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Abstract 

 

Deep Learning Approaches for  

Clinical Performance Improvement: 

Applications to Colonoscopic Diagnosis 

and Robotic Surgical Skill Assessment 
 

Dongheon Lee 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University  
 

 

This paper presents deep learning-based methods for improving 

performance of clinicians. Novel methods were applied to the following two 

clinical cases and the results were evaluated.  

In the first study, a deep learning-based polyp classification algorithm for 

improving clinical performance of endoscopist during colonoscopy diagnosis 

was developed. Colonoscopy is the main method for diagnosing adenomatous 

polyp, which can multiply into a colorectal cancer and hyperplastic polyps. The 

classification algorithm was developed using convolutional neural network 

(CNN), trained with colorectal polyp images taken by a narrow-band imaging 

colonoscopy. The proposed method is built around an automatic machine 

learning (AutoML) which searches for the optimal architecture of CNN for 

colorectal polyp image classification and trains the weights of the architecture. 

In addition, gradient-weighted class activation mapping technique was used to 

overlay the probabilistic basis of the prediction result on the polyp location to 

aid the endoscopists visually. To verify the improvement in diagnostic 

performance, the efficacy of endoscopists with varying proficiency levels were 
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compared with or without the aid of the proposed polyp classification algorithm. 

The results confirmed that, on average, diagnostic accuracy was improved and 

diagnosis time was shortened in all proficiency groups significantly. 

In the second study, a surgical instruments tracking algorithm for robotic 

surgery video was developed, and a model for quantitatively evaluating the 

surgeon’s surgical skill based on the acquired motion information of the 

surgical instruments was proposed. The movement of surgical instruments is 

the main component of evaluation for surgical skill. Therefore, the focus of this 

study was develop an automatic surgical instruments tracking algorithm, and to 

overcome the limitations presented by previous methods. The instance 

segmentation framework was developed to solve the instrument occlusion issue, 

and a tracking framework composed of a tracker and a re-identification 

algorithm was developed to maintain the type of surgical instruments being 

tracked in the video. In addition, algorithms for detecting the tip position of 

instruments and arm-indicator were developed to acquire the movement of 

devices specialized for the robotic surgery video. The performance of the 

proposed method was evaluated by measuring the difference between the 

predicted tip position and the ground truth position of the instruments using 

root mean square error, area under the curve, and Pearson’s correlation analysis. 

Furthermore, motion metrics were calculated from the movement of surgical 

instruments, and a machine learning-based robotic surgical skill evaluation 

model was developed based on these metrics. These models were used to 

evaluate clinicians, and results were similar in the developed evaluation models, 

the Objective Structured Assessment of Technical Skill (OSATS), and the 

Global Evaluative Assessment of Robotic Surgery (GEARS) evaluation 

methods. 

In this study, deep learning technology was applied to colorectal polyp 

images for a polyp classification, and to robotic surgery videos for surgical 

instruments tracking. The improvement in clinical performance with the aid of 

these methods were evaluated and verified.  
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Chapter 1 General Introduction 

 

1.1  Deep Learning for Medical Image Analysis 

 

   Deep learning is a subset of machine learning methods, and it performs 

better in various fields than alternative methods due to the utilization of big data, 

high computing power and advanced algorithms [1]. Improved performance of 

deep learning was first shown with a deep neural network (DNN) which is an 

advanced architecture of a traditional artificial neural network (ANN) 

composed of multiple stacked hidden layers which are better suited to extract 

features from high dimensional data. 

   Convolutional neural network (CNN) is a deep learning method widely 

used for a pattern recognition in images [2]. CNN excels at extracting features 

from large image datasets such as ImageNet, and has the advantage of using 

fewer parameters than DNNs. Architecturally, CNN consists of multiple  

convolution filters and activation functions that work to extract key features 

from the input data [3]. Based on the extracted features, CNN provide a final 

result of task, such as classification through the fully connected layers as the 

output (Figure 1.1).  

   In this regard, CNN has been widely used to analyze medical images [4-6]. 

Two representative applications of CNN to medical images include 

classification of diabetic retinopathy in retinal fundus images [7] and 
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classification of cancer in skin images [8]. Furthermore, CNN was able to 

diagnostic performance on par to experts in several other medical application 

areas [4]. CNN also showed improved performance in other tasks, such as 

detection, segmentation and registration [4]. Furthermore, CNN was also used 

for generation in generative adversarial network (GAN) which showed 

promising results in various applications [9]. 

 

 

Figure 1.1 Convolutional neural network architecture. 

 

1.2  Deep Learning for Colonoscopic Diagnosis 

 

   The application of CNN to various endoscopic images , such as 

esophagogastroduodenoscopy [3], colonoscopy [10-12], and wireless capsule 

endoscopy [13], have been reported. For colonoscopy, CNN-based diagnostic 

methods have been applied to colorectal polyps. Representatively, there are 

classification algorithms for discriminating the type of colon polyps based on 

CNN which were as accurate as medical experts [11, 12, 14]. Studies to detect 

the location of colon polyps [14, 15], to segment the specific area of the polyps 
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[10, 16] in colonoscopic view, and for real-time inspection [11, 17] were also 

actively researched. Other related studies that generate high-quality polyp 

images of imbalanced types for equalizing datasets using GAN have been 

reported [18]. 

   By applying the CNN to the colonoscopic images, it can help improve the 

diagnostic accuracy of specific tasks and reduce the diagnosis time, as well as 

assist in the clinical workflow by performing quantitative image analysis and 

automatic summary report [19]. Deep learning will have a significant impact 

on the performance of clinicians using colonoscopy. On the other hand, it is 

expected that these technological innovations will gradually melt into the 

medical ecosystem in a way that does not completely replace the role of the 

clinicians but assist in repetitive and labor-intensive tasks, training students and 

tasks requiring experience [20]. 

 

1.3  Deep Learning for Robotic Surgical Skill 

Assessment 

 

In the field of surgery, there have been attempts to analyze laparoscopic and 

robotic surgery videos using CNN [21-24]. These two types of surgical views 

are similar in that they use surgical instruments in a narrow field of view, and 

that it is important to recognize the movement of surgical instruments in the 

view for enhanced situational awareness [25].  
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One of the methods for acquiring the movement of the surgical instruments 

is the kinematics approach, which has been used to calculate the relationship 

between each joint of the robotic arm [26-29], and studies using CNN to 

analyze the kinematic data have been reported [26]. 

Another method is the vision-based approach, which has the advantage of 

recognizing the position of surgical instruments on the screen directly, and 

increased recognition accuracy using deep learning techniques have been 

reported in previous studies including classification of the types of instruments 

[30, 31], detecting the position on the laparoscopic view in real time [22, 32], 

segmenting specific areas [33], and recognizing joint units using a pose 

estimation method [24, 34]. Furthermore, by using videos of laparoscopic and 

robotic surgery, several studies reported on surgical phase identification [21, 

35], and surgical action recognition [36].  

These studies show that the movement of the surgical instruments represent 

significant information on each task, and therefore, it may be used as an index 

to evaluate the surgeon’s surgical skills [37, 38]. If it is possible to 

automatically obtain the motion of the surgical instruments from the video, the 

surgeon does not have review the entire surgery process. Furthermore, if a 

system is developed for quantitatively evaluating the surgical skills based on 

the movement of a surgical instruments, it will be possible to replace the current 

subjective evaluation methods based on questionnaires [37, 38], and ultimately 

help to improve the field as a whole. 
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1.4 Thesis Objectives 

    

   The objective of this study is to improve optical diagnosis using 

colonoscopic images and surgical skill using robotic surgery videos. In addition, 

the clinicians who participated in each of task were divided into three groups 

based on clinical proficiency, and these groups were evaluated to verify the 

effectiveness of the proposed methods. The improvement in the performance in 

this study indicates increased optical diagnostic accuracy and the reduced 

diagnosis time. It may also indicate improvement in robotic surgical skill, and 

a quantitative evaluation system was developed as the foundation for this 

purpose.  

   In chapter 2, we developed a deep learning method that automatically 

classifies polyp types in colonoscopic images and verified clinical effectiveness. 

In previous studies, the performance of CNN shows the level of diagnostic 

accuracy equal to endoscopists. However, even if artificial intelligence (AI) has 

high accuracy, the final diagnosis is determined by an endoscopist, thus, 

clinically, AI must be used as an assistive tool and its usefulness must be proved. 

In this study, a polyp classification algorithm was developed using an AutoML1 

resulting in improved performance over previously reported CNN based 

methods. In addition, improvements in diagnostic accuracy and diagnosis time 

 
1 AutoML, automated machine learning 
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were evaluated for each proficiency group when the endoscopists were assisted 

by AI. 

   In chapter 3, we developed an algorithm that automatically tracks the 

position of surgical instruments in robotic surgery video, and by acquiring 

motion information of the instruments, we proposed method for quantitatively 

evaluating a surgeon’s robotic surgery skill. In previous studies, vision-based 

instrument tracking algorithm has two main limitations. The first deals with the 

issue of occlusion, specially between surgical instruments, and the other is the 

issue of maintaining the identity of instruments that change over time. In this 

study, the two issues were solved using deep learning-based methods, which 

includes instance segmentation framework and tracking framework. In addition, 

the tracking accuracy was increased through the arm-indicator recognition 

algorithm which takes the environment of robotic surgery into account. Finally, 

a proposed a novel proficiency evaluation model based on the movement of 

surgical instruments is proposed to replace the existing questionnaire format-

based surgical skill evaluation. 
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Chapter 2  

Optical Diagnosis of Colorectal Polyps using 

Deep Learning with Visual Explanations 

 

2.1 Introduction 

 

2.1.1 Background 

 

Colorectal cancer (CRC) is reported to be the third leading cause of death 

in the United States [39]. Furthermore, over the past several decades, the 

incidence of CRC has significantly increased in Asia countries, including Korea 

[40]. Most CRCs usually develop from preexisting adenomas, which are 

precancerous lesions, through the adenoma–carcinoma sequence [41]. In this 

regard, colonoscopy is currently the most important screening test for CRC 

removal of precancerous adenomatous polyps [42]. This is why adenoma 

detection is considered a key quality indicator of colonoscopy. Accordingly, 

considerable research efforts are directed toward the increase of the adenoma 

detection rate based on physician training and technical advances. 

Although the detection and removal of adenoma contribute toward the  

reduction of CRC, the increased medical costs, including pathological analyses, 

also must be considered [42]. Most adenomatous polyps detected during 

screening colonoscopy are diminutive polyps (≤ 5 mm in size). These rarely 
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progress to CRC, however, the current practice is to subject all polyps to  

pathological evaluation [43, 44]. Diminutive hyperplastic polyps of the 

rectosigmoid colon are very common benign lesions and do not require removal 

[45]. Moreover, discrepancies between endoscopic and pathologic diagnoses 

are not uncommon, and pathological diagnosis is not the gold standard for 

diagnosing colorectal polyps (≤ 3 mm) [46, 47]. 

 

 

Figure 2.1 Examples of colorectal polyp. (A) Adenoma polyp (B) Hyperplastic 

polyp  

 

2.1.2 Needs 

 

The application of an accurate endoscopic diagnosis before resection is 

advantageous because it prevents unnecessary resection and pathological 

evaluation. In this regard, optical diagnosis based on narrow-band imaging 

(NBI) can be used to predict the pathology of colorectal polyps and assist the 

distinction between adenomatous and hyperplastic colorectal polyps [48, 49]. 



 

 

 

9 

However, this implies that the endoscopist is required to be sufficiently trained 

to perform adequate optical diagnosis [50]. Furthermore, such optical diagnosis 

is dependent on the endoscopist’s skill and experience [51]. However, this 

limitation can be overcome with the newly developed computer-aided diagnosis 

(CADx) [52].  

 

 
Figure 2.2 Examples of narrow band image (NBI) of colon polyp2. (A) Non-

NBIs of colon polyp (B) NBIs of colon polyp  

 

2.1.3 Related Work 

 

Recent advances in AI technology have accelerated the development of 

CADx [20, 53] toward distinction between adenomatous and hyperplastic 

colorectal polyps [54]. The recent CADx system have demonstrated 

satisfactory diagnostic capability in predicting the histology based on images 

 

2 Adapted from “Narrow Band Imaging: Technology Basis and Research and Development 

History”, by Kazuhiro Gono, 2015, Clinical endoscopy, 48, 476. Copyright 2015 by “Korean 

Society of Gastrointestinal Endoscopy”. Adapted with permission. 
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captured with a magnification endoscope (X80) and an endocytoscope (×500) 

[54, 55]. The system have reported on classification systems that have 

demonstrated expert-endoscopist-level accuracy of optical diagnosis [54, 56]. 

However, these advanced imaging modalities are not commonly used in clinical 

practice, and the effects of these models applied to endoscopists are not well 

understood.  

Following recent advances in convolutional neural networks (CNN), one of 

the deep learning approaches, have enabled their use in analyzing medical 

images [4, 17, 20, 53, 57]. In this regard, many studies have reported on the 

convergence of the physician’s skill and the use of artificial intelligence (AI) to 

afford accurate diagnoses [20, 58]. In particular, in the optical diagnosis of 

colorectal polyps, CNN can afford high-performance diagnosis and detection 

from various colorectal-polyp images [11, 54, 59, 60]. However, even if AI 

approach affords high-performance colorectal-polyp diagnosis, endoscopists 

are currently required to perform a final diagnosis for the reasons of safety and 

accountability, and therefore, it is necessary to verify whether AI-based 

assistance can effectively aid in the final diagnosis [20]. Recently, Shahidi et al 

[47] introduced a real-time AI clinical decision support solution and showed 

that it could help the final diagnoses in the cases in which there were 

discrepancies between the endoscopic and pathologic diagnoses for diminutive 

polyps (≤ 3mm). 
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Our study is the first attempt to identify how the diagnostic capabilities of 

endoscopists differ between AI-unassisted (test 1) and AI-assisted diagnoses 

(test 2). Our study showed that AI assistance augments the physician’s 

judgment, thereby improving the accuracy of optical diagnosis and the 

shortening the diagnostic time. The purpose of this study was to develop a CNN 

model to determine the pathologic classification of diminutive colorectal 

polyps on colonoscopic NBIs, and to validate its performance compared to 

classifications determined by clinical endoscopists. Based on performance 

comparisons, we investigated the effect of assistive AI technology on the 

diagnostic accuracy, and compared it with the accuracy associated with the 

proficiency of endoscopists based on the classification of the polyps in NBIs as 

either adenomatous or hyperplastic. 

 

2.2 Methods 

 

2.2.1 Study Design 

 

This study was based on a multicenter study conducted from October 2015 

to July 2019. It consisted of 3 stages: (1) developed CNN for optical diagnosis 

of diminutive colorectal polyps, (2) conducted an endoscopic performance 

assessment and comparison with CNN (test 1), and (3) performed an 

endoscopic performance assessment with knowledge of the CNN-processed  

results (test 2).  
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Figure 2.3 Study design. (A) Test 1: Endoscopic performance assessment and 

comparison with AI (B) Test 2: Endoscopic performance assessment with AI 

assistance  

 

Twenty two endoscopists participated in this study in 3 groups: (1) novices: 

7 gastroenterology trainees with less than 2 years of colonoscopic experience 

from the Seoul National University Hospital, (2) experts: 4 board-certificated 

gastroenterologists with various experiences in NBI, and (3) NBI-trained 

experts: 11 board-certificated gastroenterologists who were trained in optical 

diagnosis using NBIs, commonly referred to as the Gangnam-READI program 

[61] (Table 2.1).  

The study protocol adhered to the ethical guidelines of the 1975 Declaration 

of Helsinki and its subsequent revisions, and was approved by the institutional 

review board (IRB, number H-1702-139-834). Written informed consent was 

obtained from all participating physicians. 
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Table 2.1 Baseline characteristics of participating endoscopists. 

 n (%) 

Sex  

Male 4 (18.2) 

Female 18 (81.8) 

Colonoscopy experience (years)  

< 2 years   7 (31.8) 

2–9 years  6 (27.3) 

10–14 years  5 (22.7) 

≥ 15 years  4 (18.2) 

Estimated cumulative colonoscopy volume   

< 1,000 4 (18.2) 

1,000–2,500  4 (18.2) 

2,500–4999 5 (22.7) 

5,000–9,999 6 (27.3) 

≥ 10,000 3 (13.6) 

Observed polyp with NBI mode in usual practice  

Not at all  1 (4.5) 

> 25 % 4 (18.2) 

> 50 % 5 (22.7) 

> 75 % 6 (27.3) 

All  6 (27.3) 

Usefulness of NBI mode for optical diagnosis   

Not at all  0 (0.0) 

> 25 % 3 (13.6) 

> 50 % 7 (31.8) 

> 75 % 7 (31.8) 

All  5 (22.7) 
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2.2.2 Dataset 

 

For the development of CNN for optical diagnosis, we retrospectively 

collected colonoscopic NBI of diminutive (≤5 mm) polyps from October 2015 

to October 2017 at the Seoul National University Hospital, Healthcare System 

Gangnam. We used the routine pathology report to provide patient care. All 

polyps were removed using standard techniques and were subsequently 

evaluated by 1 of the 16 board-certified pathologists at the Seoul National 

University Hospital. We used image sets that were collected as part of the 

Gangnam-Real Time Optical Diagnosis (READI) program [61]. All 

colonoscopies were performed using high-definition colonoscopy (CF-HQ290, 

Olympus Co, Ltd., Tokyo, Japan) and acquired NBI with or without near-focus 

magnification. An expert endoscopist reviewed and selected well-focused, 

high-quality images with appropriate brightness values. If the optical diagnosis 

of a polyp was not compatible with the histological reports, the images were 

excluded. Finally, we trained the CNN with a total 1,100 adenomatous polyps 

and 1,050 hyperplastic polyps from 1,379 patients (Table 2.1). For the test 

dataset, we prospectively collected 300 polyp images (180 adenomatous polyps 

and 120 hyperplastic polyps) from January 2018 to May 2019 (Table 2.2). 

Figure 2.4 shows the polyp samples presented in tests 1 and 2. All 300 NBI 

polyp images were de-identified and randomly ordered in each test (Table 2.3). 

The training, validation, and test sets of endoscopic images of NBI polyps 

exhibited no overlap.
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Figure 2.4 Illustration of experimental condition and polyp samples: (A, B, C, D) original NBI images, (a, b, c, d) visual explanation heatmap 

overlaid on original NBI image. In test 1, we presented the original NBI images, while original NBI images and visual explanation heatmap 

were presented in test 2. 
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Table 2.2 Polyp characteristics of training set.  

 
Adenomatous polyp 

(N = 1100) 

Hyperplastic polyp 

(N = 1050) 
P 

Location     < 0.0001 

  - Ascending colon    362 (32.9%) 179 (17.0%)  

  - Transverse colon  310 (28.2%) 171 (16.3%)  

  - Descending colon 119 (10.8%) 55 (5.2%)  

  - Rectosigmoid colon   309 (28.1%) 645 (61.4%)  

Using NF3 view    < 0.0001 

  - without NF view 96 (8.7%) 171 (16.3%)  

  - with NF view  1004 (91.3%) 879 (83.7%)  

Gross        < 0.0001 

  - IIa    499 (45.4%) 894 (85.1%)  

  - Is     505 (45.9%) 152 (14.5%)  

  - Isp    96 (8.7%) 4 (0.4%)  

 

 

 

 

 

 

 

 

 

 

 

 

 

3 NF, near focus 
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Table 2.3 Patient information and polyp characteristics in the test set.  

 
Adenomatous polyp 

(N = 180) 

Hyperplastic polyp 

(N = 120) 
P 

Sex         0.062 

  - Male   127 (70.6%) 97 (80.8%)  

  - Female 53 (29.4%) 23 (19.2%)  

Age (mean ± SD)  60.0 ± 10.0 54.9 ±  9.9 0.000 

Location     0.000 

  - Ascending colon    61 (33.9%) 26 (21.7%)  

  - Transverse colon  61 (33.9%) 15 (12.5%)  

  - Descending colon 14 (7.8%) 13 (10.8%)  

  - Rectosigmoid colon   44 (24.4%) 66 (55.0%)  

Using near-focus (NF4) view    0.752 

  - without NF view 12 (6.7%) 10 (8.3%)  

  - with NF view  168 (93.3%) 110 (91.7%)  

Gross        0.002 

  - IIa  (flat) 131 (72.8%) 106 (88.3%)  

  - Is  (sessile) 34 (18.9%) 13 (10.8%)  

  - Isp  (subpedunculated) 15 (8.3%) 1 (0.8%)  

 

2.2.3 Preprocessing 

 

The polyp regions-of-interest (ROI) in the images were used for the training, 

validation, and test were conducted with the developed data acquisition 

 

4 NF, near focus 
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program. The program was developed for region-of-interest (ROI) analyses of 

polyp image acquisitions from original polyp images. This program provides 

various functionalities, including the ability to import images in a folder, draw 

ROIs with the mouse, and the save the coordinates of the polyp in the image. 

The program was developed in MATLAB (MATLAB R2017a, MathWorks 

Inc., Natick, MA, USA), as shown in Figure 2.5. In the data acquisition step, 

the NBI has a size of 1280 x 960 pixels (200%), and the ROI of polyp region is 

cropped within a selected ROI. 

 

 

Figure 2.5 Data acquisition program. The program provides functionalities for 

loading original polyp NBIs, selection, and saving.  
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The shape of the polyp ROI image was square and was resized to 128 × 128 

pixels to fit the input size of the CNN. A 5-fold cross-validation was applied as 

the training step, and the augmentation techniques were applied to generate the 

training datasets.  

As part of the training the convolutional neutral networks (CNN), the 

augmentation technique is used to improve performance. In this experiment, 

the number of training sets was increased 5 times based on the application of 

the augmentation techniques, and yielded the highest performance based on 

several experiments. The applied methods were a combination of linear 

transformations (zoom; 0.15, shear; 0.3, rotation; 60 ° ) and an elastic 

transformation [62] (σ; 12, random 3×3 gird) using the software packages 

OpenCV (version 3.4.1) and elasticdeform (version 0.4.6). The results of the 

augmentation techniques are shown in Figure 2.6. 
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Figure 2.6 Applied augmentation techniques. (A) Augmentation results of hyperplastic polyp images, and (B) augmentation results of 

adenomatous polyp images. 
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2.2.4 Convolutional Neural Networks (CNN) 

 

2.2.4.1 Standard CNN 

 

Previous colonoscopic imaging studies using CNN had been selected and 

trained the defined CNN models, such as inception-v3 [63], which yielded 

high-performance outcomes in the ImageNet competition. However, these 

CNN architectures performed tasks on general datasets, and not on specific 

datasets, such as the NBI polyp. Thus, we used the proposed method to search 

the CNN architecture by training that was optimized for polyp NBI.  

For this reason, the automated machine learning (AutoML) has emerged 

and overcome the previous limitations and optimized both the network 

architecture and hyperparameters based on training methods. Generally, 

AutoML automates machine learning modeling, algorithm selection, and 

hyperparameter tuning. Selecting and training standard CNN models requires 

the knowledge and experience of engineers and experimentation based on trials 

and errors [64]. Therefore, the use of AutoML, represents an attempt to 

optimize this complex and time-consuming process based on training, 

commonly referred to as the ‘learning to learn’ methodology.  
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2.2.4.2 Search for CNN Architecture 

 

This study used an efficient neural architecture search via parameter sharing 

(ENAS) [64], which is one of the AutoML methods. ENAS uses recurrent 

neural networks (RNN) [65] and reinforcement learning (RL) methods [66] to 

determine the architecture for classifying the specific dataset. In this case, the 

RNN that determines the architecture of the model is called a controller, and 

the model created by the controller is called a child network. The Controller 

used RL method to yield a child network performance based on the accuracy of 

the generated child network. In turn, the child network trained each sampled 

child network with a general image training method and with the use of a 

training dataset.  

The proposed method is the architecture searching method and the 

procedure is as follows. First, the controller RNN generates hyperparameters 

for the architectural design of CNN. Second, As the controller RNN constructs 

the architecture, it calculates the accuracy of the validation set based on training 

until the loss converges. Third, to maximize the expected validation accuracy 

of the constructed architecture, a policy gradient method which is one of the 

RL training methods, is used to optimize the hyperparameters of the controller 

RNN. Finally, This process is repeated to search for the optimal architecture 

design. 
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Specifically, this study used a micro search [67] to design small modules 

and then connected them to CNN. The modules consisted of normal cells and 

reduction cells, and these 2 modules formed the networks in a repeating 

architecture.  

In addition, 5 types of operations were determined within the modules based 

on training, and the types were (1) identity, (2) separable convolution with 

kernel sizes of 3 × 3 and 5 × 5, and (3) average pooling and max pooling with 

a kernel size of 3 × 3. The hyperparameters for training of the controller RNN 

and micro search were determined based on experiments as follows. The RNN 

controller learning rate was 0.003, the child learning rate was 0.0005 to 0.05, 

the L2 regularization was 1e-4, and the numbers of the child layer, branches, 

and child cells were 5, 5, and 15, respectively.  

 

2.2.4.3 Searched CNN Training 

 

The training protocol of the model determined by the searching method is 

as follows. The model was trained with an epoch of 450 with a batch size of 10. 

An Adam optimizer [68] was used with a learning rate of 0.0001 with decaying 

using the cosine learning method. In addition, a weighted cross-entropy method 

[69] was used to solve a class imbalance issue, and the ratio of training datasets 

was not precisely 1:1. 

This study compared the performance between inception-v3 [63], used in a 

previous study [11, 54], and the proposed method. Furthermore, we compared 
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the results of the ENAS with those of the training set with the use of an 

augmentation method. The comparison of the performance outcomes include 

the accuracy, sensitivity, specificity, negative and positive predictive values, 

and diagnosis time. 

The hardware development environment included the NVIDIA Titan V, 

graphics processing unit, and the software was Python (version 3.4.2; Python 

Software Foundation, Beaverton, Ore), TensorFlow (version 1.11.0; Google, 

Mountain View, California, USA). It was developed with reference to 

https://github.com/melodyguan/enas/.  

 

2.2.4.4 Visual Explanation 

 

The diagnostic confidence (probability) of hyperplastic and adenomatous 

polyps, which are the results of softmax in an inference step, were presented in 

a prospective study. In addition, a method of gradient-weighted class activation 

mapping (Grad-CAM) [70] was used to indicate the location of probabilistic 

evidence, and a heatmap overlaid on the polyp images diagnosed by the CNN 

was presented in a prospective study. Grad-CAM is one of the explainable AI 

techniques that presents the results of the CNN as a probabilistic representation 

of a heatmap overlaid on an image. The closer the color of the heatmap is to 

blue, the lower is the probability, and the closer the color is to red, the higher is 

the probability. 
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Additionally, t-Distributed stochastic neighbor embedding (t-SNE) [71] is 

a dimension reduction method, whereby high-dimensional data is embedded as 

low-dimensional data and are visualized. We defined the similarity between the 

data in a high-dimensional space represented by probability values and the 

similarity between the data in an embedding (low-dimensional) space. 

Accordingly, the gradient descent was used so that the difference between the 

2 similarities is small. 

In this study, features of the validation set were extracted from the last layer 

of the trained CNN. The number of features was 1024, and the features of the 

last layer-1 reduced the dimension to 2, with a learning rate of 200, and with 

1000 iterations based on the use of the package scikit-learn machine learning 

package (version 0.19.1; https://scikit-learn.org). 

 

2.2.5 Evaluation of CNN and Endoscopist Performances 

 

The following 2-stage tests were conducted based on the use of the 

validation dataset. In test 1, each endoscopist independently evaluated the 

digital format of polyp NBIs to determine whether the polyp was adenomatous 

or hyperplastic test set on a retina display of a computer via on online survey. 

After a month, they performed test 2 in the same way as the previous test 1. In 

test 2, each endoscopist made an optical diagnosis based on the original polyp 

NBI (test 1) and the CNN-processed results. The AI results presented to the 

physician were as follows: (1) The AI predicted the pathology (adenomatous or 
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hyperplastic polyps), (2) confidence value, and (3) both original NBI polyp and 

an explanation heatmap of the NBI polyp obtained using Grad-CAM (Figure 

2.4). In addition, each test also recorded the start and end times to calculate the 

average diagnostic time per polyp image.  

The optical diagnosis performances of the CNN and endoscopist (test 1), 

and those of the endoscopists with AI assistance (test 2) were evaluated and 

compared with the use of the McNemar test. We developed a mixed-effects 

logistic regression model to estimate the effect of AI assistance on the 

subgroups. Wilcoxon signed rank tests were used to assess differences of 

diagnostic time between nonassisted and AI-assisted assessments. For all tests, 

a P value of 0.05 was considered to indicate statistical significance, and a P 

value correction was performed. All calculations were performed using SAS 

(version 9.3; SAS Institute, Cary, NC) software package. 

After 2 tests, we conducted individual surveys for the personality 

characteristics with the use of Grit-Original (Grit-O, Korean version) with 2 

components, namely, consistency of interest and perseverance of effort [72]. 

Grit is a positive, noncognitive personality trait characterized by the ability to 

persevere during difficulties combined with powerful motivation to achieve a 

goal [73]. Grit has been found to be a superior predictor of success in high 

achievement fields [74]. Higher grit has been found to correlate with higher 

performance in medical school, whereas lower grit has been found to correlate 

with increased surgical residency training drop-out rates [75, 76]. Previous 
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studies have shown that doctors exhibit an average grit score in the range of 3.5 

to 3.7 [73, 77]. The Grit-Original was validated based on a questionnaire that 

comprised 12-items. It was scored on a 5-point scale (from 1 to 5). The summed 

score was divided by 12 to yield the final Grit score [78].  

 

2.3 Experiments and Results 

 

2.3.1 CNN Performance 

 

   Figure 2.7 shows the loss graph of the training and the validation datasets. 

In the process of training, learning rate decay using cosine learning method was 

applied. The two loss patterns over epoch show similar trends and there are no 

significant differences between the two which shows that there is minimal 

overfitting. 

    In addition, Figure 2.8 represents the results of the searched CNN 

architecture based on training, which consists of repeating normal cells and 

reduction cells. It is a structure in which two streams are connected to calculate 

the loss function, and each normal cell and reduction cell are composed of a 

combination of identity, separable convolution (with kernel sizes of 3 × 3, 5 × 

5), average pooling, and max pooling. 
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Figure 2.7 Loss graph of training and validation set. 

 

   In this study, the CNN selected using ENAS with augmentation techniques 

exhibited an optical diagnostic accuracy of 86.7% (95% confidence interval 

82.3–90.3), with a sensitivity of 83.3% and a specificity of 91.7%. The 

diagnostic performance of the CNN was compared with those of 22 

endoscopists as shown in Table 2.4. 
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Figure 2.8 CNN architecture for the classification of NBI polyps searched based 

on the method of neural architecture search. (A) Full architecture of 

convolutional neural networks searched by the proposed method, (B) 

architecture of normal cell, (C) architecture of reduction cell 
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Table 2.4 The CNN performance comparison between a previous method and the proposed methods. 

 
Accuracy 

n (%) 

Sensitivity 

n (%) 

Specificity 

n (%) 

Positive 

predictive 

value n (%) 

Negative 

predictive 

value n (%) 

Diagnostic 

time (s) 

Inception-v3 
245/300 

(81.67%) 

144/180 

(80%) 

101/120 

(84.17%) 

141/160 

(88.34%) 

103/140 

(73.72%) 
8.42/300 

ENAS* 
256/300 

(85.33%) 

147/180 

(81.67%) 

109/120 

(90.83%) 

145/160 

(90.83%) 

107/140 

(76.76%) 
3.62/300 

ENAS* + 

Augmentation 

260/300 

(86.7%) 

150/180 

(83.3%) 

110/120 

(91.7%) 

150/160 

(93.8%) 

110/140 

(78.6%) 
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2.3.2 Results of Visual Explanation  

 

   Figure 2.9 represents the results of t-Distributed stochastic neighbor 

embedding (t-SNE), one of the visual explanations methods for the 

interpretation of CNN. This is a method to visualize the performance of the 

CNN model, and shows the classification result of embedded high-dimensional 

features from the 1024 features in the last layer, in two dimensions.  

   Additionally, Figure 2.10 represents the results of Grad-CAM, one of the 

visual explanations methods as well. Probabilistic diagnosis shown as a 

heatmap on polyp images represents the basis for the CNN model prediction. 

 

 

Figure 2.9 Result of t-SNE to NBI polyp images. 
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Figure 2.10 Results of probabilistic diagnosis as a heatmap on polyp images using Grad-CAM. (A) Heatmap results overlaid on hyperplastic 

polyp images. (B) Heatmap results on adenomatous polyp images
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2.3.3 Endoscopist with CNN Performance 

 

The diagnostic performance of the CNN was compared with those of 22 

endoscopists (Table 2.5). Five of 7 novices yielded significantly lower 

diagnostic accuracies (47.7–79.0%) than the CNN (P < 0.05). Only 1 

endoscopist (E1, 77.3%) of the 4 experts demonstrated significantly lower 

diagnostic accuracy than the CNN (P < 0.05). Among the 11 NBI-trained expert 

endoscopists, 1 endoscopist (N-TE4, 92.7%) demonstrated statistically higher 

diagnostic accuracy than the CNN (P = 0.011).  

The overall accuracy of optical diagnosis was significantly increased with 

the use of AI assistance (82.5% to 88.5%, P < 0.05) as shown in Table 2.6. 

Although the AI assistance appeared to improve endoscopist performance, it 

must be considered that this increase can vary according to the endoscopist 

experiences. In the novice group, all endoscopists domenstrated performances 

with significantly increased accuracies (P < 0.05), and 4 of them demonstrated 

performances with greater accuracy than the algorithm. In the expert group, two 

endoscopists significantly improved the accuracies (E1, P = 0.01; E4, P = 

0.001), and 1 (E4) achieved higher accuracy than the algorithm. In the NBI-

trained expert group, 3 endoscopists (N-TE1, N-TE2, N-TE11) demonstrated 

performances with significantly improved accuracies (P < 0.05). Interestingly, 

1 endoscopist (N-TE2) was already more accurate than the algorithm without 

AI assistance.  
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Table 2.5 Diagnostic accuracy stratified based on the viewing condition (non-assisted versus AI-Assisted). 

 Non-assisted (T1) T1 versus AI AI-assisted (T2) T1 versus T2 

 Accuracy (P value) Accuracy (P value) 

Observer n Percent 95% CI  n Percent 95% CI  

AI  260/300 86.7% (82.3, 90.3)      

Novice (N = 7) 

N1 236/300 78.7% (73.6, 83.2) 0.009 264/300 88.0% (83.8, 91.5) <.0001 

N2 237/300 79.0% (73.9, 83.5) 0.003 261/300 87.0% (82.7, 90.6) 0.001  

N3 245/300 81.7% (76.8, 85.9) 0.075  262/300 87.3% (83, 90.9) 0.024  

N4 255/300 85.0% (80.4, 88.8) 0.522  269/300 89.7% (85.7, 92.9) 0.035  

N5 226/300 75.3% (70.1, 80.1) <.0001 247/300 82.3% (77.5, 86.5) 0.007  

N6 143/300 47.7% (41.9, 53.5) <.0001 237/300 79.0% (73.9, 83.5) <.0001 

N7 207/300 69.0% (63.4, 74.2) <.0001 258/300 86.0% (81.6, 89.7) <.0001 

Expert endoscopist (N = 4) 

E1 232/300 77.3% (72.2, 81.9) 0.002 259/300 86.3% (81.9, 90) 0.001  

E2 254/300 84.7% (80.1, 88.6) 0.460  263/300 87.7% (83.4, 91.2) 0.208  

E3 265/300 88.3% (84.1, 91.7) 0.515  270/300 90.0% (86, 93.2) 0.466  

E4 254/300 84.7% (80.1, 88.6) 0.439  276/300 92.0% (88.3, 94.8) 0.001  

NBI-trained expert endoscopist (N = 11) 

N-TE1 258/300 86.0% (81.6, 89.7) 0.808  276/300 92.0% (88.3, 94.8) 0.011  

N-TE2 264/300 88.0% (83.8, 91.5) 0.593  282/300 94.0% (90.7, 96.4) 0.004  
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N-TE3 267/300 89.0% (84.9, 92.3) 0.362  265/300 88.3% (84.1, 91.7) 0.746  

N-TE4 278/300 92.7% (89.1, 95.3) 0.011  282/300 94.0% (90.7, 96.4) 0.371  

N-TE5 269/300 89.7% (85.7, 92.9) 0.225  271/300 90.3% (86.4, 93.4) 0.683  

N-TE6  264/300 88.0% (83.8, 91.5) 0.617  268/300 89.3% (85.3, 92.6) 0.505  

N-TE7 270/300 90.0% (86, 93.2) 0.181  280/300 93.3% (89.9, 95.9) 0.059  

N-TE8 263/300 87.7% (83.4, 91.2) 0.714  266/300 88.7% (84.5, 92) 0.602  

N-TE9 256/300 85.3% (80.8, 89.1) 0.537  256/300 85.3% (80.8, 89.1) 1.000  

N-TE10 250/300 83.3% (78.6, 87.4) 0.211  259/300 86.3% (81.9, 90) 0.150  

N-TE11 252/300 84.0% (79.4, 88) 0.339  270/300 90.0% (86, 93.2) 0.011  
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Table 2.6 Comparison of the diagnostic accuracy according to endoscopic experiences in non-assisted and AI-assisted cases. 

 Non-assisted (T1) AI-assisted (T2) T1 versus T2  

 Accuracy (%) SE5 Accuracy (%) SE Difference Lower Upper SE P 

Group          

Novice 73.8 2.86 85.6  1.19 11.86 7.27 16.45 2.19 <.0001 

Expert 83.8  3.78 89.0  1.57 5.25 -0.82 11.32 2.90 0.0861 

NBI-trained expert 87.6  2.28 90.2  0.95 2.55 -1.11 6.21 1.75 0.1619 

Overall 82.5  1.61  88.5  0.67  6.00 3.41 8.59 1.24 0.0001 

 

 

 

 

 

 

 

 

 

 

5 SE, standard error 
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Table 2.7 Sensitivity and specificity values stratified based on the viewing condition (non-assisted versus AI-assisted). 

 Sensitivity   Specificity   

Observer Non-assisted (T1) AI-assisted (T2) T1 versus T2 Non-assisted (T1) AI-assisted (T2) T1 versus T2 

AI 83.3%  (P value) 91.7%  (P value) 

Novice (N = 7)  

N1 98.3% 95.0% 0.0578 49.2% 77.5% <.0001 

N2 80.0% 88.3% 0.009 77.5% 85.0% 0.0495 

N3 90.6% 92.2% 0.5316 68.3% 80.0% 0.0164 

N4 93.9% 90.0% 0.1266 71.7% 89.2% <.0001 

N5 87.8% 85.6% 0.4497 56.7% 77.5% <.0001 

N6 47.8% 80.0% <.0001 47.5% 77.5% <.0001 

N7 88.3% 85.6% 0.3532 40.0% 86.7% <.0001 

Expert endoscopist (N = 4)  

E1 71.1% 82.8% 0.0027 86.7% 91.7% 0.1336 

E2 91.7% 89.4% 0.4328 74.2% 85.0% 0.0093 

E3 92.8% 86.7% 0.0343 81.7% 95.0% 0.0003 

E4 82.8% 90.0% 0.0158 87.5% 95.0% 0.0126 

NBI-trained expert endoscopist (N = 11) 

N-TE1 96.7% 93.3% 0.1088 70.0% 90.0% <.0001 

N-TE2 96.7% 93.3% 0.1088 75.0% 95.0% <.0001 

N-TE3 85.6% 82.2% 0.2568 94.2% 97.5% 0.2059 
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N-TE4 97.2% 95.6% 0.2568 85.8% 91.7% 0.0522 

N-TE5 88.3% 89.4% 0.6547 91.7% 91.7% 1 

N-TE6 93.3% 95.0% 0.4054 80.0% 80.8% 0.8348 

N-TE7 93.3% 93.9% 0.7815 85.0% 92.5% 0.0201 

N-TE8 98.3% 95.0% 0.0578 71.7% 79.2% 0.0606 

N-TE9 82.8% 81.7% 0.6831 89.2% 90.8% 0.4142 

N-TE10 77.8% 82.2% 0.1441 91.7% 92.5% 0.7389 

N-TE11 96.1% 90.0% 0.0076 65.8% 90.0% <.0001 
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   The optical diagnostic performances of novices, expert endoscopists, and 

NBI-trained expert endoscopists, were 73.8%, 83.8%, and 87.6%, respectively, 

and their diagnostic accuracies improved with AI assistance (85.6%, 89.0%, 

and 90.2%, respectively) as shown in Figure 2.11. Without any AI assistance 

(test 1), the novice group demonstrated a significantly lower accuracy than both 

the experts (P = 0.049) and the NBI-trained experts (P = 0.001). With AI 

assistance (test 2), the accuracy of the novices significantly improved, and there 

was no statistical difference when performance were compared with those of 

the expert group (P = 0.102) as shown in Figure 2.12. 

 
Figure 2.11 Improved accuracy of optical diagnosis with AI assistance 

classified by group. 
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Figure 2.12 Comparisons of the diagnostic accuracy outcomes according to endoscopic experiences in non-assisted and AI assisted conditions. 
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Figure 2.13 Scatterplots of optical diagnosis with AI assistance. (A) sensitivity (B) specificity for each the AI-assisted condition (y-axis) 

compared with non-assisted condition (x-axis) for participating endoscopists. Results show that AI assistance increased specificity.  
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The average time for the Al algorithm to diagnose each polyp was 0.01 

second, which is significantly shorter than the time taken by the endoscopists 

(Table 2.8). Herein, we note that AI assistance offered an interpretable 

explanations such that endoscopists can diagnosis faster. In particular, the 

diagnostic time per polyp reduced from 4.44 to 3.68 seconds in the case of the 

NBI-trained expert group (P = 0.33).  

 

Table 2.8 Comparison of average diagnostic times for each polyp image 

between CNN and endoscopists.  

Diagnostic Time per Polyp (s) 

 Non-assisted (T1) AI-assisted (T2) P value 

CNN6 0.01 0.01 1.000 

Overall 3.92 3.37 0.042 

Novice 3.24 3.18 0.866 

Expert  3.67 2.84 0.068 

NBI-trained Expert 4.44 3.68 0.033 

 

   The acceptance of AI assistance by the endoscopist also forms an important 

factor in diagnosis. This acceptance factor can be reflected by the personality 

trait of the grit. The traits of the grit are defined as the perseverance and passion 

for long-term goals, and they reflect the ability of an individual to sustain long-

term efforts and overcome obstacles in realizing goals [77]. In our study, the 

mean participant grit score was 3.56 (Table 2.9). Overall, we observed a 

 

6 CNN, convolutional neural networks  
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moderate correlation between grit and AI- assisted diagnostic accuracy (r = 0.51, 

P = 0.015). Conversely, there was no correlation between grit and diagnostic 

accuracy without AI assistance.  

   Our study findings show that endoscopists with high grit scores could 

flexibly accept AI assistance, thereby increasing the diagnostic accuracy. In this 

study, we found that high grit, particularly in terms of the consistency of interest, 

correlated with high accuracy, which translated to a passion to achieve and 

maintain strong motivation for overcoming obstacles. This result indicates the 

possibility that certain personality traits of the endoscopist can affect the 

acceptance of AI technology.  

 

 

Figure 2.14 Scatterplot for AI-assisted optical diagnosis against grit score. 
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Table 2.9 Mean score for grit (5-scale) and strength of correlation between optical diagnostic accuracy (r = correlation coefficient).   

 Overall 
Optical Diagnostic Accuracy  

Non-assisted (T1) AI-assisted (T2) 

 Mean SD7 IQR8 Correlation, r P value Correlation, r P value 

Grit score  3.561 0.47 3.22-3.92 0.3 0.1768 0.51 0.0148 

Consistency of Interest  3.386 0.59 3.00-3.83 0.38 0.0799 0.56 0.0069 

Perseverance of effort  3.735 0.5 3.50-4.00 0.11 0.6175 0.31 0.1651 

 

7 SD, standard deviation  

8 IQR, interquartile range  
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2.4 Discussion 

 

2.4.1 Research Significance 

 

   In this study, we investigated the effect of AI assistance on 22 endoscopists 

in accurately predicting the pathology of polyp NBI. We found that AI 

assistance with an interpretable explanations could improve both the optical 

diagnostic accuracy and the diagnostic speed regardless of the endoscopic 

experiences. The diagnostic accuracy increased maximally in the novice group, 

and it was not significantly different from that of the expert group. Herein, we 

note that AI assistance can aid even NBI-trained expert endoscopists in 

increasing their diagnostic accuracies and reduce the diagnostic duration.  

   In a technical point of view, unlike the general method of training standard 

CNN, we used an ENAS [64], which is one of the AuotML methods, to search 

the CNN architecture by training that was optimized for polyp NBI. In addition, 

the proposed method is faster in formulating a diagnosis compared with 

previous studies given that it is based on a better graphics processing unit 

performance, smaller batch size, and smaller training image size. Accordingly, 

it is considered to be suitable for real-time diagnosis. We also found that the 

diagnostic performances of the ENAS with the augmentation techniques for the 

flat polyp cases were improved compared to the single-ENAS method in 

conjunction with the endoscopist diagnoses [62, 79]. Considering that AI did 

not recognize this type of polyp well in previous studies [80], the use of the 
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proposed methods confirmed that the combination of various augmentation 

techniques could compensate for the lack of training data and improve the 

performance.  

   In the application of medical AI technology, it is important that physicians 

can understand the AI results to accept AI. Here, we mention that deep learning 

methods are “black boxes” because it is impossible to explain why the AI 

arrived at a specific decision [81]. In this context, we note that recently AI 

explanation methods have been developed to enable humans to comprehend 

how the AI predictions are made [58, 82]. In this study, we presented the AI 

results to physicians in the following manner: AI-predicted pathology with 

confidence value and both original polyp NBI and NBI with generated 

heatmaps using Grad-CAM methods [70]. We visualized the highlights that 

overlaid the polyp NBI for predicted evidence. This interpretable explanation 

of AI results can aid the endoscopists to accept AI assistance, thereby 

contributing to increase diagnostic accuracy.  

   On the contrary, in a clinical point of view, we found that AI assistance is 

most effective in aiding novice rather than experts. All the novice demonstrated 

significantly increased diagnostic accuracy, and their results were not inferior 

to those of experts. It should be noted that in previous studies, “nonexpert” 

results showed marked interobserver variability, and these nonexperts could not 

achieve acceptable accuracy in the optical diagnosis of diminutive polyps with 

NBI [83, 84]. To overcome this limitation, many researchers have attempted to 
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develop AI diagnostic algorithms that can allow nonexperts to demonstrate 

improved accuracy of optical diagnosis as a clinical tool [85-87]. Our study 

demonstrated that AI assistance may aid in augmenting the abilities of 

nonexperts with limited training in optical diagnosis to take better decisions.  

   In our study, the 11 NBI-trained experts participated in the training program 

for optical diagnosis using NBI from September 2015 to September 2016 [61]. 

This NBI-trained expert group demonstrated the highest accuracy of 87.6%, 

which is thought to be attributed to the effects of training. Even in the case of 

NBI-trained experts whose performance was better than AI algorithms, the 

accuracy increased and the diagnosis time reduced with AI assistance. These 

results suggest that AI assistance can also be useful for experts in actual clinical 

situations.  

  

2.4.2 Limitations 

 

   This study has several limitations. First, we developed a CNN based on high-

quality images. However, in clinical practice, the acquired images may be of 

poor quality, such as out-of-focus or blurred images.  

   Second, this study does not focus on real-time optical diagnoses. We 

conducted only 2 in vitro tests to compare the performances of endoscopists 

with and without AI assistance. We cropped and resized images to fit the CNN’s 

input size. These hand-crafted, extracted images could be different from actual 

colonoscopy images. In actual colonoscopy, the endoscopist could observe 
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polyps at various angles and in continuous frames to predict pathology. 

Endoscopic video streams could be more useful than still images [11]. 

   Third, our training and test datasets consisted of tubular adenoma with low-

grade and hyperplastic polyps. We excluded diminutive polyps with serrated 

lesions, and other benign conditions, such as inflammatory polyps or lymphoid 

follicles. Further studies are needed on other types of colorectal polyps with 

various pathological findings.  

   Fourth, the confidence value, the probabilistic diagnosis of CNN, is not 

always reliable because the diagnosis is not based on the same approach as that 

used for humans [81]. Therefore, to solve the uncertainty issue [86], Bayesian 

deep learning method has been studied that can be trained with weights of 

probability distribution rather than with the use of fixed-weight CNN values 

[88].  

   Finally, because Grad-CAM is a technology that was applied independently 

on the proposed CNN architecture and on the training methods, the presented 

heatmap results were not stable because the results were different at each CNN 

layer.  
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2.5 Conclusion 

 

   In conclusion, AI assistance is useful for the improvement the accuracy of 

the optical diagnosis of diminutive polyps and for the achievement of shorter 

diagnostic times. In particular, we found that AI assistance was most effective 

for novices because they could achieve accuracies similar to those of experts 

without training or effort. In this manner, by reducing the diagnostic-capability 

differences between physicians, pathologic examinations can be replaced by 

accurate optical diagnoses with AI assistance that can contribute to significant 

reductions of medical costs. 

 

 

* Large sections of this chapter were published previously in Gastroenterology. 

(Eun Hyo Jin, Dongheon Lee, et al. “Improved Accuracy in Optical Diagnosis 

of Colorectal Polyps Using Convolutional Neural Networks with Visual 

Explanations”. Gastroenterology, 2020;158(8):2169-2179) [89] 
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Chapter 3  

Surgical Skill Assessment during Robotic 

Surgery by Deep Learning-based Surgical 

Instrument Tracking 

 

3.1 Introduction 

 

3.1.1 Background 

 

The da Vinci system of robotic surgery is a well-established robotic surgical 

platform that has been deployed worldwide for the past two decades [90]. The 

da Vinci robot has the advantages of 3-dimentional vision, magnified surgical 

view, endo-wrist instruments, tremor filtering support, and motion scaling [90, 

91]. Robots are therefore performing many types of minimally invasive surgery, 

including in general, urologic, gynecologic, and cardiothoracic surgery [91].    

Most types of robotic surgery require training, with a classic learning curve 

eventually resulting in consistent performance [92]. Therefore, studies on 

efficient surgeon training methods according to the learning curve have been 

reported in robotic surgery [28, 93, 94]. 
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Figure 3.1 Surgical robot system and training. (A) da Vinci surgical system (B) 

Robotic surgery view (C) Classic learning curve 

 

3.1.2 Needs 

 

   It is important to repeatedly evaluate the surgical skill of each surgeon 

learning robotic surgical procedures to determine surgeon’s current position on 

the learning curve. Surgical proficiency in laparoscopic surgery, a type of 

minimally invasive surgery, has been evaluated by the Objective Structured 
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Assessment of Technical Skill (OSATS) developed in 1997 [37]. Moreover, 

proficiency in robotic surgery, currently the primary type of micro-invasive 

surgery, has been evaluated by the Global Evaluative Assessment of Robotic 

Skills (GEARS) [38] developed in 2012.  

Qualitative assessment methods such as OSATS and GEARS are subjective, 

being based on questionnaires [38, 95]. In addition, these methods have 

limitations in that surgeons need to see and evaluate long-term surgical 

procedures. An automatic and quantitative method of evaluation for robotic 

surgery is needed therefore to overcome the limitations of these subjective 

methods [96]. The main items of OSATS and GEARS are related to the 

movement of surgical instruments (SIs), resulting in enhanced situational 

awareness [25]. Application of an SI tracking algorithm to surgical images may 

automate the evaluation of long-term surgical processes. This evaluation may 

be quantified by determining the motions of the SI and be quantified by 

determining the motions of the SI. 

 

3.1.3 Related Work 

 

   Current methods of evaluating surgical skill during robotic surgery include 

the use of the da Vinci Skills Simulator (dVSS). The simulator presents various 

tasks to surgeons, such as ring and rail, in virtual robotic surgery environments 

and evaluates surgeons’ proficiencies based on its inbuilt evaluation criteria [94, 
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97]. However, virtual robotic surgery is a practice environment for novice 

surgeons, differing greatly from actual surgical environments. 

 

 

Figure 3.2 Exercises with the dV-Trainer9. (A) and on models with the Da Vinci 

robot (B): Pick and Place, Peg Board, R ing and Rail, Match Board, Camera 

Targeting 

 

   Surgical skill has been determined by quantitatively measuring SI 

movements in actual surgical environments [27, 28]. Although kinematics 

methods estimating mechanical movements of SIs have been used to calculate 

the relationship between each joint of these SIs [26-29] (Figure 3.3), these 

methods can result in cumulative errors in the calculation of the motions of each 

joint [25]. Moreover, these methods are inapplicable to most surgical robots, 

except for some research equipment, because they are prevented from 

approaching the values of kinematic joints [27, 28, 98]. 

 

 
9 Adapted from “The virtual reality simulator dV-Trainer® is a valid assessment tool for 

robotic surgical skills”, by Perrenot, and et al., 2012, Surgical Endoscopy, 26, 2587-2593. 

Copyright 2012 by “Springer Nature”. Adapted with permission. 
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Figure 3.3 Mechanical structural of da Vinci surgical arm10. (A) one of the da 

Vinci S manipulators (B) Kinematic scheme of one of the da Vinci S 

manipulators  

 

Image-based methods can directly recognize the SIs in robotic surgery 

views. Moreover, image-based methods have other advantages because they do 

not require external equipment and can therefore be applied to surgical robots 

made by other manufacturers and to laparoscopic surgery. 

Traditional image processing approaches, however, are limited in detecting 

SI tips in complex robotic surgery views [99, 100]. A deep learning-based 

approach has been found to overcome these limitations and has been applied to 

several tasks during robotic surgery, such as classification [30, 31], detection 

[22, 32], segmentation [33], and pose estimation [24, 34] of SIs, phase 

identification [21, 35], and action recognition [36]. These methods are limited 

with respect to determining the trajectory of SIs. Semantic segmentation 

 
10 Adapted from “Formulation and Solution of the Problem of the Positions of a Mechanism 

with a Parallel–Series Structure Used in Surgery as an Alternative to the DA VINCI Robot”, 

Veliev, and et al., 2019, Journal of Machinery Manufacture and Reliability, 48, 283-291, 

Copyright 2019 by “Springer Nature”. Adapted with permission. 
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methods applied to robotic surgery images recognize occluded instruments as 

a single object when the SI locations are close or overlapping [101, 102]. 

Maintenance of the identity of each SI is critical for accurate determination of 

SI trajectory [103, 104]. The identity of SI is easily changed mainly when the 

SI goes out of the screen or is close to another SI. 

 

 

Figure 3.4 Examples of complex robotic surgery view. (A) Smoke (B) Variant 

illumination (C) Occlusion between surgical instruments (D) Occlusion 

between surgical instrument and tissue 

 

The present study proposes a system that automatically and quantitatively 

assesses the surgical skill of a surgeon during robotic surgery by visual tracking 

of SIs using a deep learning method. The algorithm consists of two frameworks: 

instance segmentation for occlusion and tracking for maintaining types of SIs. 

This method was able to stably track the tip positions of SIs in patients with 

thyroid cancer undergoing robotic thyroid surgery with a bilateral axillo-breast 

approach (BABA) and in a BABA training model [105, 106]. The trajectory of 
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the instruments enabled calculation of defined motion metrics [107], which 

were used to develop a system for quantitative assessment of surgical skill.  

 

3.2 Methods 

 

3.2.1 Study Design 

 

We developed a deep learning-based tracking algorithm of multiple SIs to 

assess surgical skill in robotic surgery. Figure 3.5 shows an overview of the 

surgical skill assessment system used in robotic surgery. The system consists 

of two processes, the SI tracking algorithm and surgical skill assessment.  

The SI tracking algorithm is a pipeline of deep learning-based methods 

involving an instance segmentation framework and a tracking framework, 

along with image processing methods to detect the tips of SIs and to recognize 

indicators (Figure 3.5A). The outputs of the instance segmentation framework 

were a bounding box and a mask of instruments on a surgical view. The results 

of the bounding box were input into the tracking framework, involving each SI 

frame by frame to maintain the type of instruments over time. The mask results 

were used to detect the positions of SI tips. To accurately determine the 

trajectory of each SI, it was necessary to detect the position of its tip, not its 

center [108]. An indicator recognition algorithm was applied to determine the 

moment of a laparoscopy usage and the status of an identified SI during robotic 
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surgery. This prevented changes in laparoscopic views and errors due to 

immobile but present SIs in these views from being included in the trajectory. 

Throughout the process of SI tracking, surgical skill was evaluated based 

on the acquired trajectory. Motion metrics [107] are quantitative indices, 

mainly related to the movement of SIs [25], in robotic surgical environments. 

Nine types of motion metrics were defined, with the metrics calculated based 

on SI trajectories (Figure 3.5B). In addition, surgical skill scores were 

determined by surgeons based on selected items related to SI motions in Object 

Structured Assessment of Technical Skills (OSATS) [37] and Global 

Evaluative Assessment of Robotic Surgery (GEARS) [38]. Finally, calculated 

motion metrics were used to develop a model predicting the surgical skill of 

novice, skilled, and expert robotic surgeons. This retrospective study was 

approved by the Institutional Review Boards of Seoul National University 

Hospital (IRB No. H-1912-081-1088). 
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Figure 3.5 Overview of the surgical skill assessment system in robotic surgery. 

(A) Surgical instrument tracking algorithm. The pipeline consists of a deep 

learning-based instance segmentation framework and a tracking framework. 

Accurate trajectory of the surgical instruments was determined by surgical 

instrument tip detection and arm-indicator recognition. (B) Assessment of 

surgical skill. Motion metrics (e.g., instruments out of view) were calculated 

based on the acquired trajectory of surgical instruments and used to develop a 

surgical skill assessment system.
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3.2.2 Dataset 

 

   The BABA to robotic thyroid surgery is a minimally invasive method used 

worldwide [106, 109, 110]. First, small incisions about 1 cm in size were placed 

on both sides of the axillae and the breast areolae, and the robot was docked to 

remove the thyroid gland. A view similar to that of traditional open 

thyroidectomy and the sophisticated arm movements of the robot provide 

surgical stability. A BABA training model enabling surgeons to practice has 

been developed [105]. The video datasets used are segments from the beginning 

to the locating of the recurrent laryngeal nerve (RLN) during thyroid surgery. 

Because injury to the RLN is a major complication of thyroid surgery, it is 

important to preserve RLN function during thyroid surgery [111].  

Several types of daVinci surgical robots were used (S, Si, and Xi), along 

with four types of SIs: bipolar, forceps, harmonic, and cautery hook. The 

developed algorithm was applied to two types of surgical image. The first was 

a surgical image of a BABA training model developed for thyroid surgery 

training [105, 106]; subjects tested on this image included students, residents, 

and fellows. The second was a surgical image of a patient with thyroid cancer; 

subjects tested on this image included fellows and professors [112]. The data 

used to train spatial-temporal re-identification (ST-ReID) in the tracking 

framework consisted of 253 frames from patients (Table 3.1)  
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Test datasets consisted of 14 videos from the BABA training model and 40 

videos from patients. Test video lengths ranged from 1121 to 40,621 frames, 

with a 23 fps. A detailed description of the test datasets is given in Table 3.2.
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Table 3.1 Training datasets for the instance segmentation framework and spatial-temporal re-identification.  

Training Dataset  
No. of 

Videos 

Total No. 

of Frames 

Types of Surgical Instruments 

Bipolar Forceps Harmonic Cautery hook 

BABA11 training model  

(Instance Segmentation Framework [113]) 
10 84 158 82 - - 

Patients with thyroid cancer  

(Instance Segmentation Framework [113]) 
2 454 311 194 141 311 

Public database [112]  

(Instance Segmentation Framework [113]) 
8 1,766 1.451 1,351 - - 

Patients with thyroid cancer  

(ST-ReID12 [114]) 
3 253 99 77 81 58 

 

11 BABA, bilateral axillo-breast approach 

12 ST-ReID, spatial-temporal re-identification 
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Table 3.2 Description of test datasets. The test dataset consisted of 14 videos of 

the axillo-breast approach (BABA) to thyroid surgery and 40 videos of patients. 

The number of scenes is the number of segmented videos at the point of time 

when laparoscopy was used. 

Test dataset 
Video 

no. 

No. of 

scenes 

Total no. of 

frames 

Video 

no. 

