2,502 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Human-robot co-carrying using visual and force sensing

    Get PDF
    In this paper, we propose a hybrid framework using visual and force sensing for human-robot co-carrying tasks. Visual sensing is utilized to obtain human motion and an observer is designed for estimating control input of human, which generates robot's desired motion towards human's intended motion. An adaptive impedance-based control strategy is proposed for trajectory tracking with neural networks (NNs) used to compensate for uncertainties in robot's dynamics. Motion synchronization is achieved and this approach yields a stable and efficient interaction behavior between human and robot, decreases human control effort and avoids interference to human during the interaction. The proposed framework is validated by a co-carrying task in simulations and experiments

    Bayesian estimation of human impedance and motion intention for human-robot collaboration

    Get PDF
    This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance

    A framework of human–robot coordination based on game theory and policy iteration

    Get PDF
    In this paper, we propose a framework to analyze the interactive behaviors of human and robot in physical interactions. Game theory is employed to describe the system under study, and policy iteration is adopted to provide a solution of Nash equilibrium. The human’s control objective is estimated based on the measured interaction force, and it is used to adapt the robot’s objective such that human-robot coordination can be achieved. The validity of the proposed method is verified through a rigorous proof and experimental studies

    Collaborative human-machine interfaces for mobile manipulators.

    Get PDF
    The use of mobile manipulators in service industries as both agents in physical Human Robot Interaction (pHRI) and for social interactions has been on the increase in recent times due to necessities like compensating for workforce shortages and enabling safer and more efficient operations amongst other reasons. Collaborative robots, or co-bots, are robots that are developed for use with human interaction through direct contact or close proximity in a shared space with the human users. The work presented in this dissertation focuses on the design, implementation and analysis of components for the next-generation collaborative human machine interfaces (CHMI) needed for mobile manipulator co-bots that can be used in various service industries. The particular components of these CHMI\u27s that are considered in this dissertation include: Robot Control: A Neuroadaptive Controller (NAC)-based admittance control strategy for pHRI applications with a co-bot. Robot state estimation: A novel methodology and placement strategy for using arrays of IMUs that can be embedded in robot skin for pose estimation in complex robot mechanisms. User perception of co-bot CHMI\u27s: Evaluation of human perceptions of usefulness and ease of use of a mobile manipulator co-bot in a nursing assistant application scenario. To facilitate advanced control for the Adaptive Robotic Nursing Assistant (ARNA) mobile manipulator co-bot that was designed and developed in our lab, we describe and evaluate an admittance control strategy that features a Neuroadaptive Controller (NAC). The NAC has been specifically formulated for pHRI applications such as patient walking. The controller continuously tunes weights of a neural network to cancel robot non-linearities, including drive train backlash, kinematic or dynamic coupling, variable patient pushing effort, or slope surfaces with unknown inclines. The advantage of our control strategy consists of Lyapunov stability guarantees during interaction, less need for parameter tuning and better performance across a variety of users and operating conditions. We conduct simulations and experiments with 10 users to confirm that the NAC outperforms a classic Proportional-Derivative (PD) joint controller in terms of resulting interaction jerk, user effort, and trajectory tracking error during patient walking. To tackle complex mechanisms of these next-gen robots wherein the use of encoder or other classic pose measuring device is not feasible, we present a study effects of design parameters on methods that use data from Inertial Measurement Units (IMU) in robot skins to provide robot state estimates. These parameters include number of sensors, their placement on the robot, as well as noise properties on the quality of robot pose estimation and its signal-to-noise Ratio (SNR). The results from that study facilitate the creation of robot skin, and in order to enable their use in complex robots, we propose a novel pose estimation method, the Generalized Common Mode Rejection (GCMR) algorithm, for estimation of joint angles in robot chains containing composite joints. The placement study and GCMR are demonstrated using both Gazebo simulation and experiments with a 3-DoF robotic arm containing 2 non-zero link lengths, 1 revolute joint and a 2-DoF composite joint. In addition to yielding insights on the predicted usage of co-bots, the design of control and sensing mechanisms in their CHMI benefits from evaluating the perception of the eventual users of these robots. With co-bots being only increasingly developed and used, there is a need for studies into these user perceptions using existing models that have been used in predicting usage of comparable technology. To this end, we use the Technology Acceptance Model (TAM) to evaluate the CHMI of the ARNA robot in a scenario via analysis of quantitative and questionnaire data collected during experiments with eventual uses. The results from the works conducted in this dissertation demonstrate insightful contributions to the realization of control and sensing systems that are part of CHMI\u27s for next generation co-bots

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    Reference adaptation for robots in physical interactions with unknown environments

    Get PDF
    In this paper, we propose a method of reference adaptation for robots in physical interactions with unknown environments. A cost function is constructed to describe the interaction performance, which combines trajectory tracking error and interaction force between the robot and the environment. It is minimized by the proposed reference adaptation based on trajectory parametrization and iterative learning. An adaptive impedance control is developed to make the robot be governed by the target impedance model. Simulation and experiment studies are conducted to verify the effectiveness of the proposed method

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore