and the corresponding PBFR
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Figure 5.10: Contact versus reflected force (left), local manipulator trajectory (right)
for direct force reflection case for Postures 1-3 (top-bottom). The virtual wall per-
pendicular to y-direction.
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Figure 5.11: Velocity transmission rate in postures 1, 2 and 3 (top to bottom) in
direct force reflection case; y-direction.
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gain in Figure 5.15. As it can be seen in Figure 5.15-left-bottom, the varying PBFR

gain in this case is small, around 0.1, the transparency improvement comparing to the

constant PBFR gain αx = 0.1, is very slight, as the transient time is a little less that

2 seconds, while for the constant PBFR gain it is a little more than 2 seconds. This is

while the trajectory illustrated in Figure 5.14-right-bottom is slightly smoother than

5.14-right-middle, see the sharpness at t = 2 and t = 10 seconds.

In Figure 5.16, the contact force versus reflected force are shown when human

is positioned in Posture 1 and is in contact with a virtual wall in y-direction. This is

a case that human is not capable of compensating the force and stability would need

a small PBFR gain. The corresponding PBFR gain illustrated in Figure 5.17. As

it can be seen in Figure 5.17-left-bottom, the varying PBFR gain for this case that

human hand is not capable of compensating the force is small, around 0.1, and the

transparency improvement comparing to the constant PBFR gain αy = 0.1, is very

slight, as represented in the transient (convergence) time. The trajectory illustrated

in 5.14-right, for both cases, constant PBFR α = 0.1 and varying PBFR gain are

smoother than 5.16-right-top, the case of direct force reflection.

In Figure 5.18 the contact vs reflected force and the local device trajectory

are shown when PBFR algorithm is applied. The human arm is in Posture 3, and

the contact force fy is produced because of being in contact with a virtual wall in

y−direction. Again, three different situation regarding the PBFR gain is considered

represented in Figure 5.19-left which are constant high gain αy = 1, constant small

gain αy = 0.1 and variable gain α(γy). In Figure 5.19-right, the associated velocity

transmission rates are shown. As it can be seen in 5.18-left-top corresponding to

the contact vs reflected force for the αy = 1, there is no transient time, i.e., it is

like the direct force reflection. In Figure 5.18-left-middle, corresponding to the case

αy = 0.1, because of the fact that a small value is selected for αy, the transient time

will increase, which causes deterioration in transparency. However, in Figure 5.18-

left-bottom, it can be seen that applying a variable PBFR gain depends on velocity
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Figure 5.12: Contact vs. reflected force (left), local trajectory (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 1 and virtual wall orthogonal to x−direction.
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Figure 5.13: PBFR gain (left) and velocity transmission rate (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 1 and virtual wall orthogonal to x−direction.
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Figure 5.14: Contact vs. reflected force (left), local trajectory (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 3 and virtual wall orthogonal to x−direction.
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Figure 5.15: PBFR gain (left) and velocity transmission rate (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 3 and virtual wall orthogonal to x−direction.
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transmission rate (or human posture), will improve the transparency, in the sense

that it reduces the transient time. In fact, in this case, since the human hand is

capable of handling the contact force, there is no need to select a very small amount

of αy and the variable αy varies around 0.3− 0.4 versus 0.1 in the previous case that

provides a longer transient time. This improves the transparency while the stability

of the system is persevered, that is, the human arm is positioned at Posture 1 and

the human is capable of compensating the force, the local device follows a smooth

trajectory.

The dependence of PBFR gain on the velocity transmission rate are shown in

Figures 5.20 and 5.21. In Figure 5.20 the varying PBFR gain αx is illustrated versus

the velocity transmission rate βx. It can be seen that whenever, βx increases, which is

corresponding to the less capability of compensating the force in Posture 2, the PBFR

gain decreases to a smaller value (such as the duration between t = 5 s to t = 7 s

that αx decreases to 0.1), and whenever, βx decreases, which is corresponding to the

higher capability of compensating the force in Posture 2, the PBFR gain increases to

larger value (such as the duration between t = 13 s to t = 19 s that αx increases to

0.4), which improves the transparency of the system as already discussed. The same

result for PBFR gain in y−direction and Posture 1 is presented in Figure 5.21.
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Figure 5.16: Contact vs. reflected force (left), local trajectory (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 1 and virtual wall orthogonal to y−direction.
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Figure 5.17: PBFR gain (left) and velocity transmission rate (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 1, and virtual wall orthogonal is to y−direction.



91

Figure 5.18: Contact vs. reflected force (left), local trajectory(right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1(middle) and time varying α
(bottom). Human is in Posture 3, and virtual wall orthogonal is to y−direction.
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Figure 5.19: PBFR gain (left) and velocity transmission rate (right) with constant
PBFR gain α = 1 (top), constant PBFR gain α = 0.1 (middle) and time varying α
(bottom). Human is in Posture 3 and virtual wall orthogonal to y−direction.
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Figure 5.20: Posture dependent PBFR gain α(βx) and the velocity transmission rate

βx, Posture 3.
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Figure 5.21: Posture dependent PBFR gain α(βy) and the velocity transmission rate

βy, Posture 1.

5.2.1 Discussion on the stability

Although in practice the teleoperator system with local-remote manipulators and the

above described adaptive PBFR algorithm demonstrates stable behavior, however

one needs to prove this claim rigorously. In fact, one can see that the proof will not

be a simple mimic of the original proof of IOS stability for a teleoperator system with

PBFR as described in [60]. One reason for that is our selection of function α does

not turn to a class K function of the magnitude of the environment force |fe|.
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5.3 Conclusion

In this chapter, the method of adaptive PBFR gain developed in the previous chapter

is applied to the force reflecting teleoperation system with time varying delay. We

present the experimental results that compare the stability and transparency of the

system in three different cases: direct force reflection, PBFR algorithm with constant

gain and the adaptive PBFR gain. We also showed that application of the new

posture-dependent PBFR gain based on human postures introduced in Chapter 4

improves the transparency of the teleoperator system, while stability is preserved.



