1,448 research outputs found

    Design and development of a fuzzy explainable expert system for a diagnostic robot of COVID-19

    Get PDF
    Expert systems have been widely used in medicine to diagnose different diseases. However, these rule-based systems only explain why and how their outcomes are reached. The rules leading to those outcomes are also expressed in a machine language and confronted with the familiar problems of coverage and specificity. This fact prevents procuring expert systems with fully human-understandable explanations. Furthermore, early diagnosis involves a high degree of uncertainty and vagueness which constitutes another challenge to overcome in this study. This paper aims to design and develop a fuzzy explainable expert system for coronavirus disease-2019 (COVID-19) diagnosis that could be incorporated into medical robots. The proposed medical robotic application deduces the likelihood level of contracting COVID-19 from the entered symptoms, the personal information, and the patient's activities. The proposal integrates fuzzy logic to deal with uncertainty and vagueness in diagnosis. Besides, it adopts a hybrid explainable artificial intelligence (XAI) technique to provide different explanation forms. In particular, the textual explanations are generated as rules expressed in a natural language while avoiding coverage and specificity problems. Therefore, the proposal could help overwhelmed hospitals during the epidemic propagation and avoid contamination using a solution with a high level of explicability

    Machine Learning in Robotic Ultrasound Imaging: Challenges and Perspectives

    Full text link
    This article reviews the recent advances in intelligent robotic ultrasound (US) imaging systems. We commence by presenting the commonly employed robotic mechanisms and control techniques in robotic US imaging, along with their clinical applications. Subsequently, we focus on the deployment of machine learning techniques in the development of robotic sonographers, emphasizing crucial developments aimed at enhancing the intelligence of these systems. The methods for achieving autonomous action reasoning are categorized into two sets of approaches: those relying on implicit environmental data interpretation and those using explicit interpretation. Throughout this exploration, we also discuss practical challenges, including those related to the scarcity of medical data, the need for a deeper understanding of the physical aspects involved, and effective data representation approaches. Moreover, we conclude by highlighting the open problems in the field and analyzing different possible perspectives on how the community could move forward in this research area.Comment: Accepted by Annual Review of Control, Robotics, and Autonomous System