No. of 

scenes 

Total no. of 

frames 

BABA 

training 

model 

1 6 11,087 8 1 7,639 

2 7 6,978 9 6 10,687 

3 11 7,638 10 3 10,744 

4 4 10,086 11 1 10,763 

5 6 7,323 12 1 7,298 

6 2 6,140 13 2 11,174 

7 2 11,285 14 2 7,142 

Total 54 125,984 - - - 

Patients with 

thyroid 

cancer 

1 2 2,869 21 19 22,748 

2 6 16,489 22 5 3,570 

3 2 7,262 23 4 8,375 

4 8 32,846 24 16 2,832 

5 3 6,260 25 8 11,227 

6 8 15,401 26 5 8,483 

7 6 18,587 27 5 1,875 

8 7 6,909 28 11 9,212 

9 7 18,249 29 10 13,359 

10 5 11,967 30 21 40,621 

11 2 8,202 31 2 2,831 

12 3 4,710 32 4 5,587 

13 5 8,407 33 5 3,452 

14 1 2,357 34 3 3,511 

15 8 9,787 35 16 7,140 

16 7 11,046 36 22 20,494 
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17 6 6,009 37 9 9,209 

18 2 1,121 38 13 3,584 

19 5 11,236 39 4 3,307 

20 5 4,613 40 1 2,140 

Total 281 387,884 - - - 

 

 

3.2.3 Instance Segmentation Framework 

 

   Unlike semantic segmentation methods applied to robotic surgery images 

[23, 115], the instance segmentation method can separate occluded instruments 

during the first stage, followed by semantic segmentation during the second 

stage.  

   The instance segmentation framework used is Mask R-CNN [113], which 

in order, consists of an RPN [116], region of interest (ROI) classifier with 

bounding box regressor, and semantic segmentation networks as shown in 

Figure 3.6. The backbone of the CNN used are ResNet101 [117] and feature 

pyramid network (FPN) [118]. Second, RPN scans over the backbone feature 

maps, called anchors which are 256 different sizes and aspect ratios, covering 

images as much as possible. Furthermore, non-maximum suppression (NMS) 

is applied, so the box with the highest confidence score was selected, and if the 

intersection over union (IoU) with the corresponding box was above the 

threshold of 0.9, it was finally selected. Next, region of interest (ROI) pooling 

layer resizes a feature map to a fixed size by bilinear interpolation. In addition, 

ROI classifier, softmax, classifies surgical instruments (foreground) and 
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background, and bounding box regressor refines the coordinates of bounding 

boxes. Finally, the last CNN layers segment 28 x 28 soft mask to resized binary 

mask. 

   In the training phase, the loss function of Mask R-CNN, defined as a multi-

task loss, can be expressed as equation (1):  

 

 L = Lcls  + Lbox  + Lmask (1) 

   

   The classification loss Lcls and bounding box loss Lbox are identical to those 

defined for Fast R-CNN [116], whereas Lmask is an average binary cross-entropy 

applied to a per-pixel sigmoid regardless of the appearance or type of SIs. Adam 

optimizer with a learning rate of 0.001 was used [68]. In addition, augmentation 

techniques, such as rotation, flip, and brightness adjustment were applied.  
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Figure 3.6 The overview of the instance segmentation framework. The framework was trained with three types of training datasets: the BABA 

training model, patients, and a public database. 
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3.2.4 Tracking Framework 

 

   The positions of the SIs determined by results of the instance segmentation 

framework, the bounding boxes, must be assigned to the next frame of the same 

SIs. The tracking framework was designed to associate the identity of an SI to 

the next identity of that SI and maintain these associations over frames as shown 

in Figure 3.7. The framework consists of a cascade structure, a tracker, and re-

identification method as shown in Figure 3.8. 

 

 

Figure 3.7 Concept of tracking: Association of objects over frames. 

 

3.2.4.1 Tracker 

 

   The tracker used in this study was a deep simple online and realtime tracker 

(deep SORT) [104] which associated target SIs in consecutive video frames 

using spatial and temporal information (Figure 3.9). The algorithm operated in 

the following order. The final bounding box was selected from among the 

bounding box candidates through a non-maximum suppression method [104] 
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as a result of the instance segmentation framework. Next, the Kalman filter  

using time information [119] and the intersection-over-union (IOU) using 

spatial information were applied to associate the identity of SIs that move over 

time. A Hungarian algorithm was used for optimization of the final selection in 

association with SIs [120]. 

 

 

Figure 3.8 The overview of the tracking framework. The tracking framework 

consists of a tracker and a sequence of re-identification algorithms. The spatial-

temporal re-identification algorithm was trained with bounding boxes of all 

types of surgical instrument. 
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Figure 3.9 Block diagram of Deep SORT 

 

3.2.4.2 Re-Identification 

 

Re-identification (ReID) was applied to the result of Deep SORT because 

the existing identity of an SI can change when an SI moves out of view or when 

SIs cross in close proximity. In addition, the maximum number of SIs that 

appear on the robot surgery view was set at three, thus limiting the number of 

SIs. 

   In the proposed ReID method, offline and online learning methods were 

applied sequentially. Spatial temporal re-identification (ST-ReID) [114] is an 

offline learning method that trains all types of SIs in advance using spatial and 

temporal information. This method consists of three sub-modules, a visual 

feature stream, a spatial-temporal stream, and a joint similarity metric, the latter 
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of which integrates two streams of information and a fast Histogram-Parazen 

(HP) to approximate a complex spatial-temporal probability distribution. 

Histograms were smoothed with the HP method using equation (2):  

 

 𝑝(𝑦 = 1|𝑘, 𝑐𝑖𝑐𝑗) = 
1

𝑍
∑ 𝑝̂(𝑦 = 1|𝑙, 𝑐𝑖𝑐𝑗)𝐾(𝑙 − 𝑘)𝑙  (2) 

 

where k indicates the kth bin of a histogram, c denotes the camera IDs, K is a 

gaussian function, and Z = ∑ 𝑝̂(𝑦 = 1|𝑙, 𝑐𝑖𝑐𝑗)𝑘  is a normalization factor.  

   Following spatial-temporal re-identification (ST-ReID), the bag of visual 

words (BOVW) which is online learning method [121] was applied. The 

moment the prior method predicted changes in identity, the visual features of 

SIs during certain previous frames were trained and reflected in these changes. 

At the moment the ST-ReID predicted changes in identity, the visual features 

of an SI extracted by ORB descriptor [122] for fewer than 10 previous frames 

were trained, and the identity of the surgical instrument (SI) was predicted using 

an support vector machine. 

 

3.2.5 Surgical Instrument Tip Detection 

 

   The SI tip detection algorithm was applied because the tip position more 

accurately reflects the movement of the SI than a detection algorithm which 

yields the center of SI bounding box [108]. SI tips were detected from the binary 

SI mask, which resulted from the instance segmentation framework. The 
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starting point was determined by considering the number of SI masks contacted 

among eight defined sections a certain distance from the edge of the view. A 

skeletonization algorithm was applied to the SI mask [123], and the position of 

the SI tip in the skeletonized SI was determined by calculating the longest 

accumulated distance from the starting point. Finally, the kalman filter was 

applied to minimize outliers [100, 119]. Figure 3.10 describes the detail of the 

procedure of the tip of surgical instruments detection.  

 

 

Figure 3.10 Procedure of the tip of surgical instruments detection. (A) Surgical 

instrument mask from the instance segmentation framework. (B) Starting point 

detection in the mask from edges of the view. The area located at a certain 

distance from the edge, and the area at which the mask overlaps was determined. 

The starting point (blue) was based on the number of contacted sections at a 

certain distance from the edge of the view. (C) Application of the 

skeletonization algorithm to the mask to determine the main skeleton. After 

calculating the skeleton, update the position of the starting point (green) to the 
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nearest position in the skeleton. (D) Determination of the tool tip position (red) 

within the skeleton by calculating the longest accumulated distance from the 

starting point, and kalman filter was applied. 

 

3.2.6 Arm-Indicator Recognition 

 

   The arm indicators that could have affected the trajectory consisted of 

instrument arm status and camera arm indicators. The instrument arm status 

indicator on both sides of the screen indicated the SI currently in use. Therefore, 

these indicators reflected the movement of two or fewer SIs actually being used 

rather than the movement of the SI that appeared in the robotic surgery view. 

Recognition of the camera arm indicator confirmed the movement of the 

laparoscope during the operation. The appearance of the camera arm indicator 

on the robotic surgery view indicated movement of the laparoscope; however, 

movement of the screen may have incorrectly indicated movement of the SI. 

Although varying according to the type of surgical robot, the positions of both 

indicators were fixed on the view and appeared when an event occurred. To 

recognize the arm-indicator, template matching [124] was applied to the robotic 

surgery view. Because the shape and position of the indicators were fixed, the 

template of each arm-indicator was stored in advance. 

 

3.2.7 Surgical Skill Prediction Model 

 

   Two surgeons reviewed recorded videos of surgeons being trained using the 

BABA training model and of surgeons performing thyroid surgery on patients 
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with thyroid cancer [125, 126]. Parts of items and related motion metrics in 

OSATS and GEARS were scored [105, 127]. The defined items included time 

and motion, instrument handling, and flow of operation and forward planning 

in OSATS (Table 3.3). The item of respect for tissue is exclude, because the 

proposed method is recognition algorithm for surgical instruments (SIs) and not 

the algorithm for surrounding objects such as tissue, it cannot be addressed in 

this study. However, since the video segment used in this experiment is a 

process until the search for the main structure, recurrent laryngeal nerve (RLN), 

it is appropriate to exclude the item because it is an experiment in which a 

continuous contact with tissue is inevitable. In addition, the items of knowledge 

of instruments, use of assistants, and knowledge of the specific procedure were 

excluded, for they are not suitable for video analysis [127]. 

   Next, the items of bimanual dexterity, efficiency, and robotic control are 

selected in GEARS (Table 3.4) for this study. Since the proposed SI tracking 

algorithm was applied to the 2-dimensional image, the item of depth perception 

was excluded, and the force sensitivity was excluded because it did not 

recognize objects other than SIs for the same reason as OSATS. Also, the items 

of autonomy and use of third arm were excluded, for they were not suitable for 

video analysis [128]. Each item was scored from 1 to 5 with a total of 15 grades. 
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Table 3.3 Description of object structured assessment of technical skills (OSATS) with relevance to motion metrics. 

No. OSATS13 [37] 1 2 3 4 5 
Relevance to 

motion metrics 

1 Respect for Tissue 

Frequently used unnecessary 

force on tissue or caused damage 

by inappropriate use of 

instruments 

 

Careful handling of tissue but 

occasionally caused inadvertent 

damage 

 

Consistently handled 

tissues appropriately with 

minimal damage 

X 

2 Time and Motion Many unnecessary moves  

Competent use of instruments 

although occasionally appeared 

stiff or awkward 

 
Economy of movement and 

maximum efficiency 
O 

3 Instrument Handling 
Repeatedly makes tentative or 

awkward moves with instruments 
 

Competent use of instruments 

although occasionally appeared 

stiff or awkward  

 

Fluid moves with 

instruments and no 

awkwardness 

O 

 
13 OSATS, Object Structured Assessment of Technical Skills 



 

74 

 

4 
Knowledge of 

Instruments 

Frequently asked for the wrong 

instrument or used an 

inappropriate instrument  

 

Knew the names of most 

instruments and used appropriate 

instrument for the task 

 

Obviously familiar with the 

instruments required and 

their names 

X 

5 Use of Assistants 
Consistently placed assistants or 

failed to use assistants 
 

Good use of assistants most of 

the time 
 

Strategically used assistant 

to the best advantage at all 

times 

X 

6 

Flow of Operation 

and  

Forward Planning 

Frequently stopped operating or 

needed to discuss next move 
 

Demonstrated ability for forward 

planning with steady progression 

of operative process 

 

Obviously planned course 

of operation with effortless 

flow from one move to the 

next  

O 

7 
Knowledge of  

Specific Procedure 

Deficient knowledge. Needed 

specific instruction oat most 

operative steps 

 
Knew all important aspects of the 

operation 
 

Demonstrated familiarity 

with all aspects of the 

operation 

X 
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Table 3.4 Description of global evaluative assessment of robotic surgery (GEARS) with relevance to motion metrics. 