Chapter 6

Towards a 4-DOF model of human arm

In this chapter, we discuss a more realistic model of the human arm with 4 degrees

of freedom and explain how the methods of the previous chapters can be applied to

this case. We recall that our goal is to investigate the effect of human postures on the

overall stability of a teleoperator system with force feedback. Through Chapters 3 to

5, we investigated the effect of human postures on the stability of the teleoperator

system, when the human arm is modelled as a 2-DOF (planar) model shown in Figure

2.2 and we also developed a new method of selecting PBFR gain based on human

postures. It is also shown that our suggested method improves the performance of the

force reflecting teleoperator system with time varying delay. In this chapter, we aim

to explore the relation between human postures and the stability and performance of

the system for a more realistic model of the human arm with 4-DOF. The model of the

human arm that we would like to consider here has 4 degrees of freedom; three degrees

of freedom at the shoulder (a spherical joint) and one degree of freedom at elbow (a

revolute joint). This model allows us to capture a three dimensional movements

of the human arm. We investigate this model thoroughly, which means that we

solve the kinematics, inverse kinematics, and also find the dynamics of the model.

The kinematics of the model which will be obtained from the Denavit-Hartenberg

method together with the inverse kinematics will allow us to find the velocity/force

transmission ratios and also velocity/force ellipsoids during the arm movement. Later

in this chapter, we compute the dynamics of the model and demonstrate simulations

similar to those performed in Chapter 3 to demonstrate the behaviour of the human

96
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arm in response to an external disturbance for different postures. The teleoperation

experiments as well as online posture estimation is postponed to future work.

6.1 A 4-DOF human arm model;

Denavit-Hartenberg representation

In this following, we first use the Denavit-Hartenberg (DH-) representation to obtain

the forward kinematics of the human arm modeled as Figure 6.1. The model that is

considered here has 4-DOF with a spherical joint at shoulder and a revolute joint at

elbow and the end-effector fixed at hand. The inverse kinematics problem associated

with the model also will be solved afterwards.

6.1.1 The forward kinematics of the 4-DOF human arm

model

As it is mentioned above, the model that we consider is a 4-DOF model of human

arm with a spherical joint at shoulder, a revolute joint at elbow, and the end-effector

at hand connected via upper arm and forearm with lengths l1, l2. The joint angles

are denoted by θ1, θ2, θ3, θ4.

To find the linear transformation from the joint coordinates θ1, θ2, θ3, θ4 to

the frame attached to the end-effector, we use the well known Denavit-Hartenberg

method. First, we need to fix a frame at each joint. The origin of frames are denoted

by points P0, P1, P2, P3 and P4. Note that there are five frames, the first three are

attached to the spherical joint at shoulder, the forth one to the revolute joint at

elbow and the last one at the end-effector, see Figure 6.1. The coordinate of each

Pi, i = 0, · · · , 4 is denoted by Pi = (xi, yi, zi). The length of upper arm and forearm

here are denoted by l1, l2. For our simulation and experimental results in the future

the length of upper arm and forearm are considered as l1 = 0.35m and l2 = 0.3m.
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After fixing a frame at each joint, we can find the four parameters ai, αi, di and

θi of D-H method. These four parameters are usually called link length, link twist,

link offset and joint angle. The αi is the rotation about the xi axis to fit zi−1 on

zi, θi is the rotation angle about the zi−1 axis for xi−1 to fit on xi. The distance

between Pi−1 and Pi in the xi direction is ai and along the zi−1 direction is di. The

Denavit-Hartenberg parameters of our model are given in the following table.

DH-parameters

i αi ai di θi

1 −π/2 0 0 θ1

2 −π/2 0 0 θ2 − π/2

3 π/2 0 l1 θ3 + π/2

4 0 l2 0 θ4

The general form of the transformation from the coordinate system attached to the

(i− 1)th joint to the coordinate system attached to the ith joint is denoted by Ai−1i

and is given by

Ai−1i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


.

Now, to find the transformation relating the first frame to the frame that is at-

tached to the end-effector, one should compose the the successive transformations

A0
1, A

1
2, A

2
3, A

3
4 . From the last column of T := A0

4 = A0
1A

1
2A

2
3A

3
4, one can find the

coordinate of the end point. (Note that the first three columns of the matrix T repre-

sent the rotation of the the last frame with respect to the first frame.) Therefore, the

coordinate of the frame P4 = (x4, y4, z4), fixed at the end-effector can be computed



99

Figure 6.1: Coordinate system of the arm

as

x4 =l1 cos θ1 cos θ2 − l2 cos θ4(cos θ3 sin θ1 − cos θ1 sin θ2 sin θ3)

+l2 cos θ1 cos θ2 sin θ4

y4 =l1 cos θ2 sin θ1 − l1 cos θ4(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

+l2 cos θ2 sin θ1 sin θ4

z4 =− l1 sin θ2 − l2 sin θ2 sin θ4 − l2 cos θ2 cos θ4 sin θ3. (6.1)

The Jacobian of the change of coordinate from the joint space (θ1, θ2, θ3, θ4) to the

task space (x4, y4, z4) can be found as J = (Jij) =
∂(x4,y4,z4)
∂(θ1,θ2,θ3,θ4)

. A straightforward
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computation implies that

J11 = −l1 cos θ2 sin θ1 + l2 cos θ4(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3)

− l2 cos θ2 sin θ1 sin θ4

J12 = −l1 cos θ1 sin θ2 − l2 cos θ1 sin θ2 sin θ4

− l2 cos θ1 cos θ2 cos θ4 sin θ3

J13 = −l2 cos θ4(sin θ1 sin θ3 + cos θ1 cos θ3 sin θ2)

J14 = −l2 sin θ4(cos θ3 sin θ1 − cos θ1 sin θ2 sin θ3) + l2 cos θ1 cos θ2 cos θ4

J21 = l1 cos θ1 cos θ2 + l2 cos θ4(cos θ3 sin θ1 − cos θ1 sin θ2 sin θ3)

+ l2 cos θ1 cos θ2 sin θ4

J22 = −l1 sin θ1 sin θ2 − l2 sin θ1 sin θ2 sin θ4

− l2 cos θ2 cos θ4 sin θ1 sin θ3

J23 = l2 cos θ4(cos θ1 sin θ3 − cos θ3 sin θ1 sin θ2)

J24 = l2 cos θ2 cos θ4 sin θ1) + l2 sin θ4(cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3))

J31 = 0

J32 = −l1 cos θ2 − l2 cos θ2 sin θ4 + l2 cos θ4 sin θ2 sin θ3

J33 = −l2 cos θ2 cos θ3 cos θ4

J34 = −l2 cos θ4 sin θ2 + l2 cos θ2 sin θ3 sin θ4. (6.2)

Now, we can find the velocity and force transmission ratios from (JJT )−1 and JJT .

In fact, as mentioned in the previous chapters, the velocity transmission rate β in the

direction of the unit vector u is given by β = (u(JJT )−1u)−1/2 and the associated

velocity ellipsoid at the end-effector can be obtained through eigenvalues and eigen-

vectors of (JJT )−1, see Figure 6.2. In the following we solve the inverse kinematics

of the above mentioned 4-DOF human arm model.
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Figure 6.2: The velocity ellipsoid of the 4-DOF model of human arm; the principal
axes are denoted by dashed red lines.

6.1.2 Inverse Kinematics of the 4-DOF human arm model

In the following, we solve the inverse kinematics problem of the 4-DOF human arm

model introduced in the previous section. We should mention that, when we estimate

human postures on-line, we need the inverse kinematics of the model to move from

task space to joint space. This is needed because, the transmission ratios depend on

Jacobian which is written in joint space coordinates. Recall that we denoted the frame

bases which are fixed at joints by points P0, · · · , P4 and the angle joints by θ1, · · · , θ4.

The points P0, P1, P2 are at shoulder, P3 is fixed at elbow, and P4 at hand. We recall

that our goal is to estimate postures of the arm on-line during a task performance.

This is a necessary step to develop experiments which have been done in Chapter 5

from the point of view that it can capture a three dimensional movement of the arm

using two cameras (although, we will not perform the on-line posture estimation in

this thesis.) Let us formulate inverse problem that we are interested to solve.

Formulation of the inverse kinematics problem: Given positions of the elbow

and hand, we will find joint angles. More precisely, we would like to find joint angles

θ1, θ2, θ3, θ4 if P3 and P4 are known.
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Note that, since P0 is considered fixed as the origin of the base frame during the

task, so we only need to detect P3 and P4. These angles can be found as following:

first note that the point P3 is given by the last column of the matrix A0
3 = A0

1A
1
2A

2
3

as

x3 = l1 cos θ1 cos θ2

y3 = l1 cos θ2 sin θ1

z3 = −l1 sin θ2, (6.3)

and P4 is given by (6.1). From (6.3), one can easily see that tan θ1 = y3/x3 and hence

θ1 = atan2 (y3, x3),

(we use atan2 as the inverse tangent function in MATLAB). From (6.1) and by

squaring the components one has

tan2 θ2 =
z23

x23 + y23
,

therefore,

θ2 = atan2 (±z3,
√
x23 + y23).

To find θ4 note that

x24 + y24 + z24 − l
2
1 − l

2
2 = 2l1l2 sin θ4,

hence, one can find θ4 as

θ4 = asin(
x24 + y24 + z24 − l

2
1 − l

2
2

2l1l2
),

(asin is the inverse sine function in MATLAB). Although, from (6.3) and (6.1), θ3
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can be found as

z4 − z3 = l1(sin θ2 sin θ4 + cos θ2 cos θ4 sin θ3),

θ3 = asin(

1
l1

(z4 − z3)− sin θ2 sin θ4

cos θ2 cos θ4
),

but we prefer to express θ3 as an inverse tangent function. First, let us consider the

following notations:

α := l2 cos θ1 cos θ2 sin θ4

β := l2 cos θ2 sin θ1 sin θ4

γ := ((X34 − α)2 + (Y34 − β)2)/(l22 cos2 θ4) = cos2 θ3 + sin2 θ2 sin2 θ3, (6.4)

where

(X34, Y34, Z34) := P4 − P3 = (x4 − x3, y4 − y3, z4 − z3).

Therefore, one has

κ := (γ − sin2 θ2)/(cos2 θ2) = cos2 θ3

δ := (Z34 + l2 sin θ2 sin θ4)2/(l2 cos θ2 cos θ4)2 = sin2 θ3 (6.5)

(6.6)

which gives us

tan2 θ3 = δ/κ.

and hence

θ3 = atan2 (±
√
δ,
√
κ). (6.7)

This concludes the solution of inverse kinematics problem of our model.
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6.1.3 Simulation of the human arm model and associated

velocity ellipsoids

In the following, we bring the simulation of the 4-DOF human arm considered above

to illustrate the transmission ratios and also velocity ellipsoids attached to the end-

effector during a three dimensional movement of the arm. The simulation is performed

in MATLAB, see Appendix B for the required MATLAB code. Here, using the inverse

kinematics solution of the 4-DOF human arm model, we will find the joint angles

θi’s, i = 1, · · · , 4, during a movement of the arm. Then, (JJT )−1 will provide us the

information needed to find the transmission ratios and velocity ellipsoids. We recall

that our model is a 4-DOF model with a spherical joint at shoulder and a revolute

joint at elbow as it is shown in Figure 6.1 and also explained in the previous section.

The length of the upper arm and former arm are l1 = 0.35m, l2 = 0.3m, respectively.

Figure 6.3 shows the velocity ellipsoids associated to the arm during a movement. The

movement of the arm is along a a circular path given by (l1/
√

2+l2 sin t, l2 cos t, l1/
√

2)

from t = −1 to t = 0.2 with the step time t = 0.2.

In the next part, we aim to simulate the arm behavior in response to an external

disturbance force for different postures. In order to do so, we need to investigate

dynamics of the model discussed above.

6.2 Dynamics of the 4-DOF human arm model

In this section, we would like to repeat the simulation that has been performed in

Chapter 3 to explore the behaviour of the human arm in response to an external

force for different postures. For this aim, i.e., to show the dependence of the human

arm performance to the configured posture, one needs the dynamics of the system.

Through this section, we bring the steps of finding the dynamics of our model. One

approach to dynamics equation of a model is applying the Euler-Lagrange formula on

the Lagrangian of the system. The Lagrangian of the system is the difference between
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Figure 6.3: The 4-DOF model of human arm: Velocity ellipsoid during a circular
motion on the path given by (l1/

√
2 + l2 sin t, l2 cos t, l1/

√
2) for t = −1 : 0.2 : 0.6.

The principle axes of the ellipsoid is shown by red dashed lines.
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kinetic and potential energies, that is

L(θ, θ̇) = T (θ, θ̇)− U(θ),

where in our case

T =
1

2

∑
i

miẊ
2
i,c.

Here, X1,c = 0.5P3, X2,c = 0.5(P3 + P4) are positions of the centre of the upper arm

and forearm, respectively. The coordinate of P3, P4 are given by formulas (6.3) and

(6.1). A straightforward computation gives us

T (θ, θ̇) = (θ̇22l
2
1m1)/8 + (θ̇22l

2
1m2)/2 + (θ̇22l

2
2m2)/8 + (θ̇24l

2
2m2)/8

+ (θ̇21l
2
1m1 cos2 θ2)/8 + (θ̇21l

2
1m2 cos2 θ2)/2 + (θ̇21l

2
2m2 cos2 θ2)/8

+ (θ̇21l
2
2m2 cos2 θ4)/8 + (θ̇23l

2
2m2 cos2 θ4)/8− (θ̇2θ̇4l

2
2m2 sin θ3)/4

+ (θ̇22l1l2m2 sin θ4)/2− (θ̇21l
2
2m2 cos2 θ2 cos2 θ4)/4

− (θ̇22l
2
2m2 cos2 θ3 cos2 θ4)/8 + (θ̇21l

2
2m2 cos2 θ2 cos2 θ3 cos2 θ4)/8

+ (θ̇1θ̇4l
2
2m2 cos θ2 cos θ3)/4− (θ̇1θ̇3l

2
2m2 cos2 θ4 sin θ2)/4

+ (θ̇21l1l2m2 cos2 θ2 sin θ4)/2 + (θ̇2θ̇3l1l2m2 cos θ3 cos θ4)/2

− (θ̇2θ̇4l1l2m2 sin θ3 sin θ4)/2 + (θ̇2θ̇3l
2
2m2 cos θ3 cos θ4 sin θ4)/4

− (θ̇1θ̇2l1l2m2 cos θ3 cos θ4 sin θ2)/2 + (θ̇1θ̇3l1l2m2 cos θ2 cos θ4 sin θ3)/2

+ (θ̇1θ̇4l1l2m2 cos θ2 cos θ3 sin θ4)/2

− (θ̇1θ̇2l
2
2m2 cos θ2 cos θ3 cos2 θ4 sin θ3)/4

− (θ̇21l
2
2m2 cos θ2 cos θ4 sin θ2 sin θ3 sin θ4)/4

− (θ̇1θ̇2l
2
2m2 cos θ3 cos θ4 sin θ2 sin θ4)/4

+ (θ̇1θ̇3l
2
2m2 cos θ2 cos θ4 sin θ3 sin θ4)/4

− (θ̇21l1l2m2 cos θ2 cos θ4 sin θ2 sin θ3)/2. (6.8)
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The potential energy, U , can be found from

U = m1gz1,c +m2gz2,c

where z1,c, z2,c are the z-components of X1,c, X2,c. A simple computation shows that

U = −gm2(l1 sin θ2+(l2 sin θ2 sin θ4)/2+(l2 cos θ2 cos θ4 sin θ3)/2)− (gl1m1 sin θ2)/2.

(6.9)

Now, the G-term of the dynamics equation (2.3), will be obtained as

G = (G1, G2, G3, G4) =
( ∂U
∂θ1

,
∂U

∂θ2
,
∂U

∂θ3
,
∂U

∂θ4

)
, (6.10)

where

G1 = 0,

G2 = −gm2(l1 cos θ2 + l2 cos θ2 sin θ4/2− l2 cos θ4 sin θ2 sin θ3/2)− gl1m1 cos θ2/2,

G3 = −(gl2m2 cos θ2 cos θ3 cos θ4)/2,

G4 = −gm2(l2 cos θ4 sin θ2/2− l2 cos θ2 sin θ3 sin θ4/2). (6.11)

It is an easy computation to show that the inertia terms M = (Mij) can be found

from the following formula

Mij =
∂2T

∂θ̇i∂θ̇j
, (6.12)

and having Mij , the Coriolis/centrifugal terms can be obtained from

Cij =
∑
k

cijkθ̇k, (6.13)

where the Christoffel’s symbols will be computed as (2.2). We will omit bringing

the lengthy terms of inertia and Coriolis/centrifugal here, but rather, for the sake of

completeness, we will bring the required MATLAB code to compute the terms of the
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associated matrices in Appendix B.