    ์ž„์ƒ์ˆ ๊ธฐ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ: ๋Œ€์žฅ๋‚ด์‹œ๊ฒฝ ์ง„๋‹จ ๋ฐ ๋กœ๋ด‡์ˆ˜์ˆ  ์ˆ ๊ธฐ ํ‰๊ฐ€์— ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์˜์šฉ์ƒ์ฒด๊ณตํ•™์ „๊ณต, 2020. 8. ๊น€ํฌ์ฐฌ.This paper presents deep learning-based methods for improving performance of clinicians. Novel methods were applied to the following two clinical cases and the results were evaluated. In the first study, a deep learning-based polyp classification algorithm for improving clinical performance of endoscopist during colonoscopy diagnosis was developed. Colonoscopy is the main method for diagnosing adenomatous polyp, which can multiply into a colorectal cancer and hyperplastic polyps. The classification algorithm was developed using convolutional neural network (CNN), trained with colorectal polyp images taken by a narrow-band imaging colonoscopy. The proposed method is built around an automatic machine learning (AutoML) which searches for the optimal architecture of CNN for colorectal polyp image classification and trains the weights of the architecture. In addition, gradient-weighted class activation mapping technique was used to overlay the probabilistic basis of the prediction result on the polyp location to aid the endoscopists visually. To verify the improvement in diagnostic performance, the efficacy of endoscopists with varying proficiency levels were compared with or without the aid of the proposed polyp classification algorithm. The results confirmed that, on average, diagnostic accuracy was improved and diagnosis time was shortened in all proficiency groups significantly. In the second study, a surgical instruments tracking algorithm for robotic surgery video was developed, and a model for quantitatively evaluating the surgeons surgical skill based on the acquired motion information of the surgical instruments was proposed. The movement of surgical instruments is the main component of evaluation for surgical skill. Therefore, the focus of this study was develop an automatic surgical instruments tracking algorithm, and to overcome the limitations presented by previous methods. The instance segmentation framework was developed to solve the instrument occlusion issue, and a tracking framework composed of a tracker and a re-identification algorithm was developed to maintain the type of surgical instruments being tracked in the video. In addition, algorithms for detecting the tip position of instruments and arm-indicator were developed to acquire the movement of devices specialized for the robotic surgery video. The performance of the proposed method was evaluated by measuring the difference between the predicted tip position and the ground truth position of the instruments using root mean square error, area under the curve, and Pearsons correlation analysis. Furthermore, motion metrics were calculated from the movement of surgical instruments, and a machine learning-based robotic surgical skill evaluation model was developed based on these metrics. These models were used to evaluate clinicians, and results were similar in the developed evaluation models, the Objective Structured Assessment of Technical Skill (OSATS), and the Global Evaluative Assessment of Robotic Surgery (GEARS) evaluation methods. In this study, deep learning technology was applied to colorectal polyp images for a polyp classification, and to robotic surgery videos for surgical instruments tracking. The improvement in clinical performance with the aid of these methods were evaluated and verified.๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ์ง„์˜ ์ž„์ƒ์ˆ ๊ธฐ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•˜๊ณ  ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ์‹ค๋ก€์— ๋Œ€ํ•ด ์ ์šฉํ•˜์—ฌ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€์žฅ๋‚ด์‹œ๊ฒฝ์œผ๋กœ ๊ด‘ํ•™ ์ง„๋‹จ ์‹œ, ๋‚ด์‹œ๊ฒฝ ์ „๋ฌธ์˜์˜ ์ง„๋‹จ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์šฉ์ข… ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ , ๋‚ด์‹œ๊ฒฝ ์ „๋ฌธ์˜์˜ ์ง„๋‹จ ๋Šฅ๋ ฅ ํ–ฅ์ƒ ์—ฌ๋ถ€๋ฅผ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋Œ€์žฅ๋‚ด์‹œ๊ฒฝ ๊ฒ€์‚ฌ๋กœ ์•”์ข…์œผ๋กœ ์ฆ์‹ํ•  ์ˆ˜ ์žˆ๋Š” ์„ ์ข…๊ณผ ๊ณผ์ฆ์‹์„ฑ ์šฉ์ข…์„ ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜‘๋Œ€์—ญ ์˜์ƒ ๋‚ด์‹œ๊ฒฝ์œผ๋กœ ์ดฌ์˜ํ•œ ๋Œ€์žฅ ์šฉ์ข… ์˜์ƒ์œผ๋กœ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•˜์—ฌ ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž๋™ ๊ธฐ๊ณ„ํ•™์Šต (AutoML) ๋ฐฉ๋ฒ•์œผ๋กœ, ๋Œ€์žฅ ์šฉ์ข… ์˜์ƒ์— ์ตœ์ ํ™”๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ฐพ๊ณ  ์‹ ๊ฒฝ๋ง์˜ ๊ฐ€์ค‘์น˜๋ฅผ ํ•™์Šตํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ธฐ์šธ๊ธฐ-๊ฐ€์ค‘์น˜ ํด๋ž˜์Šค ํ™œ์„ฑํ™” ๋งตํ•‘ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœํ•œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ฒฐ๊ณผ์˜ ํ™•๋ฅ ์  ๊ทผ๊ฑฐ๋ฅผ ์šฉ์ข… ์œ„์น˜์— ์‹œ๊ฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋„๋ก ํ•จ์œผ๋กœ ๋‚ด์‹œ๊ฒฝ ์ „๋ฌธ์˜์˜ ์ง„๋‹จ์„ ๋•๋„๋ก ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ˆ™๋ จ๋„ ๊ทธ๋ฃน๋ณ„๋กœ ๋‚ด์‹œ๊ฒฝ ์ „๋ฌธ์˜๊ฐ€ ์šฉ์ข… ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฐ๊ณผ๋ฅผ ์ฐธ๊ณ ํ•˜์˜€์„ ๋•Œ ์ง„๋‹จ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋˜์—ˆ๋Š”์ง€ ๋น„๊ต ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ทธ๋ฃน์—์„œ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ง„๋‹จ ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋˜๊ณ  ์ง„๋‹จ ์‹œ๊ฐ„์ด ๋‹จ์ถ•๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋กœ๋ด‡์ˆ˜์ˆ  ๋™์˜์ƒ์—์„œ ์ˆ˜์ˆ ๋„๊ตฌ ์œ„์น˜ ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ , ํš๋“ํ•œ ์ˆ˜์ˆ ๋„๊ตฌ์˜ ์›€์ง์ž„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜์ˆ ์ž์˜ ์ˆ™๋ จ๋„๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ˆ˜์ˆ ๋„๊ตฌ์˜ ์›€์ง์ž„์€ ์ˆ˜์ˆ ์ž์˜ ๋กœ๋ด‡์ˆ˜์ˆ  ์ˆ™๋ จ๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ฃผ์š”ํ•œ ์ •๋ณด์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ž๋™ ์ˆ˜์ˆ ๋„๊ตฌ ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ๋‹ค์Œ ๋‘๊ฐ€์ง€ ์„ ํ–‰์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜์˜€๋‹ค. ์ธ์Šคํ„ด์Šค ๋ถ„ํ•  (Instance Segmentation) ํ”„๋ ˆ์ž„์›์„ ๊ฐœ๋ฐœํ•˜์—ฌ ํ์ƒ‰ (Occlusion) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๊ณ , ์ถ”์ ๊ธฐ (Tracker)์™€ ์žฌ์‹๋ณ„ํ™” (Re-Identification) ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ถ”์  ํ”„๋ ˆ์ž„์›์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋™์˜์ƒ์—์„œ ์ถ”์ ํ•˜๋Š” ์ˆ˜์ˆ ๋„๊ตฌ์˜ ์ข…๋ฅ˜๊ฐ€ ์œ ์ง€๋˜๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋กœ๋ด‡์ˆ˜์ˆ  ๋™์˜์ƒ์˜ ํŠน์ˆ˜์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ˆ˜์ˆ ๋„๊ตฌ์˜ ์›€์ง์ž„์„ ํš๋“ํ•˜๊ธฐ์œ„ํ•ด ์ˆ˜์ˆ ๋„๊ตฌ ๋ ์œ„์น˜์™€ ๋กœ๋ด‡ ํŒ”-์ธ๋””์ผ€์ดํ„ฐ (Arm-Indicator) ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ์˜ˆ์ธกํ•œ ์ˆ˜์ˆ ๋„๊ตฌ ๋ ์œ„์น˜์™€ ์ •๋‹ต ์œ„์น˜ ๊ฐ„์˜ ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ, ๊ณก์„  ์•„๋ž˜ ๋ฉด์ , ํ”ผ์–ด์Šจ ์ƒ๊ด€๋ถ„์„์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ˆ˜์ˆ ๋„๊ตฌ์˜ ์›€์ง์ž„์œผ๋กœ๋ถ€ํ„ฐ ์›€์ง์ž„ ์ง€ํ‘œ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋กœ๋ด‡์ˆ˜์ˆ  ์ˆ™๋ จ๋„ ํ‰๊ฐ€ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ํ‰๊ฐ€ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ Objective Structured Assessment of Technical Skill (OSATS), Global Evaluative Assessment of Robotic Surgery (GEARS) ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ์ง„์˜ ์ž„์ƒ์ˆ ๊ธฐ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๋Œ€์žฅ ์šฉ์ข… ์˜์ƒ๊ณผ ๋กœ๋ด‡์ˆ˜์ˆ  ๋™์˜์ƒ์— ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜๊ณ  ๊ทธ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ํ–ฅํ›„์— ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ž„์ƒ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ์ง„๋‹จ ๋ฐ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์˜ ๋Œ€์•ˆ์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Chapter 1 General Introduction 1 1.1 Deep Learning for Medical Image Analysis 1 1.2 Deep Learning for Colonoscipic Diagnosis 2 1.3 Deep Learning for Robotic Surgical Skill Assessment 3 1.4 Thesis Objectives 5 Chapter 2 Optical Diagnosis of Colorectal Polyps using Deep Learning with Visual Explanations 7 2.1 Introduction 7 2.1.1 Background 7 2.1.2 Needs 8 2.1.3 Related Work 9 2.2 Methods 11 2.2.1 Study Design 11 2.2.2 Dataset 14 2.2.3 Preprocessing 17 2.2.4 Convolutional Neural Networks (CNN) 21 2.2.4.1 Standard CNN 21 2.2.4.2 Search for CNN Architecture 22 2.2.4.3 Searched CNN Training 23 2.2.4.4 Visual Explanation 24 2.2.5 Evaluation of CNN and Endoscopist Performances 25 2.3 Experiments and Results 27 2.3.1 CNN Performance 27 2.3.2 Results of Visual Explanation 31 2.3.3 Endoscopist with CNN Performance 33 2.4 Discussion 45 2.4.1 Research Significance 45 2.4.2 Limitations 47 2.5 Conclusion 49 Chapter 3 Surgical Skill Assessment during Robotic Surgery by Deep Learning-based Surgical Instrument Tracking 50 3.1 Introduction 50 3.1.1 Background 50 3.1.2 Needs 51 3.1.3 Related Work 52 3.2 Methods 56 3.2.1 Study Design 56 3.2.2 Dataset 59 3.2.3 Instance Segmentation Framework 63 3.2.4 Tracking Framework 66 3.2.4.1 Tracker 66 3.2.4.2 Re-identification 68 3.2.5 Surgical Instrument Tip Detection 69 3.2.6 Arm-Indicator Recognition 71 3.2.7 Surgical Skill Prediction Model 71 3.3 Experiments and Results 78 3.3.1 Performance of Instance Segmentation Framework 78 3.3.2 Performance of Tracking Framework 82 3.3.3 Evaluation of Surgical Instruments Trajectory 83 3.3.4 Evaluation of Surgical Skill Prediction Model 86 3.4 Discussion 90 3.4.1 Research Significance 90 3.4.2 Limitations 92 3.5 Conclusion 96 Chapter 4 Summary and Future Works 97 4.1 Thesis Summary 97 4.2 Limitations and Future Works 98 Bibliography 100 Abstract in Korean 116 Acknowledgement 119Docto

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os trรชs fatores que fizeram da inteligรชncia artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanรงos algorรญtmicos. Esta revisรฃo da literatura avaliou todos os artigos publicados na PubMed atรฉ Abril de 2019 sobre inteligรชncia artificial e odontologia. Ajudado com inteligรชncia artificial, este artigo analisou 1511 artigos. Uma รกrvore de decisรฃo (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovaรงรฃo. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovaรงรฃo durante o International Dentistry Show, 2019 em Colรณnia. Concluiu, assim, de forma crรญtica que hรก uma lacuna entre tecnologia e aplicaรงรฃo clรญnica desta, sendo que a inteligรชncia artificial fornecida pela indรบstria de hoje pode ser considerada um atraso para o clรญnico de amanhรฃ, indicando-se um possรญvel rumo para a aplicaรงรฃo clรญnica da inteligรชncia artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients
    • โ€ฆ
    corecore