No. GEARS14 [38] 1 2 3 4 5 
Relevance to 

motion metrics 

1 
Depth 

Perception 

Constantly overshoots target, 

wide swings, slow to correct 
 

Some overshooting or missing of 

target, but quick to correct 
 

Accurately directs instruments 

in the correct plane to target 
X 

2 
Bimanual 

Dexterity 

Use only one hand, ignores non-

dominant hand, poor coordination 
 

Uses both hands, but does not 

optimize interactions between 

hands 

 

Expertly uses both hands in a 

complementary way to provide 

best exposure 

O 

3 Efficiency 

Inefficient efforts; many uncertain 

movements; constantly changing 

focus or persisting without 

progress 

 
Slow, but planned movements are 

reasonably organized 
 

Confident, efficient and safe 

conduct, maintains focus on 

task, fluid progression 

O 

4 Force Sensitivity 

Rough moves, tears tissue, injures 

nearby structures, poor control, 

frequent suture breakage 

 

Handles tissues reasonably well, 

minor trauma to adjacent tissue, 

rare suture breakage 

 

Applies appropriate tension, 

negligible injury to adjacent 

structures, no suture breakage 

X 

 
14 GEARS, Global Evaluative Assessment of Robotic Surgery 
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5 Autonomy 
Unable to complete entire task, 

even with verbal guidance 
 

Able to complete task safely with 

moderate guidance 
 

Able to complete task 

independently without 

prompting 

X 

6 Robotic Control 

Consistently does not optimize 

view, hand position, or repeated 

collisions even with guidance 

 

View is sometimes not optimal. 

Occasionally needs to relocate 

arms. Occasional collisions and 

obstruction of assistant. 

 

Controls camera and hand 

position optimally and 

independently. Minimal 

collisions or obstruction of 

assistant 

O 

7 
Use of Third 

Arm 

Consistently does not use it, or 

does not use it well when 

required, even with verbal 

guidance 

 

Mostly uses 3rd
 
arm in a safe and 

efficient manner with moderate 

guidance 

 

Consistently uses 3rd arm in a 

safe and efficient manner 

without prompting 

X 
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Based on the acquired trajectories, motion metrics, mainly related 

movements of SIs, were used to develop a surgical skill prediction model. 

Seven metrics associated with motion were included [94, 107, 129]: time to 

completion of surgery, instruments out of view, instrument collision, economy 

of motion, average speed, number of movements, and economic factors. Two 

additional metrics related to the robotic surgery environment, surgical 

instrument changes and laparoscopy usage, were newly defined for this study 

(Table 3.5). 

The surgical skill prediction models were developed using these nine 

calculated motion metrics as well as ground truth from OSATS and GEARS 

scores. The total number of tested videos was 54, with these datasets divided 

into 40 training and 12 test sets. Surgical skill prediction models were 

developed using machine learning methods, a linear classifier, a support vector 

machine (SVM), and random forest, with the model predicting three groups 

consisting of novice, skilled, and expert surgeons.  

In the training process, five-fold cross validation was applied, and the class 

imbalance issue was solved by applying the synthetic minority over-sampling 

technique (SMOTE) [130]. SVM used the Gaussian kernel, with the external 

hyperparameter optimized through training being a regularization parameter. 

Additionally, the random forest was trained based on the Gini impurity, with 

the external hyperparameters optimized through training being the number of 
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trees and the maximum depth of the tree. The selected hyperparameters were 

trained and fine-tuned during 500 epochs. 

 

3.3 Experiments and Results 

 

3.3.1 Performance of Instance Segmentation Framework 

 

   Figure 3.11 shows the qualitative results of the instance segmentation 

framework in the BABA training model and in a patient with thyroid cancer. 

This result shows that even when occlusion occurs between surgical 

instruments, it can be recognized by each surgical instrument. The process of 

train and validation loss are shown in Figure 3.12 A-B. 
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Table 3.5 Description of motion metrics. Motion metrics were defined in 

reference to the robotic surgical environment, and consist primarily of 

movements of surgical instruments and numbers of laparoscopes.  

No. Motion metric Description 

1 Time to complete (s) [94] 
Total time from the beginning to  

end of all surgical procedures 

2 Instruments out of views (s) [94] 
Total distance traveled by  

all instruments when not in view 

3 Instrument collision (n) [94] 
Number of times one instrument  

collided with another instrument 

4 Economy of motion (mm) [94] Total distance traveled by instruments 

5 Average speed (mm/s) [107] 
Rate of change of the instrument’s  

position in the image 

6 Number of movement (n) [129] 
Number of times beyond  

an acceleration of tolerance threshold 

7 Economy of Area (-) [107] 
Relationship between the maximum image area  

occupied by the instrument and the total distance 

8 Surgical instrument change (n) Number of surgical instrument type changes 

9 Laparoscopy usage (n) Number of times of laparoscopy usage 
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Figure 3.11 Qualitative results of the instance segmentation framework. Recognition of occlusion between surgical instruments located close 

together or overlapping (red: bipolar (left); pink: bipolar (right); green: forceps; blue: harmonic; yellow: cautery hook) (A) Sample results applied 

to the BABA training model. (B) Sample results applied to patients.
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Figure 3.12 Plots of model loss on the training and validation datasets. (A) Loss 

of bounding box in the instance segmentation framework. (B) Loss of mask in 

the instance segmentation framework. (C) Loss of spatial-temporal re-

identification. 
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3.3.2 Performance of Tracking Framework 

 

   Cumulative Matching Characteristics (CMC) [131], shown in equation (3), 

were used to evaluate the proposed tracking method at the moment the identity 

of SI predicted by the previous deep SORT algorithm was not maintained. Table 

3.6 shows the comparative performance of ReID methods. Before applying the 

ReID methods, when only Deep SORT was applied, the accuracy of applying 

the ReID method was measured by setting the ratio of the identity of SIs to 0% 

as a reference point. The evaluation metric ranked at most three types of SI 

samples according to their distances to the query. The combination of ST-ReID 

with BOVW-ReID showed accuracy 93.3% with the BABA training model and 

88.1% in patients with thyroid cancer. The process of train and validation loss 

are shown in Figure 3.12 C.   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 = {
1
0

      𝑖𝑓 𝑡𝑜𝑝1 𝑟𝑎𝑛𝑘𝑒𝑑 𝑆𝐼 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑡𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (3) 
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Table 3.6 Comparative performance of re-identification methods. 

 

 

3.3.3 Evaluation of Surgical Instruments Trajectory 

 

   Figure 3.13 shows the trajectory of multi-SIs tip, as determined by the 

proposed tracking algorithm. The differences between the algorithm-based 

determination of the tip position and the ground truth, labeled at 2 frames per 

second (23 frames), were determined. The root mean square error (RMSE) 

averaged 2.83mm for the BABA training model, and 3.75mm in patients with 

thyroid cancer. The unit of distance that each SI moved was converted from 

pixels to millimeters because the width and the height of each image were 

dependent on the type of da Vinci robot used. Thus, depending on the degree of 

magnification of the laparoscope, errors may have occurred when calculating 

the movement of the actual SIs. For unit conversion, the thickness of the 

surgical instrument was measured in advance (8 mm), and the thickness shown 

 
15 ReID, re-identification 

16 BABA, bilateral axillo-breast approach 

17 BOVW, bag of visual words 

18 ST-ReID, spatial-temporal re-identification 

ReID15 Method 
BABA16 Training Model 

(Rank-1) 

Patients with Thyroid 

Cancer (Rank-1) 

BOVW17 [121] 68.3% 57.9% 

ST-ReID18 [114] 91.7% 85.2% 

BOVW [121] + ST-ReID [114]  93.3% 88.1% 
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on the first screen was measured in pixels units. Therefore, through proportional 

relationships, the motion of each SI in pixels was converted to millimeters in 

all surgical images [132]. 

This system also measured whether the end position of the SI predicted by 

the algorithm was within 1, 2, and 5 mm of the end position of the SI on the 

screen [24]. True positive and false positive results were obtained using a 

confusion matrix (Figure 3.14). Therefore, area under the curve (AUC) could 

be calculated by plotting a receiver operating characteristic (ROC) curve using 

true positive and false positive rates. 

The mean AUC for errors within 1, 2, and 5 mm were 0.73, 0.83, and 0.92, 

respectively, in the BABA training model and 0.69, 0.76, and 0.84, respectively, 

in patients with thyroid cancer. Finally, Pearson’s correlation analysis, 

performed to assess the similarity between predicted trajectories and ground 

truth, showed that these trajectories were 0.93 (x-axis) and 0.91 (y-axis) in the 

BABA training model and 0.89 (x-axis) and 0.86 (y-axis) in thyroid cancer 

patients (Table 3.7). 
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Figure 3.13 Trajectory of multi-surgical instruments tip. Each color represents a type of surgical instrument, and the blue area represents the 

duration of laparoscopy. (A,D) Trajectory of novice surgeons (B,E) Trajectory of skilled surgeons (C,F) Trajectory of expert surgeons.
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Figure 3.14 Performance evaluation method between algorithm and ground 

truth. Red, yellow and cyan circles are 1, 2, and 5mm respectively. In our 

experiments, if the location of a prediction is within the circles, we consider it 

as true positive, and otherwise, we consider it as false positive. 

 

3.3.4 Evaluation of Surgical Skill Prediction Model 

 

   The OSATS and GEARS scores of the two surgeons showed an intra-class 

correlation coefficient (ICC) of 0.711 with OSATS and 0.74 with GEARS. Each 

motion metric item was normalized to the operation time and then to the metrics.  

   The performance of linear, SVM, and random forest surgical skill prediction 

models were compared. The models were optimized by hyper parameter tuning, 

with the random forest showing the highest accuracy. The random forest model 

had the highest performance and accuracy of 83% with OSATS and 83% with 

GEARS. Figure 3.15 shows a comparison of the performance of these surgical 

skill prediction models. In addition, the relative importance of motion metrics 
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was analyzed in OSATS and GEARS. As shown in Figure 3.16, the most 

relative important metrics in both OSATS and GEARS was economy of motion, 

followed by the instrument out of view. 

 

 

Figure 3.15 Comparison of the performance of surgical skill prediction models 

and parts of items in Object Structured Assessment of Technical Skills (OSATS) 

and Global Evaluative Assessment of Robotic Surgery (GEARS) with a 

confusion matrix. The test dataset consisted of four novice, four skilled, and 

four expert surgeons. (A-C) Confusion matrix results of models using the 

OSATS. (A) Linear classifier; (B) support vector machine; and (C) random 

forest. (D–F) Confusion matrix results of models using the GEARS. (D) Linear 

classifier; (E) support vector machine; and (F) random forest. 
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Table 3.7 Comparative performance of the surgical instruments tip detection. Evaluation methods included determinations of average are root 

mean square error (RMSE; mm), average area under the curve (AUC; 1, 2, and 5mm), and average Pearson correlation coefficient (x-axis and 

y-axis) between tip positions determined by the algorithm and ground truth.  

Test Dataset  

(No. of Videos) 
No. of Frames  

RMSE19  

(mm) 

AUC20  

(1mm) 

AUC  

(2mm) 

AUC  

(5mm) 

Pearson-r21  

(x-axis) 

Pearson-r  

(y-axis) 

BABA22 Training 

Model (n = 14) 
125,984 2.83 ± 1.34 0.73 ± 0.05 0.83 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.04 

Patients with Thyroid 

Cancer (n = 40) 
387,884 3.7 ± 2.29 0.69 ± 0.04 0.76 ± 0.06 0.84 ± 0.03 0.89 ± 0.03 0.86 ± 0.03 

Average (n = 54) 513,868 3.52 ± 2.12 0.7 ± 0.05 0.78 ± 0.06 0.86 ± 0.05 0.9 ± 0.03 0.87 ± 0.04 

 

 
19 RMSE, root mean square error 

20 AUC, area under the curve 

21 Pearson-r, pearson correlation coefficient 

22 BABA, bilateral axillo-breast approach 
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Figure 3.16 Relative importance of motion metrics in surgical skill prediction model. (A) Importance of motion metrics in Object Structured Assessment of Technical 

Skills (OSATS). (B) Importance of motion metrics in Global Evaluative Assessment of Robotic Surgery (GEARS).
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3.4 Discussion 

 

3.4.1 Research Significance 

 

   To the best of our knowledge, this is the first deep learning-based visual 

tracking algorithm developed for a quantitative surgical skill assessment system. 