6.2.1 Simulation of effect of human postures on the

stability of the system; a regulation problem

In this section, we present a set of simulation results to show the posture dependent

behavior of human arm in response to an external force. In our simulations, we

consider the previously mentioned 4-DOF model of the human arm with a spherical

joint at shoulder and a revolute joint at elbow joined by two arms with length l1 =

0.35m and l2 = 0.3m. Dynamics of the model is given by (6.11), (6.12) and (6.13).

In our simulation, the arm is set in different positions in the three dimensional space

as it is shown in Figure 6.4.

Figure 6.4: The human arm movement on the path given by the (6.14).

Then disturbance forces, Fy, Fz, Fw are applied to the end-effector at each of

the given positions, where Fy, Fz, Fw are rectangular pulses respectively, in directions

y, z, and w = P4 − P3 (direction of the forearm). The magnitude of all three forces

are |Fz| = |Fy| = |Fw| = 3N and the time duration of applying is 2 seconds starting
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from t = 5 s. To regulate the system at the desired position, we use a PD-controller

with gravity compensation as

τ = G−Kp(θ − θd)−Kd(θ̇ − θ̇d),

where Kp, Kd are positive definite matrices given by Kp = 10I, Kd = 2I. Postures

are due to the movement of the arm on a path determined by the positions of elbow

and hand, i.e., P3, P4 as following

P3 = (0,−l1 cos(1.2),−l1 sin(1.2)),

P4 = (0,−l1 cos(1.2)− l2 cos(−.1t),−l1 sin(1.2)− l2 sin(−.1t)), −3 ≤ t ≤ 3. (6.14)

Here t is sampled every 0.5 s. In the following we refer to the above positions as

Posture 1 to Posture 6, that is, Posture i corresponds to P3, P4, where t = −3.5 + .5i

for i = 1, 2, · · · , 6. The corresponding velocity transmission rate βu for each posture

is shown in Figure 6.5.

For each of the above positions, the torque τi, i = 1, 2, 3, 4 applied to each joint,

trajectories and desired trajectories θ and θd when the external force is in direction

of z, w are illustrated in Figures 6.6 and 6.8. The transmission rate βy, as it can

be seen in Figure 6.5, attains its minimum value at Posture 4, i.e., the posture that

human arm is more capable of compensating a force in y−direction. This is also

confirmed in Figure 6.10, where it can be seen that the torque applied to the joint

4, to keep the hand in the desired position, is less than other postures and also the

joint displacement is less than other postures. On the other hand the transmission

rate βz has its maximum value in Postures 3 and 4, so, hand should be less capable of

compensating the force applied in z−direction, comparing to the other postures. This

is also confirmed in Figure 6.10, where it can be seen that torques applied to the joint

4 at Postures 3 and 4 are higher than other postures and also joint displacement is

higher than other postures, see Figure 6.6. The transmission rate βw has smaller value
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Figure 6.5: The velocity transmission rates βy (up-left), βz (up-right) and βw (down-
left), where w is the forearm direction and human arm postures are given by (6.14).
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comparing to βz, since hand in the direction of forearm is more capable of handing a

disturbance force applied in the same direction. The small difference between βw and

βy, see Figure 6.5, is because of the fact that in our experiment, directions of forearm

and y-axis are almost the same. Figure 6.10 shows that control input τ4 applied to

the fourth joint for Postures 1-6, when the human arm is under forces Fy, Fz, Fw

(shown in black, blue and red, respectively). As it can be seen in this figure, for

all the postures, the control applied to the joint 4, when the arm is under force Fz,

is higher than the cases that the arm is under force Fy and Fw, as transmission

ratios also confirm that human hand is less capable of compensating the force Fz.

The reason that control τ4 is of more interest here is because of the fact that elbow

experiences more force comparing to shoulder and is subject to higher displacement.

(More precisely, joint 1 and 2 are fixed, but joint 3 which is along the upper arm feels

more force.)
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Figure 6.6: Left: trajectories θ vs desired trajectories θd for force Fz = 3 N. Right:

torques τ applied to the joints for Posture 1 (top) to Posture 3 (bottom). Postures

are give by (6.14).
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Figure 6.7: Left: trajectories θ vs desired trajectories θd for force Fz = 3 N. Right:

torques τ applied to the joints for Posture 4 (top) to Posture 6 (bottom). Postures

are give by (6.14).
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Figure 6.8: Left: trajectories θ vs desired trajectories θd for force Fw = 3 N. Right:

torques τ applied to the joints for Posture 1 (top) to Posture 3 (bottom). Postures

are give by (6.14).
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Figure 6.9: Left: trajectories θ vs desired trajectories θd for force Fw = 3 N. Right:

torques τ applied to the joints for Posture 4 (top) to Posture 6 (bottom). Postures

are give by (6.14).
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Figure 6.10: Control input τ4 applied to the fourth joint for Posture 1 (top-left) to

Posture 6 (bottom-right). Blue: force applied in z−direction, black: force applied in

y−direction and red: force applied in direction w. Postures are give by (6.14).

The simulation performed in MATLAB with a variety of other postures and
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forces also confirms the above mentioned claim, that is, posture dependent behaviour

of human arm in response to an external disturbance force. Since, we provide the

required MATLAB code to perform similar simulations in other postures and force

directions in Appendix B, we omit plotting similar results here.

6.3 An adaptive PBFR gain

In this short section, we suggest a new PBFR gain depending on human postures that

is suitable when human arm is modelled with 4 degrees of freedom as discussed in

the chapter. Given a unit vector u ∈ R3, the PBFR gain α is introduced as a linear

function of the force transmission rate in the direction of the reflected force given by

equation (4.2). As it is explained in Chapter 4, in the case of our interest, the unit

vector u = ûfe in formula (4.2) is the unit vector in the direction of the reflected force

and also, αmin = α(γmin), and αmax = α(γmax).

Here, we consider the α(γmin) = 0.1 and α(γmax) = 1. Using (4.2), we suggest

a new PBFR gain α given by

α(γ) = Sat
[0.1,1]

{
1 +

.9

2
(γ − 4)

}
, (6.15)

which is a simple transformation relating α(1/.25) = 1 to α(1/.48) = 0.1. The

saturation function at 0.1 and 1, makes sure that for the cases that force transmission

rate is higher than or equal 4 and human hand is capable of compensating the force,

the PBFR gain is selected by α = 1. Also for cases that force transmission rate is

lower than 2, and human hand is not capable of compensating the force completely,

the small value of α = 0.1 is selected. These values 2 and 4, are corresponding to the

force transmission rate when the human arm is in the position P3 = (0,−0.02,−0.34)

and P4 = (0,−0.32,−0.34). Although, we will not do it in this thesis, but this

adaptive PBFR gain can be applied when the PBFR algorithm is employed to a force

reflecting teleoperator system. In fact, as a future research, we suggest that one can
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detect the human posture using at least two cameras to update postures of the human

arm on-line and then based on this adaptive PBFR gain investigate the performance

of the force reflecting teleoperator system with a time varying delay.

6.4 Concluding remarks

In this chapter, generalization of the methods of Chapters 4 and 5 to a more realistic

model of the human arm with 4 degrees of freedom and three dimensional movement

have been described. In fact, unlike the 2-DOF model considered in the last two

chapters, this model is more close to reality when human arm is executing a task in

three dimensional space. As mentioned in the previous chapters, our goal is to show

the posture dependent behaviour of the human arm responding to an external force

during a task execution and quantify it based on velocity/force transmission rates. To-

ward such a development, kinematics, inverse kinematics and dynamics of the model

have been obtained. Also, simulation results have been performed to demonstrate the

behavior of the human arm in different postures under a disturbance force. Moreover,

an adaptive PBFR gain for this model has been suggested, however, experiments of

on-line posture estimation when human arm performing a three dimensional task is

postponed to a future work. It is worth mentioning that all requirements for such

development now have been provided in this chapter, and the only part which is not

discussed is how to setup two cameras to detect the human arm posture during a

task.



Chapter 7

Conclusion and future work

In this final chapter, we briefly describe the major contribution of this thesis and also

suggest possible future research work.

The focus of the thesis is on the performance of a teleoperator system with

force reflection. A teleoperator system usually consists of a local and a remote ma-

nipulator which communicate through a communication channel. When the remote

manipulator is in contact with an environment, to provide a better feel of contact

for the human operator and to obtain a higher level of performance, it is desirable to

send the interacting force information to the local manipulator. The contact force re-

flected back to the local side may cause irreversible damage. To address this issue, the

projection based force reflection algorithm has been suggested. It has been already

shown in the literature that the PBFR algorithm improves the stability of the force

reflecting teleoperator system and haptic interface without significant transparency

deterioration. In this method, because there is no a priori information of the contact

force estimation, the PBFR gain is considered a constant small value for stabilizing

the system for a wide range of forces. However, it is known that choosing a small

PBFR gain will cause slower convergence of the reflected force to the actual force

and hence transparency deterioration. Therefore, selecting an ’optimal’ PBFR gain

which is not necessarily a small constant would be of interest. In this thesis, studying

the relation between the human operator postures and the stability of a local-remote

force reflecting teleoperator system, we suggested a method of applying a new PBFR

gain which depends on the human postures instead of a small constant gain (Chapter

4). Applying our varying and posture dependent PBFR gain α(γ), on an experiment

119
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with a haptic device, we showed that there is no need to decrease the PBFR gain for

cases where the human hand can compensate the reflected force. This improves the

transparency of the system while the stability is preserved.

In Chapter 5, the above method was generalized to a teleoperator system with

force feedback. Our teleoperation system consists of a local and a remote manipulator

which are communicating through a communication channel with time varying delay.

By means of a camera, we detected the human arm position at each instant time and

updated the PBFR gain online during a task execution. Our experimental results

compared the stability and transparency of the system in three different cases: direct

force reflection, PBFR algorithm with constant gain and our suggested new adaptive

PBFR gain. We showed that applying the adaptive PBFR gain based on human

postures improved the transparency of the teleoperator system, while stability is

preserved.

Chapter 6, was devoted to generalizing the method of Chapters 4 and 5 to a

more realistic model of human arm with 4 degrees of freedom and three dimensional

movement (unlike the 2-DOF model considered in Chapters 4 and 5). Towards such

a development, kinematics, inverse kinematics and dynamics of the model were ob-

tained. Also, simulation results were performed to demonstrate the behaviour of the

human arm in different postures under a disturbance force. At the end, an adap-

tive PBFR gain for this model was also suggested; however, online posture detection

during task performance was postponed to a future work.

7.1 Future work

Possible directions for future work can be listed as follows.

• An extension of methods developed in Chapter 5 to the case where the hu-

man arm is modelled with 4 (or even more) degrees of freedom (as explained in
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Chapter 6). To develop such methods which allow for detection of three dimen-

sional movements of the human operator, at least two cameras have to be setup.

Here, the experimental setup will be the same as for the teleoperation system

described in Chapter 5, with the difference that this time there will be a more

realistic model of the human arm with 4-DOF, compared to the 2-DOF model

in Chapter 5. Cameras are needed in order to detect the three dimensional

movement of the human arm, by detecting the positions of the elbow and the

hand (wrist).

• Development of a method for detection of muscles tensions while grabbing the

manipulator.

• Rigorous stability analysis of the teleoperation system described in Chapter 4

with the new posture dependent PBFR gain.



Appendix

Appendix A: MATLAB codes

In this section, we present the MATLAB codes have been used in Chapter 6 to model a

4-DOF human arm, its inverse kinematics and dynamics. The first code (i.e., Human

arm model with 4-DOF) is to solve the inverse kinematics of the model and also to

find transmission ratios and velocity ellipsoids at each human posture. The second

code (i.e., Dynamics of the 4-DOF human arm) is to compute the gravity, inertia and

Coriolis/centrifugal terms of dynamics of the system.
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% Human arm model with 4-DOF 
% This code solves the inverse kinematics problem and also plot the  
% associated velocity ellipsoids and transmission ratios 
% A. Moatadelro 
%  

  
clc 
clear all 

  
% Uper and fore arm length; for reference lu=l1 and lf=l2 

  
lu=.35; 
lf=.3; 

  
%Path initialization 
initialTime=-1; 
Delta=.2; 
finalTime=1; 
t=initialTime:Delta:finalTime; 

  
%P3 and P4 are frame origins fixed at elbow and end-effector 

  
P3=[-.35*sqrt(2)*(t-t+1)/2;-.0*(t);-.35*sqrt(2)*(t-t+1)/2]; 
P4=[-.35*sqrt(2)*(t-t+1)/2-.3*sin(t);-.3*cos(t);-.35*sqrt(2)*(t-t+1)/2]; 

  
for i=1:length(t) 

           
        X3=P3(1,i); 
        Y3=P3(2,i); 
        Z3=P3(3,i); 
        X4=P4(1,i); 
        Y4=P4(2,i); 
        Z4=P4(3,i); 
        X34=P4(1,i)-P3(1,i); 
        Y34=P4(2,i)-P3(2,i); 
        Z34=P4(3,i)-P3(3,i); 

         
        tg=(X4.^2+Y4.^2+Z4.^2-lf.^2-lu.^2)/(2*lf*lu); 

         

        
        theta1=atan2(Y3,X3); 
        theta2=atan2(Z3,sqrt((X3.^2+Y3.^2)));       
        theta4=asin(tg); 

         
        if theta1<.1^(4) 
            theta1=0; 
        end 
        if theta2<.1^(4) 
            theta2=0; 
        end 
        if theta4 <.1^(4) 
            theta4=0; 
        end 

         



         Alpha=lf*cos(theta1)*cos(theta2)*sin(theta4); 
         Beta=lf*cos(theta2)*sin(theta1)*sin(theta4); 
         Gamma=simplify(((X34-Alpha).^2+(Y34-

Beta).^2)/(lf.^2*cos(theta4).^2)); 
         Kapa=simplify((Gamma-sin(theta2).^2)/(cos(theta2).^2)); 
         

Delta=((Z34+lf*sin(theta2)*sin(theta4)).^2)/((lf*cos(theta2)*cos(theta4)).^2)

; 

       

         
        theta3=atan2(sqrt(Delta),sqrt(Kapa)); 

         
        theta=[theta1;theta2;theta3;theta4]; 

  
        J=jacHumanArm(theta); 
        A=inv(J*J'); 
        [V,D]=eig(inv(J*J')); 

        
        lambda1=D(1,1); 
        lambda2=D(2,2); 
        lambda3=D(3,3); 

  
        r1=1/sqrt(lambda1); 
        r2=1/sqrt(lambda2); 
        r3=1/sqrt(lambda3);   

         

  
        v1=[V(1,1); V(2,1); V(3,1)];     
        v2=[V(1,2); V(2,2); V(3,2)]; 
        v3=[V(1,3); V(2,3); V(3,3)]; 

           
% The velocity ellipsoid in standard coordinate       
[x, y, z] = ellipsoid(X4,Y4,Z4,.5*r1,.5*r2,.5*r3); 

  
%Finding Euler angles of ellipsoid rotation (rotation matrix is V) 
if V(3,1) ~= 1 && V(3,1)~=-1 
    th = - asin(V(3,1)); 
    psi = atan2(V(3,2)/cos(th),V(3,3)/cos(th)); 
    phi = atan2(V(2,1)/cos(th),V(1,1)/cos(th)); 

     
else 
    phi= 0; 
        if V(3,1)==-1 
        th = pi/2; 
        psi = phi + atan2(V(1,2), V(1,3)); 
        else 
        th = -pi/2; 
        psi = -phi + atan2(V(1,2), V(1,3)); 
        end  
end  

  
% Rotating the ellipsoid; Euler angles in degree  
xangle=psi*180/pi; yangle=th*180/pi; zangle=phi*180/pi;  
figure 



h=surf(x, y, z); 
rotate(h,[1 0 0], xangle, [X4,Y4,Z4]); 
rotate(h,[0 1 0], yangle, [X4,Y4,Z4]); 
rotate(h,[0 0 1], zangle, [X4,Y4,Z4]); 
axis equal 
hold on 

  
axis([-.6 .6 -.6 .6 -.6 .6]) 
grid on 

  
line([0 X3 X4],[0 Y3 Y4],[0 Z3 Z4],'LineWidth',5,'Color',[0 0 0]) 
line([X4-r1*v1(1) X4+(r1)*v1(1)],[Y4-(r1)*v1(2) Y4+(r1)*v1(2)],... 
   [Z4-(r1)*v1(3) Z4+(r1)*v1(3)],'LineWidth',2,'LineStyle','--','Color',[1 0 

