7 research outputs found

    Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl

    Get PDF
    Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers

    Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics

    Get PDF
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert mathematics. The following four essential problems are considered for the idea to be elucidated: Fermat’s last theorem proved by Andrew Wiles; Poincaré’s conjecture proved by Grigori Perelman and the only resolved from the seven Millennium problems offered by the Clay Mathematics Institute (CMI); the four-color theorem proved “machine-likely” by enumerating all cases and the crucial software assistance; the Yang-Mills existence and mass gap problem also suggested by CMI and yet unresolved. They are intentionally chosen to belong to quite different mathematical areas (number theory, topology, mathematical physics) just to demonstrate the power of the approach able to unite and even unify them from the viewpoint of Hilbert mathematics. Also, specific ideas relevant to each of them are considered. Fermat’s last theorem is shown as a Gödel insoluble statement by means of Yablo’s paradox. Thus, Wiles’s proof as a corollary from the modularity theorem and thus needing both arithmetic and set theory involves necessarily an inverse Grothendieck universe. On the contrary, its proof in “Fermat arithmetic” introduced by “epochĂ© to infinity” (following the pattern of Husserl’s original “epochĂ© to reality”) can be suggested by Hilbert arithmetic relevant to Hilbert mathematics, the mediation of which can be removed in the final analysis as a “Wittgenstein ladder”. Poincaré’s conjecture can be reinterpreted physically by Minkowski space and thus reduced to the “nonstandard homeomorphism” of a bit of information mathematically. Perelman’s proof can be accordingly reinterpreted. However, it is valid in Gödel (or Gödelian) mathematics, but not in Hilbert mathematics in general, where the question of whether it holds remains open. The four-color theorem can be also deduced from the nonstandard homeomorphism at issue, but the available proof by enumerating a finite set of all possible cases is more general and relevant to Hilbert mathematics as well, therefore being an indirect argument in favor of the validity of Poincaré’s conjecture in Hilbert mathematics. The Yang-Mills existence and mass gap problem furthermore suggests the most general viewpoint to the relation of Hilbert and Gödel mathematics justifying the qubit Hilbert space as the dual counterpart of Hilbert arithmetic in a narrow sense, in turn being inferable from Hilbert arithmetic in a wide sense. The conjecture that many if not almost all great problems in contemporary mathematics rely on (or at least relate to) the Gödel incompleteness is suggested. It implies that Hilbert mathematics is the natural medium for their discussion or eventual solutions

    Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?

    Get PDF
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering “theorem”, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for “Hilbert mathematics” accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel’s papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part

    Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930)

    Get PDF
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for granting the Gödel incompleteness statement to be a theorem just as the statement itself, to be an axiom. Then, the “completeness paper” can be interpreted as relevant to Hilbert mathematics, according to which mathematics and reality as well as arithmetic and set theory are rather entangled or complementary rather than mathematics to obey reality able only to create models of the latter. According to that, both papers (1930; 1931) can be seen as advocating Russell’s logicism or the intensional propositional logic versus both extensional arithmetic and set theory. Reconstructing history of philosophy, Aristotle’s logic and doctrine can be opposed to those of Plato or the pre-Socratic schools as establishing ontology or intensionality versus extensionality. Husserl’s phenomenology can be analogically realized including and particularly as philosophy of mathematics. One can identify propositional logic and set theory by virtue of Gödel’s completeness theorem (1930: “Satz VII”) and even both and arithmetic in the sense of the “compactness theorem” (1930: “Satz X”) therefore opposing the latter to the “incompleteness paper” (1931). An approach identifying homomorphically propositional logic and set theory as the same structure of Boolean algebra, and arithmetic as the “half” of it in a rigorous construction involving information and its unit of a bit. Propositional logic and set theory are correspondingly identified as the shared zero-order logic of the class of all first-order logics and the class at issue correspondingly. Then, quantum mechanics does not need any quantum logics, but only the relation of propositional logic, set theory, arithmetic, and information: rather a change of the attitude into more mathematical, philosophical, and speculative than physical, empirical and experimental. Hilbert’s epsilon calculus can be situated in the same framework of the relation of propositional logic and the class of all mathematical theories. The horizon of Part III investigating Hilbert mathematics (i.e. according to the Pythagorean viewpoint about the world as mathematical) versus Gödel mathematics (i.e. the usual understanding of mathematics as all mathematical models of the world external to it) is outlined

    Mathematics and Its Applications, A Transcendental-Idealist Perspective

    Get PDF
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies
    corecore