Conventional methods of evaluating surgical skill such as OSATS [37] and 

GEARS [38], were based on assessments of recorded videos during robotic 

surgery from 0 to 30 grades. Because SI movements are associated with surgical 

skill, the newly proposed quantitative assessment method used a tracking 

algorithm to determine the trajectories of multiple SIs, showing an accuracy of 

83% when compared with conventional methods.    

Previously described SI tracking algorithms are limited by occlusion among 

different and multiple SIs being recognized as a single SI [101, 102]. SI identity 

cannot be maintained over frames because SIs have similar appearances, 

especially when only parts are visible [133, 134]. The proposed method 

overcomes occlusion using an instance segmentation framework and 

overcomes identity maintenance using a tracking framework. Accurate 

determination of SI trajectories enables the calculation of motion metrics and 

the quantitative evaluation of surgical skill. 

The SI tracking algorithm was developed based on robotic surgical 

environments. In this study, four types of SIs were used, but if only the shaft of 

the SI appeared on the surgical screen, it could not be discerned, thus we 
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approached the binary classification problem that distinguishes the SI 

(foreground) from the background. In addition, SI may be difficult to discern 

when it is covered by tissues or when only a part is visible during surgery [32]. 

Therefore, to minimize errors resulting from segmentation, the tracking 

algorithm used temporal information to determine the type of SI. The described 

tracking algorithm is typically used in a tracking framework to track pedestrians 

[104, 114]. The maximum number of SIs viewed during robotic surgery is three, 

limiting the number of objects recognized by the proposed algorithms. An arm-

indicator recognition algorithm was applied to reflect a robotic surgery 

environment in which an SI appears but does not actually move. Specifically, 

the instrument arm status indicator provides information about the two 

activated SIs in use, with the camera arm indicator determining the moment the 

laparoscope was moved, preventing errors resulting from the trajectory of the 

immobile SI. 

Our findings also confirmed that the four most important metrics in OSATS 

and GEARS were the same: economy of motion, instruments out of view, 

average speed, and instrument switch. The video datasets used in this study 

were video segments from the beginning of surgery to the locating of the RLN 

during thyroid surgery. Therefore, the relative importance of the motion metrics 

may differ depending on surgical sites and tasks. 
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3.4.2 Limitations 

    

This study had several limitations. First, the proposed system was applied 

to video sets of training model and patients with thyroid cancer who underwent 

BABA surgery. It is necessary to verify the effectiveness of the proposed system 

using various surgical methods and surgical areas. 

Second, we could not directly compare the performances of the kinematics 

and proposed image-based methods because access to the da Vinci Research 

Interface is limited, allowing most researchers only to obtain kinematic raw 

data [27]. However, previous studies have reported that the kinematics method 

using da Vinci robot had an error of at least 4 mm [135]. Direct comparison of 

performance is difficult because the surgical images used in the previous study 

and in this study differed. However, the average RMSE of the proposed image-

based tracking algorithm was 3.52 mm, indicating that this method is more 

accurate than the kinematics method and that the latter cannot be described as 

superior. 

The performance of the current method with the previous visual method 

could not be directly compared because no similar study detected and tracked 

the tip coordinates of the SIs. However, studies have used deep learning-based 

detection methods to determine the bounding boxes of the SIs and to display 

the trajectory of the center points of these boxes [22, 32, 108]. Nevertheless, 

because this approach could not determine the specific locations of the SIs, it 

cannot be considered an accurate tracking method intuitively. Comparison of 
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the quantitative performance of the proposed method and other approaches is 

important, making it necessary to compare different SI tracking methods. 

Third, because SIs are detected on two-dimensional views, errors may occur 

due to the absence of depth information. In the future, methods are needed to 

utilize three-dimensional information based on stereoscopic matching of left 

and right images during robotic surgery [136, 137].  

Fourth, because the proposed method is a combination of several algorithms, 

longer videos can result in the accumulation of additional errors, degrading the 

performance of the system. Thus, in particular, it is necessary to train additional 

negative examples with the instance segmentation framework, which is the 

beginning of the pipeline. For example, gauze or tubes on the robotic surgery 

view can be recognized as SIs (Figure 3.17). 

Finally, because errors from re-identification in the tracking framework 

could critically affect the ability to determine correct trajectories, accurate 

assessment of surgical skill requires manual correction of errors (Figure 3.18). 
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Figure 3.17 Errors in the instance segmentation framework. (Top: Original, Bottom: Result of instance segmentation framework) (A-B) False 

negatives resulting from sudden movements of a surgical instrument. (C) False positive, in which part of a surgical instrument is recognized as 

a single object. (D) False positive case, in which a non-surgical instrument is recognized as a surgical instrument. 
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Figure 3.18 Errors in the tracking framework. (A-B) Errors in which the identity of surgical instruments was switched following occlusion. 
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3.5 Conclusion 

   

   The proposed system can track the surgical instruments using deep 

learning-based visual tracking methods and enable the automatic and 

quantitative assessment of robotic surgical skill. It is expected that the proposed 

system will effectively educate students who need robotic surgery training, and 

will improve surgical skill of surgeons during the performance of robotic 

surgery. 

 

 

* Large sections of this chapter were published previously in Journal of 

Clinical Medicine. (Dongheon Lee, Hyeong Won Yu, et al. “Evaluation of 

Surgical Skills during Robotic Surgery by Deep Learning-Based Multiple 

Surgical Instrument Tracking in Training and Actual Operations”, Journal of 

Clinical Medicine, 2020, 9, 1964) [138] 
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Chapter 4 Summary and Future Works 

 

4.1 Thesis Summary 

 

   The goal of this study was to develop deep learning methods to improve the 

performance of clinicians and to evaluate the effect of the proposed methods on 

the outcome. In the first study, we developed an algorithm to classify the type 

of colorectal polyp images taken by a narrow-band imaging colonoscopy. The 

developed method not only showed improved performance as compared to 

results seen in previous studies, but also aided in endoscopists’ diagnosis 

process by presenting a visually basis of the AI prediction. The effectiveness of 

the method was verified through clinical evaluations, which showed that the 

average diagnostic accuracy of the endoscopists was improved and that the 

average diagnosis time was shortened as well.  

   In the second study, we developed a deep learning-based surgical 

instruments tracking algorithm in robotic surgery videos. Since the motion of 

the surgical instrument is significantly related to the surgeon’s skill, it was 

possible to develop an evaluation model by calculating the motion metrics. As 

a result, quantitative and automatic evaluation model for surgeons’ robotic 

surgical skill was demonstrated based on the tracking algorithm. The proposed 

system may pose as a direction towards quantitative evaluation of clinicians, 

thus improving the robotic surgical field as a whole. 
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   In conclusion, this study proved that the proposed deep learning methods 

can be effective tools for training and improving the performance of clinicians’ 

skills, and also showed the possibility of replacing previous methods used in 

clinical fields by presenting novel concepts and verifying improved 

performances.  

 

4.2 Limitations and Future works 

 

   In order to apply deep learning methods for medical images analysis in 

clinical practice including colonoscopic images and robotic surgery videos, 

several limitations should be addressed. The first is the set of issues particular 

to medical image datasets. For developing and verifying deep learning-based 

algorithms, large-scale and high-quality images as well as data distribution 

generalizable to new populations [139-142] are required. It is also necessary to 

collect datasets from multiple sources [139], and to transcend nationality, 

gender and race [143]. In addition, in the development process, objects in the 

background including noise that may impede the training, must be removed in 

advance [144, 145]. Furthermore, due to the nature of medical images, and 

specially of endoscopic images, it is necessary to apply novel approaches in 

conjunction with traditional deep learning methods, because issues exists such 

as the uncertainty of cell stage during differentiation [86, 146].  
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   Second, deep learning methods must be interpretable. Since traditional deep 

learning approaches regard the neural network as a black box despite its high 

performance [81], the process of prediction must be interpreted such that 

clinicians can understand the basis of the prediction result [58, 82].  

   Next is the liability issue [147-149]. The question of who takes 

responsibility for the medical treatment based on the prediction results by AI is 

still on debate. Responsibility can be held by doctor, AI systems, or insurance 

companies, and the related issue is expected to be established in the near future 

[150].  

   Finally, achieving robust regulation and rigorous quality control are 

necessary [151]. AI systems need to be systematically managed, such that 

datasets can be continuous, periodical, and system-widely updated, as being 

attempted by the U.S. Food and Drug Administration. Through such control, 

AI systems can be generalized and overcome biases, thereby enabling higher 

performance and stable operation [152]. 
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초    록 

 

본 논문은 의료진의 임상술기 능력을 향상시키기 위하여 새로운 

딥러닝 기법들을 제안하고 다음 두 가지 실례에 대해 적용하여 그 

결과를 평가하였다. 

첫 번째 연구에서는 대장내시경으로 광학 진단 시, 내시경 

전문의의 진단 능력을 향상시키기 위하여 딥러닝 기반의 용종 분류 

알고리즘을 개발하고, 내시경 전문의의 진단 능력 향상 여부를 

검증하고자 하였다. 대장내시경 검사로 암종으로 증식할 수 있는 

선종과 과증식성 용종을 진단하는 것은 중요하다. 본 연구에서는 

협대역 영상 내시경으로 촬영한 대장 용종 영상으로 합성곱 

신경망을 학습하여 분류 알고리즘을 개발하였다. 제안하는 

알고리즘은 자동 기계학습 (AutoML) 방법으로, 대장 용종 영상에 

최적화된 합성곱 신경망 구조를 찾고 신경망의 가중치를 

학습하였다. 또한 기울기-가중치 클래스 활성화 맵핑 기법을 

이용하여 개발한 합성곱 신경망 결과의 확률적 근거를 용종 위치에 

시각적으로 나타나도록 함으로 내시경 전문의의 진단을 돕도록 

하였다. 마지막으로, 숙련도 그룹별로 내시경 전문의가 용종 분류 

알고리즘의 결과를 참고하였을 때 진단 능력이 향상되었는지 비교 

실험을 진행하였고, 모든 그룹에서 유의미하게 진단 정확도가 

향상되고 진단 시간이 단축되었음을 확인하였다. 
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두 번째 연구에서는 로봇수술 동영상에서 수술도구 위치 추적 

알고리즘을 개발하고, 획득한 수술도구의 움직임 정보를 바탕으로 

수술자의 숙련도를 정량적으로 평가하는 모델을 제안하였다. 

수술도구의 움직임은 수술자의 로봇수술 숙련도를 평가하기 위한 

주요한 정보이다. 따라서 본 연구는 딥러닝 기반의 자동 수술도구 

추적 알고리즘을 개발하였으며, 다음 두가지 선행연구의 한계점을 

극복하였다. 인스턴스 분할 (Instance Segmentation) 프레임웍을 

개발하여 폐색 (Occlusion) 문제를 해결하였고, 추적기 (Tracker)와 

재식별화 (Re-Identification) 알고리즘으로 구성된 추적 프레임웍을 

개발하여 동영상에서 추적하는 수술도구의 종류가 유지되도록 

하였다. 또한 로봇수술 동영상의 특수성을 고려하여 수술도구의 

움직임을 획득하기위해 수술도구 끝 위치와 로봇 팔-인디케이터 

(Arm-Indicator) 인식 알고리즘을 개발하였다. 제안하는 알고리즘의 

성능은 예측한 수술도구 끝 위치와 정답 위치 간의 평균 제곱근 

오차, 곡선 아래 면적, 피어슨 상관분석으로 평가하였다. 마지막으로, 

수술도구의 움직임으로부터 움직임 지표를 계산하고 이를 바탕으로 

기계학습 기반의 로봇수술 숙련도 평가 모델을 개발하였다. 개발한 

평가 모델은 기존의 Objective Structured Assessment of Technical Skill 

(OSATS), Global Evaluative Assessment of Robotic Surgery (GEARS) 평가 

방법과 유사한 성능을 보임을 확인하였다.  

본 논문은 의료진의 임상술기 능력을 향상시키기 위하여 대장 

용종 영상과 로봇수술 동영상에 딥러닝 기술을 적용하고 그 
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유효성을 확인하였으며, 향후에 제안하는 방법이 임상에서 사용되고 

있는 진단 및 평가 방법의 대안이 될 것으로 기대한다. 

 

주요어: 딥러닝, 합성곱 신경망, 대장내시경 검사, 수술도구 추적, 

로봇수술 술기 평가 
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