0]) 
line([X4-(r2)*v2(1) X4+(r2)*v2(1)],[Y4-(r2)*v2(2) Y4+(r2)*v2(2)],... 
    [Z4-(r2)*v2(3) Z4+(r2)*v2(3)],'LineWidth',2,'LineStyle','--','Color',[1 0 

0]) 
line([X4-(5*r3)*v3(1) X4+(5*r3)*v3(1)],[Y4-(5*r3)*v3(2) Y4+(5*r3)*v3(2)],... 
    [Z4-(5*r3)*v3(3) Z4+(5*r3)*v3(3)],'LineWidth',2,'LineStyle','--

','Color',[1 0 0]) 
hold on 

  
xlabel('x(m)','FontWeight','bold');ylabel('y(m)','FontWeight','bold');zlabel(

'z(m)','FontWeight','bold') 
title('The velocity ellipsoid during human arm movement','FontWeight','bold') 

  
%% Velocity Transmission Ratio 
ux=[1;0;0]; 
betax=1/sqrt(ux'*inv(J*J')*ux); 

  
uy=[0;1;0]; 
betay=1/sqrt(uy'*inv(J*J')*uy); 

  
uz=[0;0;1]; 
betaz=1/sqrt(uz'*inv(J*J')*uz); 

  
beta(:,i)=[betax;betay;betaz]; 
beta_inv(:,i)=[1/betax;1/betay;1/betaz]; 

  
end 
temp=[1 2 3 4 5 6 7 8 9 10 11]; 
figure 
plot(temp,beta(1,:)) 
title( 'Velocity transmission rate \beta in x-direction') 
xlabel('Number of the location');ylabel('\beta_x') 
grid on 

  
figure 
plot(temp,beta(2,:)) 
title( 'Velocity transmission rate \beta in y-direction') 
xlabel('Number of the location');ylabel('\beta_y') 
grid on 

  
figure 
plot(temp,beta(3,:)) 



title( 'Velocity transmission rate \beta in y-direction') 
xlabel('Number of the location');ylabel('\beta_y') 
grid on 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

% Dynamics of the 4-DOF human arm 
% A.Moatadelro 

  
clear all 
clc 

  
syms theta1 theta2 theta3 theta4 dtheta1 dtheta2 dtheta3 dtheta4 pi; 
syms ddtheta1 ddtheta2 ddtheta3 ddtheta4  m1 m2 g l2 l1 

  
A1=simplify(DH_convention(0,-pi/2, 0,theta1)); 
A2=simplify(DH_convention(0,-pi/2,0,theta2-pi/2)); 
A3=simplify(DH_convention(0, pi/2,l1,theta3+pi/2)); 
A4=simplify(DH_convention(l2, 0, 0,theta4)); 

     
T2=A1*A2; 
T3=T2*A3; 
T4=T3*A4; 
%% Elbow and end effector coordinate 

  
xel=T3(1,4); 
yel=T3(2,4); 
zel=T3(3,4); 
xend=T4(1,4); 
yend=T4(2,4); 
zend=T4(3,4); 

    
xc1=(1/2)*xel;  
yc1=(1/2)*yel; 
zc1=(1/2)*zel; 

  
vxc1=diff(xc1,theta1)*dtheta1+diff(xc1,theta2)*dtheta2+... 
    diff(xc1,theta3)*dtheta3+diff(xc1,theta4)*dtheta4; 
vyc1=diff(yc1,theta1)*dtheta1+diff(yc1,theta2)*dtheta2+... 
    diff(yc1,theta3)*dtheta3+diff(yc1,theta4)*dtheta4; 
vzc1=diff(zc1,theta1)*dtheta1+diff(zc1,theta2)*dtheta2+... 
    diff(zc1,theta3)*dtheta3+diff(zc1,theta4)*dtheta4; 

  
xc2=.5*(xel+xend); 
yc2=.5*(yel+yend); 
zc2=.5*(zel+zend); 

  
vxc2=diff(xc2,theta1)*dtheta1+diff(xc2,theta2)*dtheta2+... 
    diff(xc2,theta3)*dtheta3+diff(xc2,theta4)*dtheta4; 
vyc2=diff(yc2,theta1)*dtheta1+diff(yc2,theta2)*dtheta2+... 
    diff(yc2,theta3)*dtheta3+diff(yc2,theta4)*dtheta4; 
vzc2=diff(zc2,theta1)*dtheta1+diff(zc2,theta2)*dtheta2+... 
    diff(zc2,theta3)*dtheta3+diff(zc2,theta4)*dtheta4; 

  
T=.5*m1*(vxc1^2+vyc1^2+vzc1^2)+.5*m2*(vxc2^2+vyc2^2+vzc2^2); 
U=m1*g*zc1+m2*g*zc2; 
L=T-U; 

  



q=[theta1; theta2; theta3; theta4]; 
dotq=[dtheta1; dtheta2; dtheta3; dtheta4]; 

  
syms M C G 
G=[diff(U,theta1);diff(U,theta2);diff(U,theta3);diff(U,theta4)]; 
for i=1:4 
    for j=1:4 
        M(i,j)=0; 
    end 
end 

  
for i=1:4 
    for j=1:4 
        M(i,j)=diff(diff(T,dotq(i)),dotq(j)); 
    end 
end 

  
for i=1:4 
    for j=1:4 
        C(i,j)=0; 
    end 
end 
for i=1:4 
    for j=1:4 
        for k=1:4 
        C(i,j)=C(i,j)+.5*(diff(M(i,j),q(k))+diff(M(i,k),q(j))-

diff(M(k,j),q(i)))*dotq(k); 
        end 
    end 
end 
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